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Impact of Kernel A6acks

Process	A	 Process	B	

Hardware	

Memory	

Security	

CPU	

Ext.	Hardware	

Lower	
Privileges	

User	 Lower	
Privileges	

User	

Browser	

Document	
Viewer	
Word	

Processor	

Exploit	
Vulnerability	

OperaCng	System	Kernel	
Memory	

Security	

CPU	

Ext.	Hardware	
ROP	

Return-oriented	Programming	
[Shacham,	CCS	2007]	

Control-Flow	Integrity	
[Abadi	et	al.,	CCS	2005]	



hXps://grsecurity.net/rap_announce_ret.php	

CFI for Linux Kernel: 
Return Address Protec+on (RAP)



Is Control-Flow Integrity enough?

• Protects	against	control-flow	hijacking*	

• Vulnerable	to	non-control	data	aXack	

*Terms	and	Condi-ons	May	Apply	



Virtual Memory: 
Page Tables
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Data-Only	against	Page	Tables	
of	a	CFI-hardened	Kernel	



Data-Only A6acks Against Page Tables

CFI-Hardened	Kernel	

User	Mode	

Code	
System	Call	RX	

...	RX	

Data	
Page	Tables	RW	

…	RW	

RWX	

Page	Tables	

Shellcode	

Overwrite	
exisCng	
funcCon	(e.g.,	
system	call)	
with	shellcode	

Trigger	system	
call	to	execute	
the	injected	
shellcode	

Exploit	kernel	
vulnerability	
to	manipulate	
the	page	table	



Page-Table Protec+on: 
Shortcomings of Related Work
• Proposed	schemes	to	ensure	page-table	integrity	
• HyperSafe	[Wang	and	Jiang,	IEEE	S&P	2010]	
•  SPROBES	[Ge	et	al.,	IEEE	MoST	2014]	
• KCoFI	[Criswell	et	al.,	IEEE	S&P	2014]	
•  SKEE	[Azab	et	al.,	NDSS	2015]	

• However,	they	suffer	from	the	following	problems	
• Require	hardware	trust	anchors	
• Require	a	trusted	hypervisor	
•  Inefficient	integrity	check	



	
Our	Approach:	
Page-Table	RandomizaEon	



Assump+ons and Threat Model

Modern	CPUs	prevent	ret2usr	aXacks	(SMAP/SMEP)	
Cannot	inject	new	code	into	the	kernel	(W^X)	
Code-reuse	defense	in	place	(CFI)	
	
Control	over	a	user	applicaCon	
Read/Write	from/to	known	addresses	



PT-Rand: 
High-level Idea
• Address	space	for	64	bit	
systems	is	huge	

• Move	to	random	locaCon	in	
unused	memory	page	tables	

• Protect	all	pointers	
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PT-Rand: 
Challenges & Details
• References	to	page	tables	
→ 	All	references	are	replaced	by	physical	addresses	
→ 	Page	table	management	patched	process	physical	addresses	

• ProtecCon	of	the	randomizaCon	secret	
→ 	Store	in	debug	register	and	make	it	leakage	resilient	

• Preserve	Physmap	funcConality	for	regular	accesses	
→ 	Our	approach	only	removes	page	table	data	from	Physmap	



EvaluaEon	



Security

• Guessing	AXacks	
• p	=	3.726x10−9	(Desktop,	4000	Page-Table	Entries)	
• p	=	3.762x10−9	(Server	w/	9	parallel	VMs	,	33000	PTE)	

• Memory-disclosure	AXacks	
•  Through	pointers:	All	pointers	are	converted	to	physical	address	
•  Spilled	registers	
• DR3	are	not	spilled	during	interrupts	
•  Sorware	interrupts	are	disabled	during	page	walks	



Implementa+on

•  Linux	Kernel	v4.6	hardened	with	RAP	
•  45	source	files	
•  1382	inserCons		
•  15	deleCons		

•  Intel	Core	i7-4790	CPU		
•  8	GB	RAM		
• Debian	8.2		



Performance

•  SPEC	CPU	2006:	avg.	0.22%		(max	1.7%)	

• Phoronix:	0.08%	(max.	1.8%)	

•  LMBench	fork+exec:	+0.1	ms		

• Chromium	
•  Start	Cme	(+	<	1ms)	
•  Run	Cme	avg.	-0.294% (JetStream/Octan/Kraken)	



Conclusion

• Page-table	aXacks	pose	a	serious	threat	to	kernel	security	
• First	pracEcal	randomizaCon-based	defense	for	page	tables	
• MiCgates	data-only	aXacks		
• No	dependencies	on	higher	privileged	execuCon	modes	
• Complements	kernel	CFI	

• Proof-of-concept	implementaCon		
• Negligible	overhead	
• No	impact	on	the	stability	of	the	overall	system	


