
SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs

Jaebaek Seo, Byoungyoung Lee*, Seongmin Kim,
Ming-Wei Shih+, Insik Shin, Dongsu Han, Taesoo Kim+

KAIST, *Purdue, +Georgia Tech

1

2

Cloud is big thing,
but security is concern

3

4

SGX is a promising solution

Intel Software Guard eXtensions (SGX)

Enclave

User process’s
virtual address space

Physical memory
(RAM)

5

EPC
(enclave

page cache)

•  Provide secret region “enclave”
protected from
kernel and HW-based attacks

Encrypted
X

Access
control

6

Traditional attacks (e.g., code reuse attack)
are still available in SGX

Return
oriented
programming

Address Space Layout Randomization

• ASLR is the most popular and effective defense
against code reuse attack

• ASLR is important, so Intel SGX SDK includes it
but it is limited

7

Challenges

It is non-trivial when attacker is kernel

P1. Visible memory layout
P2. Small randomization entropy
P3. No runtime page permission change

8

Challenges

It is non-trivial when attacker is kernel

P1. Visible memory layout à Secure in-enclave loading
P2. Small randomization entropy à Fine-grained ASLR
P3. No runtime page permission change à Soft-DEP/SFI

9

P1. Visible Memory Layout

Enclave

User process

Untrusted kernel

Kernel space

User space

10

1. Request

Enclave setup needs
ring-0 instructions

P1. Visible Memory Layout

Enclave

User process

Untrusted kernel

Enclave program

Enclave setup needs
ring-0 instructions

The setup includes
loading enclave program
(visible to kernel)

Kernel space

User space

11

1. Request

2. Setup

P1. Visible Memory Layout

Enclave

User process

Untrusted kernel

Enclave setup needs
ring-0 instructions

The setup includes
loading enclave program
(visible to kernel)

Kernel space

User space

12

1. Request

2. Setup

3. Protected
running

P1. Visible Memory Layout

Enclave

User process

Untrusted kernel

Enclave program

Enclave setup needs
ring-0 instructions

The setup includes
loading enclave program
(visible to kernel)

No randomization
in the view of kernel!

Kernel space

User space

13

1. Request

2. Set up enclave

3. Protected
running

ASLR in Intel SGX SDK

•  It only randomizes the base address of enclave
that is known to kernel

•  In addition, memory layout of enclave is visible to kernel

à No ASLR in the view of kernel !

14

Secure In-enclave Loading

Code pages

Data pages

Enclave

User process

Secure in-enclave
loader

15

Secure In-enclave Loading

Code pages

Data pages

Enclave

User process

Secure in-enclave
loader

Enclave program
Secure channel

Encrypted
enclave program

16

Secure In-enclave Loading

Code pages

Data pages

Runtime Data

User process

SGX related
data structure

Code pages

Data pages

Enclave

User process

Enclave

Secure in-enclave
loader

Enclave program
Secure channel

Encrypted
enclave program

Secure
in-enclave

loading

17

Secure In-enclave Loading

Code pages

Data pages

Runtime Data

User process

SGX related
data structure

Code pages

Data pages

Enclave

User process

Enclave

Secure in-enclave
loader

Enclave program

Secure
in-enclave

loading

18

Untrusted kernel

Hide memory layouts!!

Challenges

P1. Memory layout is visible to kernel
P2. Small physical memory (i.e., small entropy)
P3. Runtime page permission change is not supported

19

P2. Low Entropy

20

Enclave

Untrusted kernel

Small amount of physical memory
is provided

Virtual-to-Physical mapping
(i.e., paging)
is managed by kernel

Brute-forcing attack

Paging

Fine-grained ASLR

A

 B

if
el

se

C

…

jg A

Usual control flow

21

Sequential execution
(e.g., fall-through)

Fine-grained ASLR

Secure in-enclave
loading

…

jg A*
jmp C*

if
el

se

Control flow with fine-grained ASLR
Usual control flow

…

jg A
jmp C

RU A

RU B

RU C

RU A

RU B

RU C

22

A

 B

if
el

se

C

…

jg A

Challenges

P1. Memory layout is visible to kernel
P2. Small physical memory (i.e., low entropy)
P3. Runtime page permission change is not supported

23

P3. No Runtime Permission Change

24

Loading
and relocation

à Write to code

P3. No Runtime Permission Change

25

• Current SGX does not support
runtime page permission change

• We must keep some code pages writable

à Code injection attack

Goal of Soft Permission Enforcement

Code of loader

Code

Data of loader

Virtual address space of an enclave

Out of enclave

Out of enclave

Data

Hardware-based
permission

RWX

RWX

RW

RW

26

Goal of Soft Permission Enforcement

No Permission

Software+Hardware
permission

X

No Permission

RW

27

Code of loader

Code

Data of loader

Virtual address space of an enclave

Out of enclave

Out of enclave

Data

Hardware-based
permission

RWX

RWX

RW

RW

Loading

Instrumentation

Before :
 mov [rdx], rax

Out of enclave

Out of enclave

r15

28

Code of loader

Code

Data of loader

Data r15+r13 < 4GB

Write operation

After :

 lea r13, [rdx]
 sub r13, r15
 mov r13d, r13d
 mov [r15 + r13], rax

rdx

Inspired by NativeClient (Oakland’ 09)

Implementation

• LLVM 4.0 with Clang frontend
•  1,261 LoC

• Static linker from scratch
•  1,043 LoC

• Secure in-enclave loader (i.e., dynamic loader) from scratch
•  2,753 LoC

29

Evaluation

Q1. How effectively does SGX-Shield
defend against code reuse attacks?

Q2. How much performance overhead does SGX-Shield
bring for CPU-intensive workloads?

Q3. How much performance overhead does SGX-Shield
bring for real-world application?

30

Effectiveness against Code Reuse Attack

•  In Intel SGX SDK, attacker (i.e., kernel) knows
the location of each code object without any bit to guess

•  The base address of enclave is known
•  The memory layout is completely visible

• Attacker (i.e., kernel) must guess 20-bits for a code object in SG
X-Shield

31

Effectiveness against Code Reuse Attack

•  In Intel SGX SDK, attacker (i.e., kernel) knows
the location of each code object without any bit to guess

•  The base address of enclave is known
•  The memory layout is completely visible

• Attacker (i.e., kernel) must guess 20-bits for a code object in SG
X-Shield

SGX-Shield statistically defends against code reuse attacks!

32

Small Performance Overhead
in CPU intensive workload
• Test application: nbench
• Major factor of performance overhead:

of increased instructions

64-bytes RU 32-bytes RU
Only ASLR 1.05 % 7.80 %

ASLR + Soft-Enforcement 6.89 % 14.71 %

33

Negligible Performance Overhead
in real-world workload
• Sample HTTPS server provided by mbedTLS (SSL/TLS library)

34

2.7 %

Conclusion
•  Goal: designing ASLR for SGX programs

P1. Visible memory layout to kernel
P2. Small entropy
P3. No runtime page permission change

•  Solutions
P1 à Secure in-enclave loading
P2 à Fine-grained ASLR
P3 à Software-based permission enforcement

•  Conclusion
SGX-Shield effectively defends against code reuse attacks
with negligible performance overhead

35

Thank you!

Any question?

36

Backup Slides

37

Conflict between ASLR and Attestation

Enclave

User process

Untrusted kernel

Enclave program

SGX checks integrity by measuring
hash of enclave memory

Randomization changes the hash
value

Conflict with attestation!

Kernel space

User space

38

1. Request

2. Set up enclave

3. Protected
running

Program
owner

Attestation

