
Making Searchable
Encryption Scale to the
Cloud
Ian Miers and Payman Mohassel

End to end Encryption

user user user user

Service
provider

Service
provider

user

Service
provider

user

No
encryption

Transport
encryption

End2End
Encryption

E2E Encrypted Messaging

Need
Crypto

Want
Crypto

E2E Encrypted Messaging

Ban
Crypto

Need
Crypto

Want
Crypto

Deploying E2E encrypted
messaging
§  WhatsApp

§  No feature loss
§  Many users probably don’t know they are using it

§  iMessage
§  Same features as SMS

§  WebRTC video chat

Search
§ For some communication mechanisms, people expect search
§ Email is the canonical example, but not the only one.

§  Slack
§  Any “email replacement “

“I’m not particularly thrilled
with building an apartment
building which has the
biggest bars on every
window” – Jeff Bonforte
(Yahoo VP mail and
messagin)

E2E Encrypted Messaging

Need
Crypto

Want
Crypto

Searchable Encryption

Dog

An index for search

The f1 f5 f9 f52 f67 f72 f99

Man f7 f11 f21 f42 f67

Bites f2

f21 f27 f31

Index on client, store on server

Dog

The f1 f5 f9
f5
2

f6
7

f7
2

f9
9

Man f7
f1
1

f2
1

f4
2

f6
7

Bites f2

f2
1

f2
7

f3
1

Index on client, store on server

Dog

f2
1

f2
7

f3
1

Dog

The f1 f5 f9 f52 f67 f72 f99

Man f7 f11 f21 f42 f67

Bites f2

f21 f27 f31

Index on client, store on server

Dog

The f1 f5 f9
f5
2

f6
7

f7
2

f9
9

Man f7
f1
1

f2
1

f4
2

f6
7

Bites f2

f2
1

f2
7

f3
1

Dog

f2
1

f2
7

f3
1

Dog

The f1 f5 f9 f52 f67 f72 f99

Man f7 f11 f21 f42 f67

Bites f2

f21 f27 f31

Dog

An index for search

The f1 f5 f9 f52 f67 f72 f99

Man f7 f11 f21 f42 f67

Bites f2

f21 f27 f31

8afa2

dc4cf

1c35f

9f126

H(k|keyWord) E(k,list of files)

A Naïvely Encrypted Index

Index on client, store on server

H(k|”Dog”)

8afa2

dc4cf

1c35f

9f126

8afa2

dc4cf

1c35f

9f126

8afa2

dc4cf

1c35f

9f126

H(k|keyWord) E(k,list of files)

A Naïvely Encrypted Index

Leaks term frequency
•  8afa2 is the most

frequent keyword
•  “The” is the most

frequent English word
•  ……

8afa2

41bb

1c35f

a5l9

5r6n

d4c1

H(k|keyWord|KeyWord_ctr)

E(k, fi)

d4c1

An Inefficient Encrypted index

§ For a given keyword, each file containing it is
stored in a separate random location

§ This hides keyword frequency in a space
efficient way

§ Very inefficient to search:
§ Requires one random read per result
§  Results in a ~25-50x increase in I/O usage
§  Yahoo! Mail search is already IO bound !!!
§ Not viable for a server supporting multiple

users who are not paying for it

Search at Cloud Scale
§ Many small indexes

§  < 1GB each
§  > 1 Billion accounts

§ Cannot store in memory
§ Must use disk storage
§  IO Bound
§ Fragmented index causes massive increase in iO for search
§ A search for one keyword returning N documents takes N

times as many reads.

Good news
§ Email search queries are fairly simple

§  Typically single keyword
§ Conjunctive search nice, but not necessary

§ Most searches are on meta data
§ Searches on mail content are rare

§  ~250 searches a second across all users
§  ~300 million monthly active users

§ But we must solve the IO issue.

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

H(k|keyWord|KeyWord_ctr)

E(k, fi)

d4c1

An Inefficient Encrypted index

IO Efficient search for static
indexes

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Chunked Encrypted Index
H(k|keyWord|chunk_ctr) E(k, chunk of files)

§ Assume we have all
documents initially

§ We break up the list into
chunks

§ Way more efficient to search
§ Can scale to terabytes
§ Cash et al (Crypto ’13, NDSS

‘14)

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Problem: updates
H(k|keyWord|chunk_ctr) E(k, chunk of files)

§  :“lost DOG”
§ Dog is “9f126”
§ Need to add to “Dog” entry.
§ But … that leaks what we

updated

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Problem: updates
H(k|keyWord|chunk_ctr) E(k, chunk of files)

§  :“lost DOG”
§ Dog is “9f126”
§ Need to add to “Dog” entry.
§ But … that leaks what we

updated

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Problem: updates

fe52

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Problem: updates

fe52

IO-DSSE: Scaling Dynamic
Searchable Encryption to Millions
of Indexes By Improving Locality

8afa2

41bb

1c35f

9f126

dc4cf

d4c1
fe52

Obliviously Updateable
Index

Standard search
index

8afa2

41bb

1c35f

9f126

dc4cf

d4c1
fe52

Obliviously Updateable
Index

8afa2

41bb

1c35f

9f126

dc4cf

d4c1
fe52

Obliviously Updateable
Index

8afa2

41bb

1c35f

9f126

dc4cf

d4c1
fe52

Obliviously Updateable
Index

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

fe52

Obliviously Updateable
Index

Obliviously Updateable
Index

?

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Chunked Encrypted Index

fe52 fe52

Buffer locally, put full chunks on server

this f1 f5 f9 f52 f67 f72

law f7 f11

idea f2

Zipfs f1

kills f2

really f2

§ Keywords have a power law distribution:
common ones are really frequent, others are
sparse

§ We will end up with too many partial buckets
on the client

§ We can’t upload partial buckets

We need an obliviously updatable
index

f4

f4

f9

f1 f8 f9

k1

k2

k3

Obliviously Updatable Index

f3

f4 f1

f1 f8

k1

k7

k3

Data center

Full Block Index

Local Device

key-
word

qeuries

overflow

f1, f5 ,f8,f12k1

k4

k1

f4, f1 ,f3,f9
f2, f3 ,f8,f11

Oblivious RAM

§ ORAM hides locations of access to memory (both reads and
writes)

§ How to build ORAM
1.  Encrypt memory
2.  “Shuffle” memory locations on reads or writes to hide locations

§  In Path ORAM, shuffling has logarithmic overhead.

OUI from Path ORAM RAM

1.  Read(for search)
2.  Shuffle
3.  Read (for search)
4.  Shuffle

5.  Read/write for update
6.  Shuffle

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

From ORAM to an OUI

§ ORAM allows you to write to a location in memory without
revealing the location

§ Can add to a partial chunk without revealing we did so.
§ Bandwidth costs get worse was ORAM gets larger

§ Requires you to read and write Log(N)*B bytes for a read of B
bytes from an ORAM of size N

§  For 16GB of ORAM, server needs 32.06 GB of space and
reading 4KB takes 350KB read + 350KB write.

§ Storing full index in ORAM requires too much bandwidth

From ORAM to an OUI

§ ORAM hides both reads and writes
§ Search explicitly leaks repeated reads

§  Same files are returned each time.
§  Same search token/hash used.
§ No need to hide reads using ORAM

§ Updates may happen in batches

OUI from Oblivious RAM

1.  Read(for search)
2.  Shuffle
3.  Read (for search)
4.  Shuffle

5.  Read/write for update
6.  Shuffle

Partial ORAM?

1.  Read(for search)

2.  Read (for search)

3.  Read/write for update
4.  Shuffle

OUI

1.  Read(for search)
2.  Shuffle
3.  Read (for search)
4.  Shuffle

5.  Read/write for update
6.  Shuffle

OUI

1.  Read(for search)
2.  Read (for search)
3.  Shuffle + Shuffle

4.  Read/write for update
5.  Shuffle

OUI

1.  Read(for search)
2.  Read (for search)

3.  Shuffle + Shuffle
4.  Read/write for update
5.  Shuffle

OUI

1.  Read(for search)
2.  Read (for search)

3.  Shuffle + Shuffle
4.  Read/write for update
5.  Shuffle

Reads

Why not just read directly?

Leaks updates

OUI from ORAM
§ Searching triggers a read and write of Log(n)*B data
§ To avoid Log(N)*B read +write for each search

§  Just read address for chunk for given keyword
§ Defer read and write until later (i.e. when the phone is plugged in

and on Wi-Fi)
§  Search is constant bandwidth and has nice locality

§ All updates must happen after deferred IO is done
§ We get some savings from batching the IO together
§ Multiple searches on the same keyword are free

OUI from ORAM
§ Read directly from tree for search BUT
§ Must complete full path read and write prior to any updates
§ Call these “deferred” reads

Batched reads and writes
§ Deferred (full reads) reads and updates are not random events
§  They will happen in groups either
§  When an email comes in we get many updates
§  We might update the non local index only once a day (if system is not

multi client)
§  Batched reads and writes reduce the amount of data read and

written
§  For n full reads/ writes,
§  The root is only updated once instead of n times
§  Its children once instead n/2 times, etc

Deferred Reads

Deferred Reads

Deferred Reads

Deferred Reads + Batching

Batched update

Performance

IO Savings (percentage) vs
§  Simple encrypted index(including all previous

works under purely dynamic insertion)
§  Savings just for search (ignoring updates)
§  Oblivious index from path ORAM

Conclusion
§  Searchable encryption might be feasible for cloud based

messaging with effort
§  It pays to examine problems in context
§  You can always get better performance by relaxing security

assumptions
§  Sometimes the relaxation is inherent to the setting and free

Updates

§ Query local, ORAM, and
index with efficient access

§ Update : Buffer locally,
overflow to ORAM, then
commit full chunks to index

§ Defer ORAM I/O from
queries until update period

§  Requirements
§  40 to 250mb of client

storage to store a list of
keywords

§  Client has fast internet
sometimes

§  Ideally, client has large
local buffer

8afa2

41bb

1c35f

9f126

dc4cf

d4c1

Obliviously
updateable

Index
(OUI)

Local
buffer

keyword
data

Query on keyword

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

Path ORAM

Client side stash

From ORAM to an OUI

§ ORAM allows you to write to a location in memory without
revealing the location

§ Can add to a partial chunk without revealing we did so.
§ Bandwidth costs get worse was ORAM gets larger

§ Requires you to read and write Log(N)*B bytes for a read of B
bytes from an ORAM of size N

§  For 16GB of ORAM, server needs 32.06 GB of space and
reading 4KB takes 350KB read + 350KB write.

§ Storing full index in ORAM requires too much bandwidth

From ORAM to an OUI

§ ORAM hides both reads and writes
§ Search explicitly leaks repeated reads

§  Same files are returned each time.
§  Same search token/hash used.
§ No need to hide reads using ORAM

§ Updates may happen in batches

Reads

Why not just read directly?

Leaks updates

OUI from ORAM
§ Read directly from tree for search BUT
§ Must complete full path read and write prior to any updates
§ Call these “deferred” reads

Batched reads and writes
§ Deferred (full reads) reads and updates are not random events
§  They will happen in groups either
§  When an email comes in we get many updates
§  We might update the non local index only once a day (if system is not

multi client)
§  Batched reads and writes reduce the amount of data read and

written
§  For n full reads/ writes,
§  The root is only updated once instead of n times
§  Its children once instead n/2 times, etc

Deferred Reads

Deferred Reads

Deferred Reads

Deferred Reads + Batching

Batched update

