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Secure 2PC
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​𝑃↓1 	 ​𝑃↓2 	
𝑥	 𝑦	

𝑓(𝑥,𝑦)	
​
ℱ↓2PC
↑𝑓 	

𝑓(𝑥,𝑦)	

	 Nothing	but	the	output	𝑓(𝑥,𝑦)	is	revealed	to	the	par5es.	
	 Task:	realize	above	scenario	using	a	cryptographic	protocol.	
	 Powerful:	can	build	most	other	crypto	from	secure	computa5on.	
	 Applica5ons:	
◦  Privacy	preserving	data	analysis	
◦  Secure	outsourcing	
◦  Company	benchmarking	
◦  Satellite	collision	detec5on	



Example Applica8on: Secure outsourcing
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​𝑆↓1 	 ​𝑆↓2 	

2PC	

𝑥	

𝑦	
𝑧	

​𝑥↓1 	

​𝑥↓2 	 ​𝑦↓1 	 ​𝑦↓2 	

​𝑧↓1 	

​𝑧↓2 	

𝑓(𝑥,𝑦,𝑧)	
1	honest	server:	No	client	info	can	leak	

Secret	sharing:	𝑥= ​𝑥↓1 + ​𝑥↓2 	



Security models


	 Two	main	types	
◦  Semi-honest:	The	servers	run	the	protocol/code	as	prescribed.	Guaranteed	that	data	cannot	leak	if	
servers	do	not	collude.	
◦  Protects	against	breaches	“aPer-the-fact”,	but	not	if	a	server	is	taken	over	during	computa5on.	

◦  Malicious:	No	assump5ons	on	server	behavior.	As	long	as	one	server	is	honest,	data	cannot	leak.	
◦  Protects	against	online	aTacks,	robustness.	

	 Security	at	a	price	
◦  Malicious	security	much	harder/expensive	than	semi-honest.	OPen	10-100x	in	computa5on/
communica5on.	
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In this Work


	 First	implementa5on	of	constant	round	malicious	2PC	with	func,on-independent	preprocessing	
◦  Allows	the	servers	to	run	up	to	90%	of	the	total	computa5on	independent	of	clients	and	func5on(s).	
◦  Func5on-dependent	computa5on	matches	the	semi-honest	se\ng.	
◦  Improves	clients’	experience	as	latency	is	significantly	reduced.	

	 Show	for	the	first	5me	that	LEGO	technique	for	malicious	2PC	is	highly	prac5cal.	
◦  Up	to	50x	faster	than	previous	protocols	if	ignoring	cost	of	independent	preprocessing.	
◦  Within	factor	3x	if	comparing	total	costs.	
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Garbling Schemes [BHR12]
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G=(𝐺𝑏,𝐸𝑛𝑐,𝐸𝑣,𝐷𝑒𝑐)	

𝐺𝑏	
𝐶	

𝐹	

𝑒	

𝑑	

𝐸𝑛𝑐	
𝑥	

𝑋	
𝐸𝑣	

𝐷𝑒𝑐	
𝑍	 𝑧=𝐶(𝑥)	

•  Privacy:	Given	(𝐹,𝑋,𝑑),	only	learn	𝐶(𝑥).	
•  Op5miza5on:	Free-XOR	[KS08],	no	data	

transfer	for	XOR	gates.	



Semi-honest: Yao’s garbled circuits
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​𝑃↓𝐶 	 ​𝑃↓𝐸 	

(𝐹,𝑒,𝑑)←𝐺𝑏(𝐶)	

𝑥	 𝑦	𝑋←𝐸𝑛𝑐(𝑥,𝑒)	
(𝐹,𝑋,𝑑)	

​𝑋↓𝑗↑0 	 ​𝑦↓𝑗 	

​𝑋↓𝑗↑​𝑦↓𝑗  	​ℱ↓OT 	
​𝑋↓𝑗↑1 	

( ​𝑋↓1↑0 , ​𝑋↓1↑1 ,…, ​𝑋↓𝑛↑0 , ​𝑋↓𝑛↑1 )←𝑒	

𝑍←𝐸𝑣(𝐹,𝑌)	

𝑌←( ​𝑋↓1 , ​𝑋↓2 , ​𝑋↓𝑛 )	

𝑧←𝐷𝑒𝑐(𝑍,𝑑)	

𝑧=𝐶(𝑥,𝑦)	



Malicious adversary


	 Yao’s	garbled	circuits	completely	break	against	malicious	behavior.	
◦  ​𝑃↓𝐶 	can	garble	​𝐶↑′ ≠𝐶	and	 ​𝑃↓𝐸 	would	never	know.	
◦  Selec5ve	Failure	ATack:	Make	​𝑃↓𝐸 	abort	depending	on	his	input	(thus	leaking	informa5on	about	𝑦).	
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Malicious: “Standard” Cut-and-choose


	 Main	idea	
◦  Send	mul5ple	garblings	 ​𝐹↓1 , ​𝐹↓2 ,…, ​𝐹↓𝑚 ,	check	some,	evaluate	the	rest.	
◦  Not	trivial	to	ensure	nothing	can	go	wrong.	

	 Replica5on	cost	
◦  [Bra13,HKE13,Lin13]:	𝑠	circuits	gives	​2↑−𝑠  security.	
◦  40-80x	blowup	in	communica5on/computa5on.	

	 Amor5za5on	
◦  [LR15,RR16]:	𝑂( ​𝑠⁄log​(#𝐶) )	circuits	gives	​2↑−𝑠 ,	i.e.	cut-and-choose	overhead	is	amor5zed	over	
mul5ple	individual	computa5ons	of	𝐶.	
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LEGO

	 [NO09]	introduced	LEGO	technique	for	maliciously	secure	2PC	based	on	cut-and-choose	of	Garbled	Circuits.	

	 Considers	gates	instead	of	circuits	for	cut-and-choose.	
◦  Asympto5c	improvement,	𝒪( ​𝑠⁄​log ⁠(|𝐶|)  )	vs	𝒪(𝑠).	
◦  Allows	preprocessing	that	is	independent	of	𝐶.	
◦  Requires	“soldering”	individual	gates	to	form	a	circuit	using	homomorphic	commitments.	

	 [NO09]	downsides	
◦  Expensive	public-key	opera5ons	for	each	gate	of	the	circuit.	
◦  Incompa5ble	with	op5miza5ons	of	Yao’s	garbled	circuits.	

	 [FJNNO13,	FJNT15,	FJNT16]	Improvements	
◦  Eliminate	public-key	opera5ons	for	each	gate.	
◦  Compa5ble	with	all	known	op5miza5ons.	
◦  Efficient	XOR-homomorphic	commitment	scheme	based	on	ECC	and	OT.	

	 Folklore:	LEGO	is	asympto,cally	efficient,	but	not	prac,cal	due	to	the	commitment	overhead.	
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Phase 1: Preprocessing
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​𝑃↓𝐶 	 ​𝑃↓𝐸 	

Send	Gates	G={ ​𝐺↓𝑖 }	and	commit	to	all	inp/out	wires	

Send	check-set	𝑉⊂𝐺	

Decommit	to	input	and	output	wires	of	gates	in	𝑉	 Check	that	they	
correspond	to	AND	gates	
If	OK!	

Decommit	solderings	of	remaining	gates	in	according	to	𝐵	

Permuta5on	𝐵	specifying	bucke5ng	

Everything	so	far	independent	of	final	func,onality	𝐶	

Very	parallelizable!	

𝑛⋅	AND	 𝑛⋅	AND	
	

X	𝑛	



Phase 2: Func8on soldering
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​𝑃↓𝐶 	 ​𝑃↓𝐸 	

X	𝑛	

𝐶	

Decommit	solderings	of	|𝐶|	buckets	so	they	compute	𝐶	

𝐶	

𝐺𝑏(𝐶)=	

	 Data	transfer	cost:	
◦  2⋅|𝐶|	decommits	
◦  With	[FJNT16]	commit	scheme:	2⋅|𝐶|⋅𝑘+𝑐	(~1	garbled	circuit).	
◦  Non-LEGO:	𝒪(𝑠⋅|𝐶|⋅𝑘)	

𝑘	comp.	security	param,	𝑠	stat.	security	param.	



Phase 3: Evalua8on
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​𝑃↓𝐶 	 ​𝑃↓𝐸 	𝑥	 𝑦	
​𝑋↓𝑗↑0 	 ​𝑦↓𝑗 	

​𝑋↓𝑗↑​𝑦↓𝑗  	​ℱ↓OT 	
​𝑋↓𝑗↑1 	

​(𝑋↓𝑖↑​𝑥↓𝑖  ,𝑑)	

𝐺𝑏(𝐶)=	

𝑋	

𝑍=𝐸𝑣(𝐹,𝑋)	

	 Highlights:	
◦  LEGO:	Single	set	of	input	keys	vs.	non-LEGO:	one	per	eval	circuit.	
◦  Op5mal	2	rounds	(3	if	 ​𝑃↓𝐶 	gets	output)	
◦  Computa5on:	Evalua5ng	𝒪( ​𝑠⁄​log ⁠(|𝐶|)  )	garbled	circuits.	

𝑧=𝐷𝑒𝑐(𝑍,𝑑)	
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Observa8ons


	 The	overhead	of	the	commitments	dominate	the	preprocessing	phase,	~70%	of	total	5me.	
◦  Spent	great	care	op5mizing	the	commitment	scheme	implementa5on.	
◦  Includes	u5lizing	efficient	BitMatrix	transposi5on	and	Intel	AVX	instruc5ons	for	compu5ng	several	linear	
combina5ons	in	parallel	over	hundreds	of	millions	of	values.	

	 Clear	that	network	bandwidth	is	the	major	boTleneck.	
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Performance Comparison (AES-128)
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[WMK17]:	“Faster	Two-Party	Computa5on	Secure	Against	Malicious	Adversaries	in	the	Single-Execu5on	Se\ng”,	Eurocrypt	17	
[RR16]:	 			“Faster	Malicious	2-party	Secure	Computa5on	with	Online/Offline	Dual	Execu5on”,	USENIX	16	

Source:	h"ps://github.com/AarhusCrypto/TinyLEGO	
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In Conclusion


	 LEGO	is	compe,,ve	with	state-of-the-art	2PC,	

	 and	even	surpasses	previous	best	results	if	u,lizing	func,on-independent	preprocessing.	
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	 Thank	you	
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