Stack Bounds Protection
with Low Fat Pointers

Gregory J. Duck, Roland H.C. Yap, and Lorenzo Cavallaro

NDSS 2017

)
& =
National University A7
of Singapore 19 © O R ROYAL
\)]

HOLLOWAY

School 0f Computing

Overview

Heap Bounds Protection with Low Fat Pointers, CC 2016

New method for detecting bounds overflow errors without explicit metadata

Pros: Fast (~13% w.0.), near zero memory overheads, highly compatible

Cons: Only protects heap allocation (malloc) only!

Stack
Hezp- Bounds Protection with Low Fat Pointers, NDSS 2017

Extend bounds overflow protection to stack objects
Requires a whole new bag of tricks

Pros: Fast (~17% w.0.), near zero memory overheads, highly compatible

Motivation

Buffer overflows (spatial memory errors) are classic security problem — from
Number of buffer-overflow memory errors by year
1970s to present

1400

/
1200
. . yd
Continue to be an active threat: 1000 A 4
£ - — N
» Heartbleed, Ghost,Cloudbleed (Feb 2017), etc. 4w AV/
200 .-;=”"'
0

Common defenses have weaknesses:

$

N>
2
N>
0
%, -
N2
<2
0
2
<2

O PSP P> $
PSS LSS
WA AT AT A A AP

* ASLR”Cache: Practical Cache Attacks on the MMU (NDSS’17)

Stronger defenses are rarely used
* Overheads

« Compatibility

Countermeasures

Perennial problem, many countermeasures have been proposed.

Indirect methods:

« ASLR and DEP

« Control Flow Integrity (CFl), Code Pointer Integrity, etc.
« Data Flow Integrity (DFI)

e« Shadow Stacks, etc.

Direct methods:

Many existing systems: AddressSanitizer, SoftBound, SafeC, CCured, BaggyBounds, PAriCheck,
low-fat-pointers, etc. etc.

* Most systems track bounds metadata * (zrrora(‘)se.() 1P ase (0) +size(0))

*p:v;

Bounds Checking Approaches

“Fat pointers” combine pointers and meta data

struct fat ptr {

void *ptr;
void *base;

size (p)
base (p)

size t size; };

Shadow space stores metadata in separate memory

size (p)
base (p)

SHADOW [p] .size
SHADOW|[p] .base

p.size
p.base

base

size

base

size

Low Fat Pointers

Low fat pointers are like fat pointers without the fat.

union low_ fat ptr {
void *ptr;
uintptr t size:10;

};

size(p) = p.un.size
base(p) = (p / size(p)) * size(p)

Compact encoding with no space overheads.

size

;

base >g£§§i
]

Flexible Low Fat Pointers

A simple encoding does not work well in practice

o
size

Only 48bits are used — high bits must be zero!

10bits not big enough ~219=1024 max object size...
Better approach: Heap Bounds Protection with Low Fat Pointers (CC'16)

text

stack

« Virtual address space subdivided into several large regions (eg.D 32GB each)

Each region is used to allocate objects of a specific size (16B, 32B, 48B, etc.).

Bounds Checking with Low Fat Pointers

Object size is linked to regions, and used for bounds checking:

i £ _ .
size (p) SIZES[p / 32GB] if (p < base(p) || p >= base(p)+size(p))

= : _ error () ;
base(p) = (p / size(p)) * size(p) *p = v;

This works fine for heap allocation, but nof for stack allocation!

malloc

00
"/

"

stack

®

alloca

Stack Challenges

Problem #1: how to round up object size to allocation size ?
Problem #2: what should the alignment be?

Problem #3: where to place the object?

Problem #4: how to not waste memory?

Solutions:

Lookup tables
Virtual memory tricks

Allocation Size Over Approximation

Given: char object[N]; /* Stack allocation */

Problem: which region does object belong to???

Must decide in a few instructions.

Solution:

Use a lookup table (SIZES) indexed by Izcnt(N)

55 56 57 58 59 60 61 62 63 64

char object[50];
512 | 256 | 128 | 64 | 32 | 16 | 16 | 16 | 16 | 16

lzent (50) = 58 j SIZES
1zcnt %rax, %rax

sub SIZES(,%rax,8), %rsp

Allocation Size Alignment

Problem: We have to align the object.

Solution: just use the attribute (aligned (N)):

char object[64] attribute (aligned(64)) ;

base (p)

(p / size(p)) * size(p)

and $-64, %rsp

For variable length objects we also use lookup tables.

55

56

57

58

59

60

61

62

63

64

-5612

-256

-128

-64

-32

-16

-16

-16

-16

-16

MASKS

1zcnt %rax, %rax
and MASKS(,%rax,8), %rsp

Stack Object Mirroring

Problem: stack objects are allocated from the stack!

I @ alloca

Solution: Split the stack into N stacks, one for each size region:

I |
- é:’: alloca
I

[|
[
[

Related work: shadow stacks

Stack Object Mirroring (cont.)

Stack Object Mirroring also implemented using tables:

55

56

57

58

59

60

61

62

63

64

A55

ASS

A57

A58

A59

ASO

A61

A62

A63

A

X

OFFSETS

Each object allocated in correction region.

A= ®ion #4 - &stack

lzcnt %rax, %rax
add OFFSETS(,%rax,8), %rsp

Backwards compatible with deallocation, 1ongjmp, C++ exceptions, asm code, etc.

CON: Uses more memory

1 stack replaced with N stacks.

Fragmentation.

= unused memory

. = stack object

Memory Aliasing

Problem: Increasing stack memory is unsatisfactory.

Solution: make all stacks share the same physical memory:

Virtual View

Physical View

Program uses a single stack

(same as before)

Uses shared memory objects

shm open

Evaluation Basic (timings)

SPEC2006
1200 B base
I lowfat

B alias
900
600
300
0

peribench gce gobmk sjeng h264ref astar milc dealll povray sphinx3
bzip2 mcf hmmer libquantum omnetpp xalancbmk namd soplex lbm

e Baseline: -O2

e Lowfat: 63% overhead (base unoptimized)

e Lowfat alias: 58% overhead with memory aliasing
e Address Sanitizer: 92% overhead

Evaluation (memory)

SPEC2006
2000 B base
I lowfat

B alias
1500
1000
500
0

perlbench gce gobmk sjeng h264ref astar milc dealll povray sphinx3
bzip2 mcf hmmer libquantum omnetpp xalancbmk namd soplex lbm

e 7% overhead
e 3% overhead with memory aliasing

Evaluation Timings Optimized (integrity/writes only [WQ])

SPEC2006
1000 B base
I lowfat opt+WO
B ASAN+WO
750
500
250
0
peribench gce gobmk sjeng h264ref astar milc dealll povray sphinx3
bzip2 mcf hmmer libquantum omnetpp xalancbmk namd soplex lbm

e Lowfat: 17% overhead
e Address Sanitizer (ASAN): 45% overhead

Summary and Conclusion
Low fat stack allocation effectively replaces:

lzcnt %rax, %rax

sub %rax, %rsp sub SIZES(,%rax,8), %rsp
and $-16, %rsp with and MASKS(,%rax,8), %rsp
mov %rsp, %rbx mov %rsp, %rbx

add OFFSETS(,%rax,8), %rbx

Extends protection to stack objects (& heap)

» Consequently also protects stack metadata
Desirable properties of low fat pointers preserved:
 Fast (~17% w.0.)

* Low space overheads (~3-15%)

 No metadata - highly compatible!

