
ObliviSync	
Prac%cal	Oblivious	File	Backup	and	

Synchroniza%on	

Adam	J	Aviv	 Seung	Geol	Choi	 Travis	Mayberry	 Daniel	S.	Roche	

United	States	Naval	Academy	
Annapolis,	MD	

Meta	Data	ProtecAon	

2	

Meta	Data	Threat	
	e.g.,	Access	PaDerns	

3	

ER	Doctor	

Oncologist	

Cloud	Provider	

Meta-data	could	reveal	to	a	cloud	provider	
informaAon	about	the	paAent,	even	if	the	
records	are	encrypted!	

write	

read	

write	
read	

ORAM	
Algorithm	

Threat	Model:		
Preven0ng	the	cloud	provider	from	learning	
which	files	are	accessed	and	when	

Oblivious	RAMs	(ORAMs)	

4	

Cloud	Provider	

oblivious	
access	

DropBox		
Cloud	SynchronizaAon	SeSng	

•  Store	a	local	copy	of	files		
across	mulAple	computers	
	

•  Synchronizes	writes	
to	other	clients’	local	
copies	

Reading	is	Oblivious	
(occurs	locally)	

Wri7ng	needs	protec7ng	
(revealed	to	cloud)	

	
5	

Write	Only	Oblivious	RAM	

a	 b	 c	

d	

e	

[BMNO-CCS’14]	
read(a)	

write(a,	“foo”)	

a	

a	

f	

a	

No	
communica7on	

Cost	

O(1)	/	Constant	
Communica7on	

Cost	

6	Local	Copies	

ObliviSync	

b	 c	

d	

e	f	

a	

7	

Our	Contribu0on:	
ObliviSync	

•  Adap%ng	Write-Only	ORAM	with	the	Cloud	Synchroniza%on	and	Backup	
Model	
	

•  Specifically	model	a`er	DropBox	like	systems	
–  Seamless	file	system	integraAon	
–  Seamless	oblivious	synchronizaAon	across	clients	

•  Strong	Security	and	Efficient	Design	
–  	Write	Oblivious	and	Timing	ADack	protecAon	
–  	Small	overhead,	4x	compared	to	non-private	stores	
–  	Variable	Size	Files	

•  RealisAc	ImplementaAon	
–  Implemented	using	FUSE	
–  Seamlessly	works	with	Dropbox	

8	

OBLIVISYNC	DESIGN	

9	

ObliviSync	Components	

block&
block&

block&

Local Storage Backend

Cloud&Service&&

file&

file&

file&

block& file&

Write

Reads

Read/Write Client

Read Client

User Facing Frontend

Cloud Synchronized Folder

O
bliviS

ync - R
W

FU
S

E

O
bliviS

ync - R
O

FU
S

E

Backend	is	a	
collecAon	of	
files	for	the	
write-only	
ORAM	

Stored	in	a	
synchronized	

folder	

Encode	a	file	
system	into	
the	backend	
block	that	is	
efficient	for	
Write-Only	

Oram	

File	system	is	
“mounted”	
into	the	

system	using	
FUSE	

Updates	to	
the	backend	

are	
synchronized	

to	other	
clients	

Read	Client	
mounts	the	
encoded	file	
system	with	
FUSE	but	only	

enables	
reading	

User	
interacAon	
occurs	
through	

normal	file	
system	calls	

10	

Why	embed	a	file	system?	

•  Why	not	just	treat	the	Write-Only	ORAM		
as	a	block	device?	
–  Efficiency	and	Security	of	the	system	will	be	strongly	
dependent	on	avoiding	unnecessary	writes	

–  Block	devices	may	reveal	access	Ames	and	file	sizes	

block&
block&

block&

Local Storage Backend

Cloud&Service&&

file&

file&

file&

block& file&

Write

Reads

Read/Write Client

Read Client

User Facing Frontend

Cloud Synchronized Folder

O
bliviS

ync - R
W

FU
S

E

O
bliviS

ync - R
O

FU
S

E

Encode	a	file	
system	into	
the	backend	
block	that	is	
efficient	for	
Write-Only	

Oram	

Encode	a	file	
system	into	
the	backend	
block	that	is	
efficient	for	
Write-Only	

Oram	

11	

ObliviSync	Backend:	TERMINOLOGY	

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

Block	Id’s:	IdenAfier	
for	a	split-block	in	the	
backend	

Split-block:	Each	
block	in	the	backend	
is	parAAoned	into	
two	split-blocks	

Superblock:	Block	
with	Block-Id	0	used	
to	structural	
informaAon	for	the	
embedded	file	system	

Super	
Block	

File-Id’s:	idenAfier	of	
files	stored	with	the	
embedded	file	system	

3

4	

4	 4	

4	

5	

File-segments:	Files	are	
broken	up	to	fit	within	blocks,	
can	either	be	full	or	parAal	

Directory	Entry:	Root	of	
file	system,	always	have	
File-Id	0	

0	

12	

Synchronizing	Buffer	

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

Super	
Block	

3

4	

4	 4	

4	

5	

0	

6	

creat()	->	6	
write(6)	

write(6)	

6	

open(5,”a”)	
write(5)	

5	

5	
close(5)	

open(5)	
read(5)	
close(5)	

Drip	Rate	=	3	

Drip	Time=	5	(s)	

4	 3 0	

4	

0	3

5	

5	

5	

6	

Repacking	Rules	
•  ExisAng	file	segments	

filling	a	full	split	block	
does	not	change	
locaAon	
	

•  ExisAng	file	segments	
filling	less	than	a	full	
split	block	may	only	
move	to	the	other	split	
block	in	the	pair.	

0	

13	

Summary	of	Design	SeSngs	
•  Specialize	File	System	Embedded	within	a	Write-only	ORAM	

–  FUSE	based	user	facing	frontend		for	transparent	user	experience	

•  Synchronize	to	Cloud	at	Regular	Intervals	(epochs)	
–  Buffer	writes	and	synchronize	buffer	via	write-oblivious	operaAons	
–  Synchronize	even	when	there	is	nothing	in	the	buffer		

(protec%on	from	%ming	aOacks!)	
	

•  Mul0ple	Clients	
–  Allow	only	one	reading	and	wriAng	client		
–  Can	have	any	number	of	read-only	clients	receiving	synchronizaAons	

•  Easily	tuned	to	the	right	seOng:	drip	rate	and	drip	0me	
–  to	the	Cloud	Storage	Provider:	the	size	of	the	backend	blocking	

•  4MB	vs.	1MB	vs.	4K	blocks		(Dropbox	using	4MB	backend)	
	

–  to	the	ApplicaAon:	The	amount	and	frequency	of	synchronizaAon	
•  Cloud	File	Syncs:	Higher	synchronizaAon	rate	with	lower	amounts	
•  Regular	Backups:	Lower	synchronizaAon	rate	with	higher	amounts	

14	

RESULTS	

15	

Experimental	Results	
Latency	

•  Latency	
–  Insert	a	large	number	of	files	one	at	a	%me	
– How	long	does	it	take	for	each	of	the	files	to	sync?	

•  As	there	is	less	empty	space	to	pack	in	files,	should	
expect	a	decrease	in	performance	

16	

Latency	

�

�

�

�

�

�

� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

�
��
�
��
��
	

�
��� ����

���
���
���
����

17	

1024	Backend	Blocks	of	
size	1MB	

	
Inserted	920	frontend	files	
one	at	a	7me	each	of	size	

1MB	

Only	5	epochs	

Theore7c	Limit	

Make	progress	on	each	sync	

Backend	
more	full,	
harder	to	
make	
progress	

Drip	Rate	

-  1MB	Blocks,	1GB	backend	storage	
-  Drip	Time	of	30s	
-  Drip	Rate	of	3	blocks	per	epoch	
-  90%	usage:	synchronize	in	2.5	minutes	

More	Results	in	the	Paper!	

18	

�

�

��

��

��

��

��

��

� ���� ���� ���� ���	 ��� ���� ���� ���� ���	 ���

�
��
��
�
��
�
�
	

��
��
�

�
��
��

��
� ����

��������
 �������
���������
 ������

��
�� �������
��
�� ������

�

���

���

���

���

���

���

���

	��

� �
�� �
�� �
�� �
�	 �
� �
�� �
�� �
�� �
�	 �
�

�
��
��
�
��
�
�
	

��
��
�

�
��
��

��
�
 ������

���������� ��
����
��������� �
����

����� ��
����
����� �
����

Comparison	running	on	DropBox	

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��� ���

�
��

��
��
��
	

�
��
��

�
�
�	
��
	�
��
��

�
���� ���� �������

��� �
��
��� �
��
	�� �
��

Realis7c	File	Sizes	

�

���

���

���

���

���

���

���

	��

� �
� �
� �
� �
� �
� �
� �
� �
	 �
�

�
��
�
��
��
	

�
��
 ����
�

���
���
���
����

Throughput	Measurements	

Takeaways	
•  Oblivious	Synchroniza0on	Services	is	PRACTICAL	

–  Reads	are	already	Oblivious,	need	to	protect	writes	
–  Leverage	properAes	of	the	applicaAon	
–  Small	communicaAon	overhead:	4x		

•  ObliviSync	
–  AdapAng	Write-Only	ORAM	with	a	specialized		
Filed	System	

–  Handles	variable	size	files	
–  Is	NOT	suscepAble	to	Aming	aDacks	
–  Tunable	to	the	applicaAon	
–  Implemented	for	a	DropBox-like	applicaAon	that	is	transparent	
to	the	user	

19	

ObliviSync	
Prac%cal	Oblivious	File	Backup	and	Synchroniza%on	

Adam	J	Aviv	 Seung	Geol	Choi	 Travis	Mayberry	 Daniel	S.	Roche	

United	States	Naval	Academy	
Annapolis,	MD	

THANKS!	Ques7ons?	

20	

Code	Repository	
hDps://github.com/oblivisync/oblivisync			

YouTube	Video		
hDps://youtu.be/-MYgDs_sO8		

Superblock	
•  Mapping	of	File-Id	to	Block-Id	

–  Directory	entry	maps	filenames	to	File-Id’s	
–  Read	(and	wriDen)	on	every	access	to	the	

system	

•  Use	a	2-level	B-tree	
–  B-Tree	root	is	stored	in	the	super	block	
–  Each	leaf	node	is	treated	like	a	block	in	the	

system	and	referenced	by	its	Block-Id	
–  With	large	blocks	only	need	one	level	for	

most	systems	

•  Cache	of	recent	mappings	
–  Improves	access	Ame	
–  All	changes	can	occur	within	the	super	

block	without	having	to	access	leaf	nodes	

Super	
Block	

15	 20	 55	 …	

…	…	…	…	

21! 3! 75! 12!

(0,13)		|		(3,12)	|	(5,12)		|	(2,10)		|	...	

B-Tree	Root	

File-Id	Cache	

21	

FUSE	
•  File	System	in	User	Space	
–  A	process	intercepts	all	I/O	
system	calls	
	

•  FUSE	mounts	the	embedded	
file	system	such	that	it	appears	
like	any	other	directory	to	the	
user	
	

•  FUSE	client	also	maintains	the	
directory	entry	and	is	aware	of	
the	underlying	ObliviSync	
System	for	efficiency	

block&
block&

block&

Local Storage Backend

Cloud&Service&&

file&

file&

file&

block& file&

Write

Reads

Read/Write Client

Read Client

User Facing Frontend

Cloud Synchronized Folder

O
bliviS

ync - R
W

FU
S

E

O
bliviS

ync - R
O

FU
S

E

22	

DetecAng	Stale	Data	

•  How	do	we	recognize	if	
data	is	stale?	
– Perform	a	lookup	in	the	
superblock	for	the	File-Id	

–  If	Block-Id	is	not	listed	it	
must	be	stale	

5	

3!

Super	
Block	5	 (5,2)!

23	

Throughput	

�

���

���

���

���

���

���

���

	��

� �
� �
� �
� �
� �
� �
� �
� �
	 �
�

�
��
�
��
��
	

�
��
 ����
�

���
���
���
����

24	

Drip	Rate	

1024	Backend	Blocks	of	
size	1MB	

	
Inserted	920	frontend	files	
all	at	once	each	of	size	

1MB	

Make	progress	on	each	sync	

Backend	
more	full,	
harder	to	
make	
progress	

Theore7c	Limit	

How	long	does	it		
take	to	clear	the	buffer?	

•  A	Buffer	of	size	s	will	clear	afer	O(s/(Bk))	opera7ons	
–  B:	Size	of	two	split	block,	one	backend	storage	file	
–  k:	is	the	drip	rate,	the	number	of	size	B	files	synced	per	epoch	
	

•  Large	percentage	of	backend	blocks	that	should	be	empty	
–  20%	capacity	or	80%	empty	for	fast	clearance	
	

•  Does	not	depend	on	the	distribu7on	of	file	sizes	

25	

