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Heap Bounds Protection with Low Fat Pointers, CC 2016 

New method for detecting bounds overflow errors without explicit metadata 

Pros: Fast (~13% w.o.), near zero memory overheads, highly compatible 

Cons: Only protects heap allocation (malloc) only! 

Heap  Bounds Protection with Low Fat Pointers, NDSS 2017 

Extend bounds overflow protection to stack objects 

Requires a whole new bag of tricks 

Pros: Fast (~17% w.o.), near zero memory overheads, highly compatible 

Overview 

Stack 



Motivation 

Buffer overflows (spatial memory errors) are classic security problem – from 
1970s to present 

Continue to be an active threat: 

•  Heartbleed, Ghost,Cloudbleed (Feb 2017), etc. 

Common defenses have weaknesses: 

•  ASLR^Cache: Practical Cache Attacks on the MMU (NDSS’17) 

Stronger defenses are rarely used 

•  Overheads 

•  Compatibility 

 



Countermeasures 

Perennial problem, many countermeasures have been proposed. 

Indirect methods: 

•  ASLR and DEP 

•  Control Flow Integrity (CFI), Code Pointer Integrity, etc. 

•  Data Flow Integrity (DFI) 

•  Shadow Stacks, etc. 

Direct methods: 

•  Many existing systems: AddressSanitizer, SoftBound, SafeC, CCured, BaggyBounds, PAriCheck, 
low-fat-pointers, etc. etc. 

•  Most systems track bounds metadata 

 

if (p < base(O) || p >= base(O)+size(O)) 
    error(); 
*p = v; 



Bounds Checking Approaches 

“Fat pointers” combine pointers and meta data 

 

 

 

Shadow space stores metadata in separate memory 

ptr base size 

struct fat_ptr { 
  void *ptr; 
  void *base; 
  size_t size; }; 

size(p) = p.size 
base(p) = p.base 

ptr 

base size 
size(p) = SHADOW[p].size 
base(p) = SHADOW[p].base 



Low Fat Pointers 

Low fat pointers are like fat pointers without the fat: 

 

 

 

 

 

Compact encoding with no space overheads. 

ptr base size 
union low_fat_ptr { 
  void *ptr; 
  uintptr_t size:10; 
}; 

size(p) = p.un.size 
base(p) = (p / size(p)) * size(p) si

ze
	



Better approach: Heap Bounds Protection with Low Fat Pointers (CC’16) 

 

 

 
•  Virtual address space subdivided into several large regions (eg.        32GB each) 

•  Each region is used to allocate objects of a specific size (16B, 32B, 48B, etc.). 

 

Flexible Low Fat Pointers 

A simple encoding does not work well in practice 

•  Only 48bits are used → high bits must be zero! 

•  10bits not big enough ~210=1024 max object size… 
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Bounds Checking with Low Fat Pointers 

Object size is linked to regions, and used for bounds checking: 

 

 

This works fine for heap allocation, but not for stack allocation! 
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malloc 

alloca 

size(p) = SIZES[p / 32GB] 
base(p) = (p / size(p)) * size(p) 

if (p < base(p) || p >= base(p)+size(p)) 
    error(); 
*p = v; 



Stack Challenges 

Problem #1: how to round up object size to allocation size ? 

Problem #2: what should the alignment be? 

Problem #3: where to place the object? 

Problem #4: how to not waste memory? 

Solutions: 

Lookup tables 
Virtual memory tricks 



Allocation Size Over Approximation 
Given: 

Problem: which region does object belong to??? 

Must decide in a few instructions. 

Solution: 
 

Use a lookup table (SIZES) indexed by lzcnt(N) 

char object[N];  /* Stack allocation */ 

char object[50]; 

lzcnt(50) = 58 

128 64 32 16 16 16 16 16 256 512 ... 

64 63 62 61 60 59 58 57 56 55 

SIZES 

lzcnt	%rax,	%rax	
sub	SIZES(,%rax,8),	%rsp	



Allocation Size Alignment 

Problem: We have to align the object. 

 

Solution: just use the attribute(aligned(N)): 

 

For variable length objects we also use lookup tables. 

 

base(p) = (p / size(p)) * size(p) 

char object[64] attribute(aligned(64)); 
 

-128 -64 -32 -16 -16 -16 -16 -16 -256 -512 ... 

MASKS 

64 63 62 61 60 59 58 57 56 55 

and	$-64,	%rsp	

lzcnt	%rax,	%rax	
and	MASKS(,%rax,8),	%rsp	



Stack Object Mirroring 

Problem: stack objects are allocated from the stack! 

 

Solution: Split the stack into N stacks, one for each size region: 

 

☹ alloca 

😃 alloca 

Related work: shadow stacks 



Stack Object Mirroring (cont.) 

Stack Object Mirroring also implemented using tables: 

 

 

Each object allocated in correction region. 
Backwards compatible with deallocation, longjmp, C++ exceptions, asm code, etc. 

CON: Uses more memory 

1 stack replaced with N stacks. 

Fragmentation. 

𝚫57 𝚫58 𝚫59 𝚫60 𝚫61 𝚫62 𝚫63 𝚫64 𝚫56 𝚫55 ... 

OFFSETS 

64 63 62 61 60 59 58 57 56 55 

𝚫58= &region #4 - &stack 

lzcnt	%rax,	%rax	
add	OFFSETS(,%rax,8),	%rsp	

= unused memory 

= stack object 



Memory Aliasing 

Problem: Increasing stack memory is unsatisfactory. 

Solution: make all stacks share the same physical memory: 

Virtual View Physical View 

Program uses a single stack 

(same as before) 

Uses shared memory objects 

shm_open 

 



Evaluation Basic (timings) 

●  Baseline: -O2 
●  Lowfat: 63% overhead (base unoptimized) 
●  Lowfat alias: 58% overhead with memory aliasing 
●  Address Sanitizer: 92% overhead 



Evaluation (memory) 

●  7% overhead 
●  3% overhead with memory aliasing 



Evaluation Timings Optimized (integrity/writes only [WO]) 

●  Lowfat: 17% overhead 
●  Address Sanitizer (ASAN): 45% overhead 



Summary and Conclusion 
Low fat stack allocation effectively replaces: 

 

 

lzcnt	%rax,	%rax	
sub	SIZES(,%rax,8),	%rsp	
and	MASKS(,%rax,8),	%rsp	
mov	%rsp,	%rbx	
add	OFFSETS(,%rax,8),	%rbx	

 
sub	%rax,	%rsp	
and	$-16,	%rsp	
mov	%rsp,	%rbx	
	

with 

Extends protection to stack objects (& heap) 
•  Consequently also protects stack metadata 
Desirable properties of low fat pointers preserved: 
•  Fast (~17% w.o.) 
•  Low space overheads (~3-15%) 
•  No metadata - highly compatible! 

 


