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Secure 2PC
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Nothing but the output /(x,») is revealed to the parties.
Task: realize above scenario using a cryptographic protocol.

Powerful: can build most other crypto from secure computation.

Applications:
° Privacy preserving data analysis
o Secure outsourcing
o Company benchmarking
o Satellite collision detection




Example Application: Secure outsourcing
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Secret sharing: x=x41 +xJ2




Security models

Two main types

o Semi-honest: The servers run the protocol/code as prescribed. Guaranteed that data cannot leak if
servers do not collude.

o Protects against breaches “after-the-fact”, but not if a server is taken over during computation.

Malicious: No assumptions on server behavior. As long as one server is honest, data cannot leak.
o Protects against online attacks, robustness.

Security at a price

> Malicious security much harder/expensive than semi-honest. Often 10-100x in computation/
communication.




In this Work

First implementation of constant round malicious 2PC with function-independent preprocessing
o Allows the servers to run up to 90% of the total computation independent of clients and function(s).

° Function-dependent computation matches the semi-honest setting.
o Improves clients’ experience as latency is significantly reduced.

Show for the first time that LEGO technique for malicious 2PC is highly practical.
o Up to 50x faster than previous protocols if ignoring cost of independent preprocessing.
o Within factor 3x if comparing total costs.




Garbling Schemes [BHR12]
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* Privacy: Given (#.X,d), only learn ((x).
* Optimization: Free-XOR [KS08], no data
transfer for XOR gates.




Semi-honest: Yao’s garbled circuits
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Malicious adversary

Yao’s garbled circuits completely break against malicious behavior.
o PLC can garble CT #Cand PJE would never know.

o Selective Failure Attack: Make P/ abort depending on his input (thus leaking information about ).




Malicious: “Standard” Cut-and-choose

Main idea
> Send multiple garblings #Y1 ,/42,...,Flm, check some, evaluate the rest.

o Not trivial to ensure nothing can go wrong.

Replication cost
o [Bral3,HKE13,Lin13]: s circuits gives 2 T—s security.
> 40-80x blowup in communication/computation.

Amortization

o [LR15,RR16]: O(s/log(#C) ) circuits gives 27—, i.e. cut-and-choose overhead is amortized over
multiple individual computations of (.




LEGO

[NOO9] introduced LEGO technique for maliciously secure 2PC based on cut-and-choose of Garbled Circuits.

Considers gates instead of circuits for cut-and-choose.
> Asymptotic improvement, O(s/log(/C[) ) vs O(s).
o Allows preprocessing that is independent of £.
o Requires “soldering” individual gates to form a circuit using homomorphic commitments.

[NOO9] downsides
o Expensive public-key operations for each gate of the circuit.
° Incompatible with optimizations of Yao’s garbled circuits.

[FINNO13, FINT15, FINT16] Improvements
o Eliminate public-key operations for each gate.
o Compatible with all known optimizations.
o Efficient XOR-homomorphic commitment scheme based on ECC and OT.

Folklore: LEGO is asymptotically efficient, but not practical due to the commitment overhead.
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Phase 1: Preprocessing
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Phase 2: Function soldering
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Decommit solderings of /([ buckets so they compute £

Data transfer cost:
o 2+|(] decommits

> With [FINT16] commit scheme: 2 /(- £+ ¢ (~1 garbled circuit). CH(C)=
> Non-LEGO: O(s-/C]- k)

A comp. security param, S stat. security param.




Phase 3: Evaluation
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Highlights:
o LEGO: Single set of input keys vs. non-LEGO: one per eval circuit.
o Optimal 2 rounds (3 if 24C gets output)

. . o GH(C)=
o Computation: Evaluating O(s/log(/C]) ) garbled circuits.
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Observations

The overhead of the commitments dominate the preprocessing phase, ~70% of total time.
o Spent great care optimizing the commitment scheme implementation.

° Includes utilizing efficient BitMatrix transposition and Intel AVX instructions for computing several linear
combinations in parallel over hundreds of millions of values.

Clear that network bandwidth is the major bottleneck.




Performance Comparison (AES-128)
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[WMK17]: “Faster Two-Party Computation Secure Against Malicious Adversaries in the Single-Execution Setting”, Eurocrypt 17
[RR16]:  “Faster Malicious 2-party Secure Computation with Online/Offline Dual Execution”, USENIX 16

Source: https://github.com/AarhusCrypto/TinyLEGO

R




In Conclusion

LEGO is competitive with state-of-the-art 2PC,

and even surpasses previous best results if utilizing function-independent preprocessing.




Thank you
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