

Show Me the Money! Finding Flawed Implementations of Third-party In-app Payment in Android Apps

Yang Wenbo, Zhang Yuanyuan, Li Juanru, Liu Hui, Wang Qing, Zhang Yueheng, Gu Dawu

Shanghai Jiao Tong University

Introduction

- Mobile payment has developed dramatically (especially in China) in recent years
- Previous work mainly focused on security of traditional web payment
- No unified specification or assessment approach to validate the security

In-app Payment Demystified

- In-app payment
 - Merchant App (MA)
 - Merchant Server (MS)
 - 3rd-Party Payment SDK(TP-SDK)
 - Cashier Server (CS)
- China market
 - AliPay, WexPay, UniPay, BadPay
 - 1/3 use 3rd party payment

TABLE I: TP-SDK Distribution

Cashier	Number		
WexPay	2260		
AliPay	1299		
UniPay	574		
BadPay	34		
Total	2679		
Sample	7145		

In-app Payment Process Model

Fig. 2: In-app Payment Process Model II adopted by AliPay and BadPay

Security Analysis

- Adversary Model
 - Attackers can reverse-engineering MA and the embedded TP-SDK
 - Forge request or message to MS and CS
 - Attack targets cashier or merchant
 - Attacker plays the role of a malicious user
 - Manipulate execution or data of local app and system
 - Attack targets other users of merchant app
 - Control the data transmission
 - Perform MITM attack with ARP spoofing or malicious WiFi

Security Rules

- I. Payment orders must be generated/signed by MS
- II. Never expose any secret (the signing KEY)
- III. TP-SDK inform user detailed information of payment order
- IV. TP-SDK verify the owner (MA) of transaction
- V. Use secure network communication
- VI. Server verify the signature of received messages
- VII. MS re-confirm the notified payment to CS

Order Tampering Attack

- Fail to generate or sign payment order in server
- Fail to re-confirm the payment to CS
- Tamper the content (total amount) in payment order and pay less money

Fig. 3: Order Tampering Attack to Process Model I

Fig. 4: Order Tampering Attack to Process Model II

Notification Forging Attack

- Fail to verify the message' s signature/leak the KEY
- Fail to re-confirm the payment to CS
- Purchase things without paying

Fig. 5: Notification Forging Attack to Process Model I

Order Substituting Attack

- Target users rather than merchant
- Insecure network between MS and MA
- TP-SDK incomplete prompt and missing transaction verification
- Substitute an order of one transaction to another, mislead a victim user to pay for the attacker' s order

Unauthorized Querying Attack

- Leak the signing KEY
- query every transaction recorded in CS, acquiring secret business information which should only be shared by cashier and merchant

- Local Ordering
 - Violation of Security Rule 1
 - Search the URL of placing payment orders in MA (<u>https://api.mch.weixin.qq.com/pay/unifiedorder</u> for WexPay)
- KEY Leakage
 - Violation of Security Rule 2
 - Feature of KEY (Base64-encoded ASN1 private key of AliPay)
 - Web API to verify the exact signing key of WexPay

- Incomplete Prompt
 - Violation of Security Rule 3
 - Check the payment orderID, commodity, owner, merchant, money
- Transaction Verification Missing
 - Violation of Security Rule 4
 - Whether TP-SDK accepts a payment order does not belong to the host MA

- Insecure Communication
 - Violation of Security Rule 5
 - Set proxy to perform MITM between MA (TP-SDK) and MS (CS)
- Notified Payment Confirmation Missing
 - Violation of Security Rule 6
 - Whether the MS accepts the tampered payment order with valid signature

- Signature Validation Missing
 - Violation of Security Rule 7
 - Place an order without paying for it
 - Forge an order notification to MS with invalid signature
 - Whether MS accepts it
 - Sample based on the result of notified payment confirmation missing

Empirical Study

Cashier	KEY leakage	Local Ordering
WexPay	155	104
AliPay	398	/
UniPay	0	0
BadPay	7	/

TABLE II: Flaws in Merchant Apps

Cashier	Transaction Verification	Information Prompt				Network Communication	
		orderID	commodity	owner	merchant	money	Network Communication
WexPay	\checkmark	×	\checkmark	×	\checkmark	\checkmark	secure private protocal
AliPay	×	Х	\checkmark	×	×	\checkmark	HTTPS pinning
UniPay	×	\checkmark	\checkmark	×	\checkmark	\checkmark	HTTPS pinning
BadPay	×	×	×	×	×	\checkmark	HTTPS validation

TABLE III: flaws in TP-SDKs

Empirical Study

- Flaws in MS
 - 9/15 miss the confirmation of notified payment.
 - 2/9 miss the validation of received message' s signature
- Insecure Communication
 - 49/87 apps vulnerable
 - 45 use HTTP, 42 use HTTPS
 - 4/42 fail to validate SSL certificate properly

Root cause Inquiry

Cashier

- Mistakes in sample code
- Mistakes in official doc
- Conflict between code and doc
- Lack of sample code implementation of server
- Compromise for business
- Merchant
 - Weak keys

Ethical Consideration

- Several case studies in paper
- Report all the findings to Tencent/Ant Financial and Baidu Security Response Center
- Return/repay items in our cases

Thank you

Group of Software Security In Progress (GoSSIP) Lab of Cryptology and Computer Security (LoCCS) Shanghai Jiao Tong University (SJTU)

