
Stack Bounds Protection
with Low Fat Pointers

Gregory J. Duck, Roland H.C. Yap, and Lorenzo Cavallaro

NDSS 2017

Heap Bounds Protection with Low Fat Pointers, CC 2016

New method for detecting bounds overflow errors without explicit metadata

Pros: Fast (~13% w.o.), near zero memory overheads, highly compatible

Cons: Only protects heap allocation (malloc) only!

Heap Bounds Protection with Low Fat Pointers, NDSS 2017

Extend bounds overflow protection to stack objects

Requires a whole new bag of tricks

Pros: Fast (~17% w.o.), near zero memory overheads, highly compatible

Overview

Stack

Motivation

Buffer overflows (spatial memory errors) are classic security problem – from
1970s to present

Continue to be an active threat:

•  Heartbleed, Ghost,Cloudbleed (Feb 2017), etc.

Common defenses have weaknesses:

•  ASLR^Cache: Practical Cache Attacks on the MMU (NDSS’17)

Stronger defenses are rarely used

•  Overheads

•  Compatibility

Countermeasures

Perennial problem, many countermeasures have been proposed.

Indirect methods:

•  ASLR and DEP

•  Control Flow Integrity (CFI), Code Pointer Integrity, etc.

•  Data Flow Integrity (DFI)

•  Shadow Stacks, etc.

Direct methods:

•  Many existing systems: AddressSanitizer, SoftBound, SafeC, CCured, BaggyBounds, PAriCheck,
low-fat-pointers, etc. etc.

•  Most systems track bounds metadata

if (p < base(O) || p >= base(O)+size(O))
 error();
*p = v;

Bounds Checking Approaches

“Fat pointers” combine pointers and meta data

Shadow space stores metadata in separate memory

ptr base size

struct fat_ptr {
 void *ptr;
 void *base;
 size_t size; };

size(p) = p.size
base(p) = p.base

ptr

base size
size(p) = SHADOW[p].size
base(p) = SHADOW[p].base

Low Fat Pointers

Low fat pointers are like fat pointers without the fat:

Compact encoding with no space overheads.

ptr base size
union low_fat_ptr {
 void *ptr;
 uintptr_t size:10;
};

size(p) = p.un.size
base(p) = (p / size(p)) * size(p) si

ze
	

Better approach: Heap Bounds Protection with Low Fat Pointers (CC’16)

•  Virtual address space subdivided into several large regions (eg. 32GB each)

•  Each region is used to allocate objects of a specific size (16B, 32B, 48B, etc.).

Flexible Low Fat Pointers

A simple encoding does not work well in practice

•  Only 48bits are used → high bits must be zero!

•  10bits not big enough ~210=1024 max object size…

... ...

t
e
x
t

s
t
a
c
k

0

s
i
z
e

Bounds Checking with Low Fat Pointers

Object size is linked to regions, and used for bounds checking:

This works fine for heap allocation, but not for stack allocation!

😃

... ... ☹ ...

s
t
a
c
k

malloc

alloca

size(p) = SIZES[p / 32GB]
base(p) = (p / size(p)) * size(p)

if (p < base(p) || p >= base(p)+size(p))
 error();
*p = v;

Stack Challenges

Problem #1: how to round up object size to allocation size ?

Problem #2: what should the alignment be?

Problem #3: where to place the object?

Problem #4: how to not waste memory?

Solutions:

Lookup tables
Virtual memory tricks

Allocation Size Over Approximation
Given:

Problem: which region does object belong to???

Must decide in a few instructions.

Solution:

Use a lookup table (SIZES) indexed by lzcnt(N)

char object[N]; /* Stack allocation */

char object[50];

lzcnt(50) = 58

128 64 32 16 16 16 16 16 256 512 ...

64 63 62 61 60 59 58 57 56 55

SIZES

lzcnt	%rax,	%rax	
sub	SIZES(,%rax,8),	%rsp	

Allocation Size Alignment

Problem: We have to align the object.

Solution: just use the attribute(aligned(N)):

For variable length objects we also use lookup tables.

base(p) = (p / size(p)) * size(p)

char object[64] attribute(aligned(64));

-128 -64 -32 -16 -16 -16 -16 -16 -256 -512 ...

MASKS

64 63 62 61 60 59 58 57 56 55

and	$-64,	%rsp	

lzcnt	%rax,	%rax	
and	MASKS(,%rax,8),	%rsp	

Stack Object Mirroring

Problem: stack objects are allocated from the stack!

Solution: Split the stack into N stacks, one for each size region:

☹ alloca

😃 alloca

Related work: shadow stacks

Stack Object Mirroring (cont.)

Stack Object Mirroring also implemented using tables:

Each object allocated in correction region.
Backwards compatible with deallocation, longjmp, C++ exceptions, asm code, etc.

CON: Uses more memory

1 stack replaced with N stacks.

Fragmentation.

𝚫57 𝚫58 𝚫59 𝚫60 𝚫61 𝚫62 𝚫63 𝚫64 𝚫56 𝚫55 ...

OFFSETS

64 63 62 61 60 59 58 57 56 55

𝚫58= ®ion #4 - &stack

lzcnt	%rax,	%rax	
add	OFFSETS(,%rax,8),	%rsp	

= unused memory

= stack object

Memory Aliasing

Problem: Increasing stack memory is unsatisfactory.

Solution: make all stacks share the same physical memory:

Virtual View Physical View

Program uses a single stack

(same as before)

Uses shared memory objects

shm_open

Evaluation Basic (timings)

●  Baseline: -O2
●  Lowfat: 63% overhead (base unoptimized)
●  Lowfat alias: 58% overhead with memory aliasing
●  Address Sanitizer: 92% overhead

Evaluation (memory)

●  7% overhead
●  3% overhead with memory aliasing

Evaluation Timings Optimized (integrity/writes only [WO])

●  Lowfat: 17% overhead
●  Address Sanitizer (ASAN): 45% overhead

Summary and Conclusion
Low fat stack allocation effectively replaces:

lzcnt	%rax,	%rax	
sub	SIZES(,%rax,8),	%rsp	
and	MASKS(,%rax,8),	%rsp	
mov	%rsp,	%rbx	
add	OFFSETS(,%rax,8),	%rbx	

sub	%rax,	%rsp	
and	$-16,	%rsp	
mov	%rsp,	%rbx	
	

with

Extends protection to stack objects (& heap)
•  Consequently also protects stack metadata
Desirable properties of low fat pointers preserved:
•  Fast (~17% w.o.)
•  Low space overheads (~3-15%)
•  No metadata - highly compatible!

