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Deploying E2E encrypted 
messaging  
§  WhatsApp 

§  No feature loss 
§  Many users probably don’t know they are using it 

§  iMessage 
§  Same features as SMS 

§  WebRTC video chat 



Search  
§ For some communication mechanisms, people expect search 
§ Email is the canonical example, but not the only one. 

§  Slack 
§  Any “email replacement “ 



“I’m not particularly thrilled 
with building an apartment 
building which has the 
biggest bars on every 
window” – Jeff Bonforte 
(Yahoo VP mail and 
messagin)  
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Searchable Encryption 
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8afa2 

dc4cf 

1c35f 

9f126 

H(k|keyWord) E(k,list of files) 

A Naïvely Encrypted Index  

Leaks term frequency 
•  8afa2 is the most 

frequent keyword 
•  “The” is the most 

frequent English word 
•  …… 
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An Inefficient Encrypted index 

§ For a given keyword, each file containing it is 
stored in a separate random location  

§ This hides keyword frequency in a space 
efficient way 

§ Very inefficient to search: 
§ Requires one random read per result 
§   Results in a ~25-50x increase in I/O usage 
§  Yahoo! Mail search is already IO bound !!!  
§ Not viable for a server supporting multiple 

users who are not paying for it 



Search at Cloud Scale 
§ Many small indexes 

§  < 1GB each 
§   > 1 Billion accounts   

§ Cannot store in memory 
§ Must use disk storage 
§  IO Bound 
§ Fragmented index causes massive increase in iO for search 
§ A search for one keyword returning  N documents takes N 

times as many reads. 



Good news 
§ Email search queries  are fairly simple  

§  Typically single keyword 
§ Conjunctive search nice, but not necessary 

§ Most searches are on meta data 
§ Searches on mail content are rare 

§  ~250 searches  a second across all users  
§  ~300 million monthly active users 

§ But we must solve the IO issue. 



8afa2 

41bb 

1c35f 

9f126 

dc4cf 

d4c1 

H(k|keyWord|KeyWord_ctr) 

E(k, fi) 

d4c1 
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IO Efficient search for static 
indexes 
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Chunked Encrypted Index 
H(k|keyWord|chunk_ctr) E(k, chunk of files) 

§ Assume we have all 
documents initially  

§ We break up the list into 
chunks 

§ Way more efficient to search 
§ Can scale to terabytes  
§ Cash et al (Crypto ’13, NDSS 

‘14)  
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Problem: updates 
H(k|keyWord|chunk_ctr) E(k, chunk of files) 

§            :“lost DOG”  
§ Dog is “9f126” 
§ Need to add to “Dog” entry. 
§ But …  that leaks what we 

updated 
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IO-DSSE: Scaling Dynamic 
Searchable Encryption to Millions 
of Indexes By Improving Locality  
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Buffer locally, put full chunks on server 

this f1 f5 f9 f52 f67 f72 

law f7 f11 

idea f2 

Zipfs f1 

kills f2 

really f2 

§ Keywords have a power law distribution: 
common ones are really frequent, others are 
sparse 

§ We will end up with too many partial buckets 
on the client 

§ We can’t upload partial buckets  



We need an obliviously updatable 
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Oblivious RAM 

§ ORAM hides locations of access to  memory (both reads and 
writes) 

§ How to build ORAM 
1.   Encrypt memory 
2.  “Shuffle” memory locations on reads or writes to hide locations 

§  In Path ORAM, shuffling has logarithmic overhead. 



OUI from Path ORAM RAM 

1.  Read(for search) 
2.  Shuffle 
3.  Read (for search) 
4.  Shuffle 

5.  Read/write for update 
6.  Shuffle 
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From ORAM to an OUI 

§ ORAM allows you to write to a location in memory without 
revealing the location 

§ Can add to a partial chunk without revealing we did so. 
§ Bandwidth costs get worse was ORAM gets larger 

§ Requires you to read and write Log(N)*B bytes for a read of B 
bytes from an ORAM of size N  

§  For 16GB of ORAM, server needs 32.06 GB of space and 
reading 4KB takes 350KB read + 350KB write. 

§ Storing full index in ORAM  requires too much bandwidth 
 



From ORAM to an OUI 

§ ORAM  hides both reads and writes 
§ Search explicitly leaks repeated reads 

§  Same files are returned each time. 
§  Same search token/hash used. 
§ No need to hide reads using ORAM 

§ Updates may happen in batches 
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Partial ORAM? 

1.  Read(for search) 

2.  Read (for search) 

3.  Read/write for update 
4.  Shuffle 
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Reads 



Why not just read directly? 



Leaks updates 



OUI from ORAM 
§ Searching triggers a read and write of Log(n)*B data  
§ To avoid Log(N)*B read +write  for each search  

§  Just read address for chunk for given keyword 
§ Defer read and write until later (i.e. when the phone is plugged in 

and on Wi-Fi)  
§  Search is constant bandwidth and has nice locality 

§ All updates must happen after deferred IO is done 
§ We get some savings from batching the IO together 
§ Multiple searches on the same keyword are free 



OUI from ORAM 
§ Read directly from tree for search BUT 
§ Must complete full path read and write prior to any updates 
§ Call these “deferred” reads  



Batched reads and writes 
§ Deferred (full reads ) reads and updates  are not random events 
§  They will happen in groups either  
§  When an email comes in we get many updates 
§  We might update the non local index only once a day (if  system is not 

multi client) 
§  Batched reads and writes  reduce the amount of data read and 

written 
§  For n  full reads/ writes, 
§  The root is only updated once instead of n times 
§  Its children once instead n/2 times, etc 



Deferred Reads 



Deferred Reads 



Deferred Reads 



Deferred Reads + Batching 



Batched update  



Performance 

IO Savings (percentage) vs 
§  Simple encrypted index( including all previous 

works under purely dynamic insertion) 
§  Savings just for search (ignoring updates) 
§  Oblivious index from path ORAM 



Conclusion 
§  Searchable encryption might be feasible for cloud based 

messaging  with effort 
§  It pays to examine problems in context  
§  You can always get better performance by relaxing security 

assumptions 
§  Sometimes  the relaxation is inherent to the setting and free 



Updates  

§ Query local, ORAM, and 
index  with  efficient access 

§ Update : Buffer locally, 
overflow to  ORAM, then 
commit full chunks to index 

§ Defer ORAM I/O from 
queries until update period 

§   Requirements 
§   40 to 250mb of client 

storage to store a list of 
keywords  

§  Client has fast internet 
sometimes 

§  Ideally, client has large 
local buffer 
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From ORAM to an OUI 

§ ORAM allows you to write to a location in memory without 
revealing the location 

§ Can add to a partial chunk without revealing we did so. 
§ Bandwidth costs get worse was ORAM gets larger 

§ Requires you to read and write Log(N)*B bytes for a read of B 
bytes from an ORAM of size N  

§  For 16GB of ORAM, server needs 32.06 GB of space and 
reading 4KB takes 350KB read + 350KB write. 

§ Storing full index in ORAM  requires too much bandwidth 
 



From ORAM to an OUI 

§ ORAM  hides both reads and writes 
§ Search explicitly leaks repeated reads 

§  Same files are returned each time. 
§  Same search token/hash used. 
§ No need to hide reads using ORAM 

§ Updates may happen in batches 
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Batched reads and writes 
§ Deferred (full reads ) reads and updates  are not random events 
§  They will happen in groups either  
§  When an email comes in we get many updates 
§  We might update the non local index only once a day (if  system is not 

multi client) 
§  Batched reads and writes  reduce the amount of data read and 

written 
§  For n  full reads/ writes, 
§  The root is only updated once instead of n times 
§  Its children once instead n/2 times, etc 
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Deferred Reads + Batching 



Batched update  


