
1

Dynamic Virtual Address Range Adjustment
for Intra-Level Privilege Separation on ARM

Yeongpil Cho, Donghyun Kwon, Hayoon Yi, Yunheung Paek

Seoul National University

1

SoC Optimizations & Restructuring

System Software

For example,
 Operating System
 Hypervisor

System Software plays roles of
 Resource Manager
 Trusted Computing Base

A variety of system software has the monolithic design
 so, the entire can suffer from small exploits.

System Software

Exploit

2

SoC Optimizations & Restructuring

Privilege Separation

One of fundamental security principles
 Protect security critical parts by separating from the others
- ex) key management, page table management , system monitoring, …

How to enforce this principle to system software?
 Relying on higher privileged entity

One fundamental question

“ how to enforce this principle to the higher privileged system software? “

Target system software

Higher privileged
system software

protect the critical parts of the target

3

SoC Optimizations & Restructuring

Intra-Level Privilege Separation

Divide the monolithic body of system software
into the outer domain and inner domain
 Two domains run at the physically same but logically different privilege level
 Two domains have asymmetric memory view

Two core mechanisms of intra-level privilege separation
 intra-level isolation mechanism
- prevent the outer domain from accessing the inner domain

 domain switching mechanism
- transfer control between the outer and inner domains

System Software

Outer domain
(less privileged)

Inner domain
(more privileged)

4

SoC Optimizations & Restructuring

Motivation of our work

To efficiently and securely implement two core mechanisms,
a hardware feature for memory protection is used

The type of system software that can be supported is
determined by the used hardware features.
Solution Architecture Key Hardware Feature Target System Software

HyperSafe
[S&P‘10]

x86 64-bit Write-Protection Hypervisor, Normal OS*

Nested Kernel
[ASPLOS‘15]

x86 64-bit Write-Protection Normal OS, Hypervisor*

SKEE
[NDSS‘16]

ARM 32-bit TTBCR Normal OS, Secure OS*

SKEE
[NDSS‘16]

ARM 64-bit Extended Paging Normal OS

* : not mentioned in the paper, but can be supported with the same technique

5

SoC Optimizations & Restructuring

Motivation of our work

ARM’s 64-bit architecture (a.k.a AArch64) is widely used
in mobile devices

Various types of system software coexist to enrich
the functionality of the AArch64-based devices
 Exception Level has the same meaning as Privilege Level

Not only normal OS but also secure OS and hypervisor
suffer from exploits

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

6

SoC Optimizations & Restructuring

Hilps

A technique that can enforce intra-level privilege separation
to a variety of system software on AArch64

To achieve the goal of Hilps, two core mechanisms for intra-
level isolation and domain switching must be applicable
regardless of exception level

Normal World

1

2

Exception Level

Exception Level

Secure World
Normal OS Secure OS

Hypervisor

Outer
domain

Inner
domain

Outer
domain

Outer
domain

Inner
domain

Inner
domain

7

SoC Optimizations & Restructuring

Hilps

AArch64 contains a hardware feature that allows dynamically
adjusting valid virtual address range at each exception level
 Hilps can create a special memory region that is temporally hidden from

other memory regions

Valid Virtual Address Space

Valid Virtual Address Space

Dynamic Virtual Address
Range Adjustment

Access Fault

8

SoC Optimizations & Restructuring

Hilps

9

SoC Optimizations & Restructuring

Background: Address Translation on AArch64

System control registers for address translation
 TTBRx_ELx (Translation Table Base Register)
- points to the base address of the current page table

 TCR_ELx (Translation Control Register)
- controls address translation

10

SoC Optimizations & Restructuring

Background: Address Translation on AArch64

Each exception level has its own control registers

TTBR1_EL1
TCR_EL1

TTBR0_EL2
TCR_EL2

TTBR1_EL1
TCR_EL1

Normal World

1

2

Exception Level

Exception Level

Secure World

Normal OS Secure OS

Hypervisor

11

SoC Optimizations & Restructuring

Background: Virtual Address Range Adjustment

TxSZ-field of TCR_ELx determines the valid range of the
virtual address space translated by the paired TTBRx_ELx

TCR_EL1

TCR_EL2

12

SoC Optimizations & Restructuring

Background: Virtual Address Range Adjustment

Change of valid virtual address range depending on TxSZ-
field

13

SoC Optimizations & Restructuring

Background: Virtual Address Range Adjustment

Typically, multi-level page tables are used for effective
management
 1st-level page table is directly referenced by virtual address

When valid virtual address range changes,
the number of valid 1st-level page table entries also varies
proportionally

1st-level page table 2st-level page table

Expanded
Virtual Address Physical

Address

TTBR 0

3

7

14

SoC Optimizations & Restructuring

Intra-level isolation mechanism

System software that runs with TTBR0_ELx
 ex) Hypervisor

Valid virtual address space and valid 1st-level page table
entries change in the same direction

Valid Virtual Address Space

0x0

0x1FFF

Valid 1st-level page table entries

base addr 0

1

base entry

0x0

0x3FFF

base addr 0

3

base entry

expand valid VA range

VA[12]

VA[12:13]

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

15

SoC Optimizations & Restructuring

Intra-level isolation mechanism

System software that runs with TTBR0_ELx
 ex) Hypervisor

Valid virtual address space and valid 1st-level page table
entries change in the same direction

Valid Virtual Address Space

0x0

0x1FFF

Valid 1st-level page table entries

base addr 0

1

base entry

0x0

0x3FFF

base addr 0

3

base entry

expand valid VA range

VA[12]

VA[12:13]

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

Inner Domain

16

SoC Optimizations & Restructuring

Intra-level isolation mechanism

System software that runs with TTBR1_EL1
 ex) Normal OS and secure OS

Valid virtual address space and valid 1st-level page table
entries change in the opposite direction

Valid Virtual Address Space

0xFFFF

Valid 1st-level page table entries

base addr

0

1

base entry

0

3

base entry

0xE000

0xFFFFbase addr

0xC000

VA[12]

VA[12:13]

expand valid VA range

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

17

SoC Optimizations & Restructuring

Intra-level isolation mechanism

System software that runs with TTBR1_EL1
 ex) Normal OS and secure OS

Valid virtual address space and valid 1st-level page table
entries change in the opposite direction

Valid Virtual Address Space Valid 1st-level page table entries

0

7

base entry

0xFFFFbase addr

0x8000

VA[12:13]

expand valid VA range

0xFFFFbase addr

0

1

base entry0xE000

VA[12]

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

18

SoC Optimizations & Restructuring

Intra-level isolation mechanism

System software that runs with TTBR1_EL1
 ex) Normal OS and secure OS

Valid virtual address space and valid 1st-level page table
entries change in the opposite direction

Valid Virtual Address Space Valid 1st-level page table entries

0

7

base entry

0xFFFFbase addr

0x8000

VA[12:13]

expand valid VA range

0xFFFFbase addr

0

1

base entry0xE000

VA[12]

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

Inner Domain

19

SoC Optimizations & Restructuring

Domain switching mechanism

mrs x5, DAIF
stp x30, x5, [sp, #-16]!
msr DAIFset, 0x3

1:
mrs x5, tcr_el1
and x5, x5, #0xfffffffffffdffff
orr x5, x5, #0x400000
msr tcr_el1, x5
isb

mov x6, #0xc03f
mov x7, #0x1b
movk x6, #0xc07f, lsl #16
movk x7, #0x8059, lsl #16
and x5, x5, x6
cmp x5, x7
b.ne 1b

mrs x6, mpidr_el1
ubfx x5, x6, #8, #4
and x6, x6, #0xf
orr x6, x6, r5, lsl #2
add x6, x6, #1
adrp x5, InnerDomain_stack
add x5, x5, x6, lsl #12
mov x6, sp
mov sp, x5
str x6, [sp, #-8]!

adrp x5, InnerDomain_handler
blr x5

A way to enter the inner domain

Disable interrupts

Configure TCR to expand valid virtual address
range and reveal the inner domain

Verify the value of TCR

Switch to the inner domain stack

Jump to the inner domain
20

SoC Optimizations & Restructuring

A way to return back to the outer domain

Domain switching mechanism

Switch to the outer domain stack

Configure TCR to reduce valid virtual address
range and hide the inner domain

Verify the value of TCR

ldp x6, [sp], #8
mov sp, x6

mrs x5, tcr_el1
and x5, x5, #0xffffffffffbfffff
orr x5, x5, #0x20000
msr tcr_el1, x5

mov x6, #0xc03f
mov x7, #0x1b
movk x6, #0xc07f, lsl #16
movk x7, #0x801b, lsl #16
and x5, x5, x6
cmp x5, x7
b.ne 2b

ldp x30, x5, [sp], #16
msr DAIF, x5
isb

ret

Enable interrupts

21

SoC Optimizations & Restructuring

Evaluation

V2M-Juno r1 platform
 Cortex-A57 1.15 GHz dual-core
 Cortex-A53 650 MHz quad-core
 2 GB of DRAM

Target
 AArch64 Linux Kernel 3.10 of Android 5.1.1

22

SoC Optimizations & Restructuring

Evaluation

Round-Trip Cycles between the outer and inner domains
 Big core : 424 cycles, Little core : 210 cycles

LMbench to measure the kernel performance

Application benchmarks to measure the system performance

-10.0%

0.0%

10.0%

20.0%

30.0%

Avg : 9.77%

Avg : 0.84%

23

24

Thank you!

24

SoC Optimizations & Restructuring

Intra-level isolation mechanism

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

(128 GB) (128 GB)

(128 GB)

25

SoC Optimizations & Restructuring

Intra-level isolation mechanism

Normal OS

Hypervisor

Secure OS

Normal World

1

2

Exception Level

Exception Level

Secure World

(128 GB)

(128 GB)

26

SoC Optimizations & Restructuring

Intra-level isolation mechanism

An attacker in the outer domain would access the inner
domain through the cached TLB entries

How to prevent the outer domain from referencing cached
TLB entries for the inner domain?
 at Exception Level 1
- use different ASIDs between the two domains

 at Exception Level 2
- invalidate cached TLB entries when switching between the two domains

TLB
outer’s

Outer domain Inner domain Outer domain

TLB
outer’s
inner’s

TLB
outer’s
inner’s

27

SoC Optimizations & Restructuring

Domain switching mechanism

An attacker would cause a malicious interrupt to bypass the
verification process for TCR and access to the inner domain
 thwarting this attack by inserting a code snippet to verify the value of TCR

Interrupt disabling

TCR configuration

Verification of TCR

…

Inner Domain

Jump

Interrupt

Jump

Interrupt

Interrupt Interrupt Handler

Interrupt Vector Table

Yes

at EL1:
if TCR_EL1.T1SZ == 27

at EL2 or EL3:
if TCR_ELx.T0SZ == 27

Halting the system
No

Subverting
control-flow

Entry gate of IDC

…

TCR configuration

Verification of TCR

Interrupt enabling

Exit gate of IDC

28

SoC Optimizations & Restructuring

Efficiency of the domain switching mechanism

Round-Trip Cycles between the outer and inner domains
 Measured by the performance monitor provided by AArch64

Big core Little core

with ASID with TLB inv. with ASID with TLB inv.

RTC 424 832 210 249

29

SoC Optimizations & Restructuring

Efficiency of Hilps

LMBench to measure the kernel performance

Application benchmarks to measure the system performance

Big core Little core
with ASID with TLB inv. with ASID with TLB inv.

null syscall 0.00 % 0.00 % 2.33 % 2.33 %
open/close -0.31 % 1.10 % 0.16 % 0.71 %
stat -0.38 % 0.38 % 0.99 % 1.8 %
handler inst 0.00 % 1.47 % 0.00 % 0.00 %
handler ovh 0.31 % 1.84 % -0.67 % -0.17 %
pipe latency 11.40 % 43.48 % 6.89 % 19.10 %
page fault 27.66 % 102.13 % 31.32 % 96.44 %
fork+exit 19.20 % 61.89 % 14.57 % 44.95 %
fork+execv 19.42 % 55.34 % 12.44 % 41.71 %
mmap 20.36 % 71.85 % 11.45 % 44.35 %
average 9.77 % 33.95 % 7.95 % 25.12 %

with ASID with TLB inv.
CF-Bench 2.68 % 12.96 %

GeekBench
single core -0.21 % 0.31 %
multi core 0.59 % 0.30 %

Quadrant 0.56 % -0.02 %

Smartbench
productivity 2.07 % -2.56 %
gaming 1.74 % 1.32 %

Vellamo
browser 0.07 % 1.12 %
metal -0.13 % 0.15 %

Antutu 0.17 % 1.79 %
aberage 0.84 % 1.71 %

30

	Dynamic Virtual Address Range Adjustment�for Intra-Level Privilege Separation on ARM
	System Software
	Privilege Separation
	Intra-Level Privilege Separation
	Motivation of our work
	Motivation of our work
	Hilps
	Hilps
	Hilps
	Background: Address Translation on AArch64
	Background: Address Translation on AArch64
	Background: Virtual Address Range Adjustment
	Background: Virtual Address Range Adjustment
	Background: Virtual Address Range Adjustment
	Intra-level isolation mechanism
	Intra-level isolation mechanism
	Intra-level isolation mechanism
	Intra-level isolation mechanism
	Intra-level isolation mechanism
	Domain switching mechanism
	Domain switching mechanism
	Evaluation
	Evaluation
	Thank you!
	Intra-level isolation mechanism
	Intra-level isolation mechanism
	Intra-level isolation mechanism
	Domain switching mechanism
	Efficiency of the domain switching mechanism
	Efficiency of Hilps

