ObliviSync
Practical Oblivious File Backup and
Synchronization

Adam J Aviv Seung Geol Choi Travis Mayberry Daniel S. Roche

United States Naval Academy
Annapolis, MD

Meta Data Protection

MENEUENEISLOTNIEL

Meta Data Threat
e.g., Access Patterns

ER Doctor : €= Cloud Provider a%a

AT X {J‘\ t 4

C) write "||||||‘|||||||I|’ \!’
o

read

BU0 nan
PED

@

Meta-data could reveal to a cloud provider
Oncologist information about the patient, even if the
records are encrypted! 3

Oblivious RAMs (ORAMSs)

Threat Model:
Preventing the cloud provider from learning
which files are accessed and when

oblivious
access

£
iiFamazon ’

II web services

e Store a/ocal copy of files
across multiple computers

* Synchronizes writes
to other clients’ local
copies

Writing needs protecting
(revealed to cloud)

DropBox
Cloud Synchronization Setting

Reading is Oblivious
(occurs locally)

v |‘7 |] Search My Dropbox

n Include in library v »

i Chris + Matthew

wu Geektesting stuff

& iPhone Screenshots

wu Light Baptist Church

o Matthew's Visa + Work Permit Stuff

@ MrGroove - Matt

4] Getting Started.r
& iPhone intro.pdf

Write Only Oblivious RAM

No [BMNO-CCS’14]
read(a communication
Cost

write(a, “foo”)

o(1)/ Conm

Communication
Cost E
— a

a G —(

@%@?E

Local Copies

ObliviSync

o | B |
AT ‘ & » Matth... » My Dropbox » v ’ 4 | ’ Sea nb ol
Organize v 3 Open Include in library v » 3 v 0 @
4 .7 Favorites @ Apps wu MrGroove - Matt
Pl Desktop & Attachments o Music
Work 3 i Brian «* Photos
e-books wu Chris + Matthew @ PlainText
Courses « Documents e Por
Dropbox wu Geektesting stuff ¥ Public
& Downloads [} & iPhone Screenshots (4] Getting Started.rt{
Screenshots i Light Baptist Church & iPhone intro.pdf

1=, Recent Places

wu Matthew's Visa + Work Permit Stuff

i - £ L
Documents
File folder
i Date modified: 11/2/2010 6:11 PM

@] Prices.xls

.

Our Contribution:
ObliviSync

Adapting Write-Only ORAM with the Cloud Synchronization and Backup
Model

Specifically model after DropBox like systems
— Seamless file system integration
— Seamless oblivious synchronization across clients

Strong Security and Efficient Design
— Write Oblivious and Timing Attack protection

— Small overhead, 4x compared to non-private stores
— Variable Size Files

Realistic Implementation
— Implemented using FUSE
— Seamlessly works with Dropbox

OBLIVISYNC DESIGN

Backend is a
collection of
files for the
write-only
ORAM
Stored in a
synchronized
folder

system into
the backend
block that is
efficient for
Write-Only
Oram

Updates to
the backend
are
synchronized
to other
clients

ObliviSync Components

Read/Write Client

_—

Local Storage Backend

Encode afile

MY - OUASIAIIQO
3sn4

Cloud Synchronized Folder

User Facing Frontend

File system is
“mounted”
into the
system using
FUSE

User
interaction
occurs
through
normal file
system calls

Write

v

Cloud Service

asn4d

OY - 2UASIAIIQO

Read Client

Read Client
mounts the
encoded file
system with

FUSE but only

enables
reading
-

Why embed a file system?

* Why not just treat the Write-Only ORAM
as a block device?

— Efficiency and Security of the system will be strongly
dependent on avoiding unnecessary writes

— Block devices may reveal access times and file sizes

Read/Write Client

Local Storage Backend | | [] User Facing Frontend
? | e>! .
Encode a file " W
system into ,
the backend e
block that is

efficient for
Write-Only |
Oram o

11

ObliviSync Backend: TERMINOLOGY

File-1d’s: identifier of
files stored with the
embedded file system

Split-block: Each
block in the backend
is partitioned into
two split-blocks

Block Id’s: Identifier
for a split-block in the
backend

Superblock: Block
with Block-Id 0 used
to structural
information for the
embedded file system

File-segments: Files are
broken up to fit within blocks,

Directory Entry: Root of
file system, always have

can either be full or partial File-1d O

0 1 2 3

5 6 7

] EL
o0 —= —

8 2 10 11
4 4
4

[0 == —— O = I OF = _(O —

12

Drip Rate =3

rietime=s) Synchronizing Buffer

Rg,%%_q%ng glules :
* Existing file segments
Wﬂﬁ?rggya full split block
WHERIOhot change

op8fiEeg”)

-Wr&%g%g file segments

clafifihg less than a full
split block may only

opgdieto the other split

regidck)in the pair.

close(5)

=

3
P
4
o= L
10 11
4
= A
O &

Summary of Design Settings

Specialize File System Embedded within a Write-only ORAM

— FUSE based user facing frontend for transparent user experience

Synchronize to Cloud at Regular Intervals (epochs)
— Buffer writes and synchronize buffer via write-oblivious operations

— Synchronize even when there is nothing in the buffer
(protection from timing attacks!)

Multiple Clients
— Allow only one reading and writing client
— Can have any number of read-only clients receiving synchronizations

Easily tuned to the right setting: drip rate and drip time

— to the Cloud Storage Provider: the size of the backend blocking
* 4MB vs. 1IMB vs. 4K blocks (Dropbox using 4MB backend)

— to the Application: The amount and frequency of synchronization
* Cloud File Syncs: Higher synchronization rate with lower amounts
* Regular Backups: Lower synchronization rate with higher amounts

RESULTS

Experimental Results
Latency

* Latency

— Insert a large number of files one at a time

— How long does it take for each of the files to sync?

* As there is less empty space to pack in files, should
expect a decrease in performance

Mean Epoch

1024 Backend Blocks of

size 1MB
Only 5 epochs I-a te n Cy Inserted 920 frontend files
one at a time each of size
/ 1MB
5 | | | | | | | |
k=3 =—
K=G oreeerees <—— Drip Rate Backend
) _kETg --------------- more full, _
harder to
- 1MB Blocks, 1GB backend storage make
3| - Drip Time of 30s progress |
- Drip Rate of 3 blocks per epoch
- 90% usage: synchronize in 2.5 minutes N
5 L :

Make progress on each sync

0 | |
0 0.1 /6.2

Theoretic Limit

0.3 04 0.5
Perc. Full

0.6

0.7 0.8 0.9

17

10)

Median Time (seconds, t

More Results in the Paper!

Throughput Measurements

Realistic File Sizes

800 1
20% Full
09| 50% Full)
700 : 75% Full .
S 08} i
600 c
& O07f i
©
@ 500 o
5 153 0.6 | -
Q c
S S
w400 2 05L R
s &
3 L 04
= 300 o [i
3 o3} i
200 | o 2
e f:) 02| i
100 01 | B
0 T))) 0))) | ol
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 215 216 217 218 219 220 221
Perc. Svnced Buffer Size (bytes)
Comparison running on DropBox
800 — — 35 - —
ObliviSync (write) Ob|vnSync (write)
OblviSync (read) ObliviSync (read)
700 - EncFS (write) 4 30 | EncFS (write) : |
EncFS (read) EncFS (read H
600 i % o5 z
500 i 4
S 20
&
400 - k23
°§’ 15
300 i =
g
g 10
200 7 s
5
100 i .
0 dl i 1 o 1 L O 1 P 1 1 o e e [[—
0 0.02 004 006 008 0.1 012 014 016 0.18 0.2 0 0.02 004 006 008 0.1 012 014 016 018 0.2
Perc. Synced Perc. Full

222

Takeaways

e Oblivious Synchronization Services is PRACTICAL
— Reads are already Oblivious, need to protect writes
— Leverage properties of the application
— Small communication overhead: 4x

* ObliviSync
— Adapting Write-Only ORAM with a specialized
Filed System
— Handles variable size files
— |Is NOT susceptible to timing attacks
— Tunable to the application

— Implemented for a DropBox-like application that is transparent
to the user

THANKS! Questions?

ObliviSync
Practical Oblivious File Backup and Synchronization

Adam J Aviv Seung Geol Choi Travis Mayberry Daniel S. Roche

United States Naval Academy
Annapolis, MD

Code Repository
https://github.com/oblivisync/oblivisync

YouTube Video
https://youtu.be/-MYgtts sO8

20

- Superblock

* Mapping of File-Id to Block-Id
— Directory entry maps filenames to File-Id’s

— Read (and written) on every access to the
system

(0,13) | (3,12)] (5,12) | (2,10) | ...
— B-Tree root is stored in the super block

e Use a 2-level B-tree
— Each leaf node is treated like a block in the
system and referenced by its Block-Id
— With large blocks only need one level for
most systems 15 20 55
75 12

e Cache of recent mappings 21 3
— Improves access time

— All changes can occur within the super
block without having to access leaf nodes

21

FUSE

File System in User Space

— A process intercepts all I/0
system calls

FUSE mounts the embedded
file system such that it appears
like any other directory to the
user

FUSE client also maintains the
directory entry and is aware of
the underlying ObliviSync
System for efficiency

Read/Write Client

Local Storage Backend

bloc

H -

o

Cloud Synchronized Folder

|

|

User Facing Frontend

O I

<2 :

Ef S

2 c i F

2 file
= : ;

[
Write l

o
=2 .
: ; < :
. ' i » m i
Cloud Service —! :—) S| —> % — :
i 1 o !
S m i

Reads| !

Py

o

ien

Detecting Stale Data

* How do we recognize if
data is stale? 3

— Perform a lookup in the 2
superblock for the File-Id

— |f Block-Id is not listed it

must be stale -
5 —> — (5,2)

23

1024 Backend Blocks of
size 1MB
Th ro u g h p u t Inserted 920 frontend files
Drip Rate all at once each of size
\ 1MB
800 | | | | |
K=3 m—
K=B oo Backend
700 [k=9 full .
KoqD sommmen more full,
500 - harder to)
make

2 500 progress]
(@)
(@)
o
w400 S
c
) Make progress on each sync
= 300 prog y PG

200 o o

100 :

0 1 1

0 0.1 /3.2 0.3 0.4 05 0.6 0.7 0.8 0.9

< rs Perc. S d
Theoretic Limit ere. Synee ”

How long does it
take to clear the buffer?

Theorem 1. For a running ObliviSync-RW client with param-
eters B, N,k as above, let m be the total size (in bytes) of
all non-stale data currently stored in the backend, and let s

be the total size (in bytes) of pending write operations in the
buffer, and suppose that m + s < NB/4.

Then the expected number of sync operatlons until the

b) r4d s arpgot It
e A Buffer8f 78 WilCia5 Aot (f (Bk)) operations
Uu

~ B: SizgQfdWpanll zﬁ@éﬁb’ 711%}5 3&5{5&5 ffonr
— k:is th@(dﬂia rate, the number of size B files synced per epoch

* Large percentage of backend blocks that should be empty
— 20% capacity or 80% empty for fast clearance

* Does not depend on the distribution of file sizes

