
PT-Rand
Prac+cal Mi+ga+on of

Data-only A6acks against Page Tables

David	Gens	
Christopher	Liebchen	
Ahmad-Reza	Sadeghi	

Lucas	Davi	

Cyber	Security	Center	
Technische	Universität	Darmstadt		

University	of	Duisburg-Essen		

OperaCng	System	Kernel	

Impact of Kernel A6acks

Process	A	 Process	B	

Hardware	

Memory	

Security	

CPU	

Ext.	Hardware	

Lower	
Privileges	

User	 Lower	
Privileges	

User	

Browser	

Document	
Viewer	
Word	

Processor	

Exploit	
Vulnerability	

OperaCng	System	Kernel	
Memory	

Security	

CPU	

Ext.	Hardware	
ROP	

Return-oriented	Programming	
[Shacham,	CCS	2007]	

Control-Flow	Integrity	
[Abadi	et	al.,	CCS	2005]	

hXps://grsecurity.net/rap_announce_ret.php	

CFI for Linux Kernel:
Return Address Protec+on (RAP)

Is Control-Flow Integrity enough?

• Protects	against	control-flow	hijacking*	

• Vulnerable	to	non-control	data	aXack	

*Terms	and	Condi-ons	May	Apply	

Virtual Memory:
Page Tables

Virtual	
Memory	
Read	

Execute	
Read		
Only	
Read	
Write	

Kernel	

CPU	

Physical	
Memory	
Read	
Write	
Read		
Only	
Kernel	
Read	

Execute	

Page	Table	Root	
MMU	

Page	Table	
Entry	

Page	Table	
Entries	

Page	Table	Hierarchy	

Page	Table	
Entries	

Physical	Address	 Permissions	 0010

TranslaCon	and	Permission	Enforcement	

0x1000	

0x2000	

0x3000	

0xF000	

Read	

0x3000	 0x1000	�	

0x1000	

MMU	=	Memory	Management	Unit	

Data-Only	against	Page	Tables	
of	a	CFI-hardened	Kernel	

Data-Only A6acks Against Page Tables

CFI-Hardened	Kernel	

User	Mode	

Code	
System	Call	RX	

...	RX	

Data	
Page	Tables	RW	

…	RW	

RWX	

Page	Tables	

Shellcode	

Overwrite	
exisCng	
funcCon	(e.g.,	
system	call)	
with	shellcode	

Trigger	system	
call	to	execute	
the	injected	
shellcode	

Exploit	kernel	
vulnerability	
to	manipulate	
the	page	table	

Page-Table Protec+on:
Shortcomings of Related Work
• Proposed	schemes	to	ensure	page-table	integrity	
• HyperSafe	[Wang	and	Jiang,	IEEE	S&P	2010]	
•  SPROBES	[Ge	et	al.,	IEEE	MoST	2014]	
• KCoFI	[Criswell	et	al.,	IEEE	S&P	2014]	
•  SKEE	[Azab	et	al.,	NDSS	2015]	

• However,	they	suffer	from	the	following	problems	
• Require	hardware	trust	anchors	
• Require	a	trusted	hypervisor	
•  Inefficient	integrity	check	

	
Our	Approach:	
Page-Table	RandomizaEon	

Assump+ons and Threat Model

Modern	CPUs	prevent	ret2usr	aXacks	(SMAP/SMEP)	
Cannot	inject	new	code	into	the	kernel	(W^X)	
Code-reuse	defense	in	place	(CFI)	
	
Control	over	a	user	applicaCon	
Read/Write	from/to	known	addresses	

PT-Rand:
High-level Idea
• Address	space	for	64	bit	
systems	is	huge	

• Move	to	random	locaCon	in	
unused	memory	page	tables	

• Protect	all	pointers	

Kernel	Space	

Unused	Memory	(1TB)	

Data	

Code	

Page	Tables	

Pointer	to	page	table	Pointer	to	page	table	

RandomizaCon	
Secret	

PT-Rand:
Challenges & Details
• References	to	page	tables	
→ 	All	references	are	replaced	by	physical	addresses	
→ 	Page	table	management	patched	process	physical	addresses	

• ProtecCon	of	the	randomizaCon	secret	
→ 	Store	in	debug	register	and	make	it	leakage	resilient	

• Preserve	Physmap	funcConality	for	regular	accesses	
→ 	Our	approach	only	removes	page	table	data	from	Physmap	

EvaluaEon	

Security

• Guessing	AXacks	
• p	=	3.726x10−9	(Desktop,	4000	Page-Table	Entries)	
• p	=	3.762x10−9	(Server	w/	9	parallel	VMs	,	33000	PTE)	

• Memory-disclosure	AXacks	
•  Through	pointers:	All	pointers	are	converted	to	physical	address	
•  Spilled	registers	
• DR3	are	not	spilled	during	interrupts	
•  Sorware	interrupts	are	disabled	during	page	walks	

Implementa+on

•  Linux	Kernel	v4.6	hardened	with	RAP	
•  45	source	files	
•  1382	inserCons		
•  15	deleCons		

•  Intel	Core	i7-4790	CPU		
•  8	GB	RAM		
• Debian	8.2		

Performance

•  SPEC	CPU	2006:	avg.	0.22%		(max	1.7%)	

• Phoronix:	0.08%	(max.	1.8%)	

•  LMBench	fork+exec:	+0.1	ms		

• Chromium	
•  Start	Cme	(+	<	1ms)	
•  Run	Cme	avg.	-0.294% (JetStream/Octan/Kraken)	

Conclusion

• Page-table	aXacks	pose	a	serious	threat	to	kernel	security	
• First	pracEcal	randomizaCon-based	defense	for	page	tables	
• MiCgates	data-only	aXacks		
• No	dependencies	on	higher	privileged	execuCon	modes	
• Complements	kernel	CFI	

• Proof-of-concept	implementaCon		
• Negligible	overhead	
• No	impact	on	the	stability	of	the	overall	system	

