
TumbleBit: An Untrusted Bitcoin-Compatible
Anonymous Payment Hub

Ethan Heilman∗, Leen AlShenibr∗, Foteini Baldimtsi†, Alessandra Scafuro‡ and Sharon Goldberg∗
∗Boston University {heilman, leenshe}@bu.edu, goldbe@cs.bu.edu

†George Mason University foteini@gmu.edu
‡North Carolina State University ascafur@ncsu.edu

Abstract—This paper presents TumbleBit, a new uni-
directional unlinkable payment hub that is fully com-
patible with today’s Bitcoin protocol. TumbleBit allows
parties to make fast, anonymous, off-blockchain payments
through an untrusted intermediary called the Tumbler.
TumbleBit’s anonymity properties are similar to classic
Chaumian eCash: no one, not even the Tumbler, can link
a payment from its payer to its payee. Every payment
made via TumbleBit is backed by bitcoins, and comes with
a guarantee that Tumbler can neither violate anonymity,
nor steal bitcoins, nor “print money” by issuing payments
to itself. We prove the security of TumbleBit using the
real/ideal world paradigm and the random oracle model.
Security follows from the standard RSA assumption and
ECDSA unforgeability. We implement TumbleBit, mix
payments from 800 users and show that TumbleBit’s off-
blockchain payments can complete in seconds.

I. INTRODUCTION

One reason for Bitcoin’s initial popularity was the
perception of anonymity. Today, however, the sheen of
anonymity has all but worn off, dulled by a stream of
academic papers [31], [42], and a blockchain surveil-
lance industry [26], [22], that have demonstrated weak-
nesses in Bitcoin’s anonymity properties. As a re-
sult, a new market of anonymity-enhancing services
has emerged [35], [17], [1]; for instance, 1 million
USD in bitcoins are funneled through JoinMarket each
month [35]. These services promise to mix bitcoins
from a set of payers (aka, input Bitcoin addresses A)
to a set of payees (aka, output bitcoin addresses B) in a
manner that makes it difficult to determine which payer
transferred bitcoins to which payee.

To deliver on this promise, anonymity must also
be provided in the face of the anonymity-enhancing
service itself—if the service knows exactly which payer
is paying which payee, then a compromise of the service

leads to a total loss of anonymity. Compromise of
anonymity-enhancing technologies is not unknown. In
2016, for example, researchers found more than 100 Tor
nodes snooping on their users [37]. Moreover, users of
mix services must also contend with the potential risk
of “exit scams”, where an established business takes in
new payments but stops providing services. Exit scams
have been known to occur in the Bitcoin world. In 2015,
a Darknet Marketplace stole 11.7M dollars worth of
escrowed customer bitcoins [44], while btcmixers.com
mentions eight different scam mix services. Thus, it is
crucial that anonymity-enhancing services be designed
in a manner that prevents bitcoin theft.

TumbleBit: An unlinkable payment hub. We present
TumbleBit, a unidirectional unlinkable payment hub
that uses an untrusted intermediary, the Tumbler T ,
to enhance anonymity. Every payment made via Tum-
bleBit is backed by bitcoins. We use cryptographic
techniques to guarantee Tumbler T can neither violate
anonymity, nor steal bitcoins, nor “print money” by
issuing payments to itself. TumbleBit allows a payer
Alice A to send fast off-blockchain payments (of de-
nomination one bitcoin) to a set of payees (B1, ...,BQ)
of her choice. Because payments are performed off
the blockchain, TumbleBit also serves to scale the
volume and velocity of bitcoin-backed payments. Today,
on-blockchain bitcoin transactions suffer a latency of
≈ 10 minutes. Meanwhile, TumbleBit payments are
sent off-blockchain, via the Tumbler T , and complete
in seconds. (Our implementation1 completed a payment
in 1.2 seconds, on average, when T was in New York
and A and B were in Boston.)

TumbleBit Overview. TumbleBit replaces on-
blockchain payments with off-blockchain puzzle solv-
ing, where Alice A pays Bob B by providing B with the
solution to a puzzle. The puzzle z is generated through
interaction between B and T , and solved through an
interaction between A and T . Each time a puzzle is
solved, 1 bitcoin is transferred from Alice A to the
Tumbler T and finally on to Bob B.

The protocol proceeds in three phases; see Figure 1.
In the on-blockchain Escrow Phase, each payer Alice

1https://github.com/BUSEC/TumbleBit/

Permission to freely reproduce all or part of this paper for non-
commercial purposes is granted provided that copies bear this notice
and the full citation on the first page. Reproduction for commercial
purposes is strictly prohibited without the prior written consent of the
Internet Society, the first-named author (for reproduction of an entire
paper only), and the author’s employer if the paper was prepared
within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23086

btcmixers.com
https://github.com/BUSEC/TumbleBit/

Ph
as

e
1:

E

sc
ro

w
Ph

as
e

2:
Pa

ym
en

t

Alice Tumbler Bob
Ph

as
e

3:
C

as
h-

ou
t

{
{
{

Puzzle-Promise
 Protocol

Escrow Transaction Escrow Transaction

RSA-Puzzle-Solver
 Protocol

Cash-out Transaction Cash-out Transaction

Z

=Blind() Z

Z

Z

Unblind()=ϵ

1 BTC from A to B

3 BTC 3 BTC

2 BTC 2 BTC1 BTC 1 BTC

ϵ ϵ
ϵ

= Dec () ϵ c σ

(c,)Z

Fig. 1. Overview of the TumbleBit protocol.

A opens a payment channel with the Tumbler T by
escrowing Q bitcoins on the blockchain. Each payee
Bob B also opens a channel with T . This involves
(1) T escrowing Q bitcoins on the blockchain, and
(2) B and T engaging in a puzzle-promise protocol
that generates up to Q puzzles for B. During the off-
blockchain Payment Phase, each payerA makes up to Q
off-blockchain payments to any set of payees. To make
a payment, A interacts with T to learn the solution
to a puzzle B provided. Finally, the Cash-Out Phase
closes all payment channels. Each payee B uses his Q′
solved puzzles (aka, TumbleBit payments) to create an
on-blockchain transaction that claims Q′ bitcoins from
T ’s escrow. Each payer A also closes her escrow with
T , recovering bitcoins not used in a payment.

Anonymity properties. TumbleBit provides unlinkabil-
ity: Given the set of escrow transactions and the set of
cash-out transactions, we define a valid configuration
as a set of payments that explains the transfer of funds
from Escrow to Cash-Out. Unlinkability ensures that if
the Tumbler T does not collude with other TumbleBit
users, then T cannot distinguish the true configuration
(i.e., the set of payments actually sent during the Pay-
ment Phase) from any other valid configuration.

TumbleBit is therefore similar to classic Chaumian
eCash [12]. With Chaumian eCash, a payee A first
withdraws an eCash coin in exchange for money (e.g.,
USD) at an intermediary Bank, then uses the coin to
pay a payee B. Finally B redeems the eCash coin to the
Bank in exchange for money. Unlinkability ensures that
the Bank cannot link the withdrawal of an eCash coin to
the redemption of it. TumbleBit provides unlinkability,
with Tumbler T playing the role of the Chaumian Bank.
However, while Tumbler T need not be trusted, the
Chaumian Bank is trusted to not (1) “print money”
(i.e., issue eCash coins to itself) or (2) steal money (i.e.,
refuse to exchange coins for money).

TumbleBit: As a classic tumbler. TumbleBit can also
be used as a classic Bitcoin tumbler, mixing together the
transfer of one bitcoin from ℵ distinct payers (Alice A)
to ℵ distinct payees (Bob B). In this mode, TumbleBit is
run as in Figure 1 with the payment phase shrunk to 30
seconds, so the protocol runs in epochs that require two
blocks added to the blockchain. As a classic tumbler,

TumbleBit provides k-anonymity within an epoch—no
one, not even the Tumbler T , can link one of the k
transfers that were successfully completed during the
epoch to a specific pair of payer and payee (A,B).

RSA-puzzle solving. At the core of TumbleBit is our
new “RSA puzzle solver” protocol that may be of
independent interest. This protocol allows Alice A to
pay one bitcoin to T in fair exchange2 for an RSA
exponentiation of a “puzzle” value z under T ’s secret
key. Fair exchange prevents a cheating T from claiming
A’s bitcoin without solving the puzzle. Our protocol
is interesting because it is fast—solving 2048-bit RSA
puzzles faster than [30]’s fair-exchange protocol for
solving 16x16 Sudoku puzzles (Section VIII))—and
because it supports RSA. The use of RSA means that
blinding can be used to break the link between the
user providing the puzzle (i.e., Bob B) and the user
requesting its solution (e.g., payer Alice A).

Cryptographic protocols. TumbleBit is realized by
interleaving the RSA-puzzle-solver protocol with an-
other fair-exchange puzzle-promise protocol. We for-
mally prove that each protocol is a fair exchange.
Our proofs use the real/ideal paradigm in the random
oracle model (ROM) and security relies on the standard
RSA assumption and the unforgeability of ECDSA
signatures. Our proofs are in the full version [20].

A. TumbleBit Features

Bitcoin compatibility. TumbleBit is fully compati-
ble with today’s Bitcoin protocol. We developed (off-
blockchain) cryptographic protocols that work with the
very limited set of (on-blockchain) instructions provided
by today’s Bitcoin scripts. Bitcoin scripts can only
be used to perform two cryptographic operations: (1)
validate the preimage of a hash, or (2) validate an
ECDSA signature on a Bitcoin transaction. The limited
functionality of Bitcoin scripts is likely here to stay;
indeed, the recent “DAO” theft [39] has highlighted the
security risks of complex scripting functionalities.

No coordination. In contrast to earlier work [28], [43],
if Alice A wants to pay Bob B, she need not interact
with any other TumbleBit users. Instead, A and B need
only interact with the Tumbler and each other. This
lack of coordination between TumbleBit users makes
it possible to scale our system.

Performance. We have implemented our TumbleBit
system in C++ and python, using LibreSSL as our
cryptographic library. We have tumbled payments from
800 payers to 800 payees; the relevant transactions are
visible on the blockchain. Our protocol requires 327 KB

2True fair exchange is impossible in the standard model [38]
and thus alternatives have been proposed, such as gradual release
mechanisms, optimistic models, or use of a trusted third party. We
follow prior works that use Bitcoin for fair exchange [4], [24], [25]
and treat the blockchain as a trusted public ledger. Other works use
the term Contingent Payment or Atomic Swaps [27], [5].

2

Scheme Prevents Theft Anonymous Resists DoS Resists Sybils Minimum Mixing Time Bitcoin Compatible No Coordination?
Coinjoin [28] X small set × × 1 block X ×
Coinshuffle [43], [34] X small set × × 1 block X × (p2p network)
Coinparty [49] 2/3 users honest X some1 X (fees) 2 blocks X ×
XIM [9] X X X X (fees) hours X × (uses blockchain)
Mixcoin [11] TTP accountable × (TTP) X X (fees) 2 blocks X X
Blindcoin [48] TTP accountable X X X (fees) 2 blocks X X
CoinSwap [29] X × (TTP)2 X X (fees) 2 blocks X X
BSC [21] X X X X (fees) 3 blocks × X
TumbleBit X X X X (fees) 2 blocks X X

TABLE I. A COMPARISON OF BITCOIN TUMBLER SERVICES. TTP STANDS FOR TRUSTED THIRD PARTY. WE COUNT MINIMUM MIXING
TIME BY THE MINIMUM NUMBER OF BITCOIN BLOCKS. ANY MIXING SERVICE INHERENTLY REQUIRES AT LEAST ONE BLOCK.
1COINPARTY COULD ACHIEVE SOME DOS RESISTANCE BY FORCING PARTIES TO SOLVE PUZZLES BEFORE PARTICIPATING.

of data on the wire, and 0.6 seconds of computation on a
single CPU. Thus, performance in classic tumbler mode
is limited only by the time it takes for two blocks to
be confirmed on the blockchain and the time it takes
for transactions to be confirmed; currently, this takes
≈ 20 minutes. Meanwhile, off-blockchain payments can
complete in seconds (Section VIII).

B. Related Work

TumbleBit is related to work proposing new anony-
mous cryptocurrencies (e.g., Zerocash [33], [7], Mon-
ero [2] or Mimblewimble [23]). While these are very
promising, they have yet to be as widely adopted as
Bitcoin. On the other hand, TumbleBit is an anonymity
service for Bitcoin’s existing user base.

Off-blockchain payments. When used as an unlinkable
payment hub, TumbleBit is related to micropayment
channel networks, notably Duplex Micropayment Chan-
nels [13] and the Lightning Network [40]. These sys-
tems also allow for Bitcoin-backed fast off-blockchain
payments. Payments are sent via paths of intermedi-
aries with pre-established on-blockchain pairwise es-
crow transactions. TumbleBit (conceptually) does the
same. However, while the intermediaries in micropay-
ment channel network can link payments from A to
B, TumbleBit’s intermediary T cannot. Our earlier
workshop paper [21] proposed a protocol that adds
anonymity to micropayment channel networks. Tum-
bleBit is also related to concurrent work proposing
Bolt [18], an off-blockchain unlinkable payment chan-
nel. However, while TumbleBit is both implemented and
Bitcoin comptabile, Bolt [18] and [21] are not. Our full
version [20] has more discussion on [18], [21].

Bitcoin Tumblers. Prior work on classic Bitcoin Tum-
blers is summarized in Table I-A. CoinShuffle(++) [43],
[34] both perform a mix in a single transaction. Bit-
coin’s maximum transaction size (100KB) limits Coin-
Shuffle(++) to 538 users per mix. These systems are
also particularly vulnerable to DoS attacks, where a user
joins the mix and then aborts, disrupting the protocol
for all other users. Decentralization also requires mix
users to interact via a peer-to-peer network in order
to identify each other and mix payments. This coor-
dination between users causes communication to grow
quadratically [9], [10], limiting scalability; neither [43]
nor [34] performs a mix with more than 50 users.

Decentralization also makes it easy for an attacker to
create many Sybils and trick Alice A into mixing with
them in order to deanonymize her payments [10], [47].
TumbleBit sidesteps these scalability limitations by not
requiring coordination between mix users. The full
version [20] discusses the other tumblers in Table I-A.

After this paper was first posted, Dorier and Ficsor
began an independent TumbleBit implementation.3

II. BITCOIN SCRIPTS AND SMART CONTRACTS

In designing TumbleBit, our key challenge was
ensuring compatibility with today’s Bitcoin protocol.
We therefore start by reviewing Bitcoin transactions and
Bitcoin’s non-Turing-complete language Script.

Transactions. A Bitcoin user Alice A is identified by
her bitcoin address (which is a public ECDSA key),
and her bitcoins are “stored” in transactions. A single
transaction can have multiple outputs and multiple in-
puts. Bitcoins are transferred by sending the bitcoins
held in the output of one transaction to the input of a
different transaction. The blockchain exists to provide a
public record of all valid transfers. The bitcoins held
in a transaction output can only be transferred to a
single transaction input. A transaction input T3 double-
spends a transaction input T2 when both T2 and T3
point to (i.e., attempt to transfer bitcoins from) the
same transaction output T1. The security of the Bitcoin
protocol implies that double-spending transactions will
not be confirmed on the blockchain. Transactions also
include a transaction fee that is paid to the Bitcoin miner
that confirms the transaction on the blockchain. Higher
fees are paid for larger transactions. Indeed, fees for
confirming transactions on the blockchain are typically
expressed as “Satoshi-per-byte” of the transaction.

Scripts. Each transaction uses Script to determine
the conditions under which the bitcoins held in that
transaction can be moved to another transaction. We
build “smart contracts” from the following transactions:
- Toffer: One party A offers to pay bitcoins to any party
that can sign a transaction that meets some condition C.
The Toffer transaction is signed by A.
- Tfulfill: This transaction points to Toffer, meets the
condition C stipulated in Toffer, and contains the public
key of the party B receiving the bitcoins.

3https://github.com/NTumbleBit/NTumbleBit

3

https://github.com/NTumbleBit/NTumbleBit

Toffer is posted to the blockchain first. When Tfulfill
is confirmed by the blockchain, the bitcoins in Tfulfill
flow from the party signing transaction Toffer to the
party signing Tfulfill. Bitcoin scripts support two types
of conditions that involve cryptographic operations:

Hashing condition: The condition C stipulated in
Toffer is: “Tfulfill must contain the preimage of value
y computed under the hash function H .” Then, Tfulfill
collects the offered bitcoin by including a value x such
that H(x) = y. (We use the OP_RIPEMD160 opcode
so that H is the RIPEMD-160 hash function.)

Signing condition: The condition C stipulated in Toffer
is: “Tfulfill must be digitally signed by a signature that
verifies under public key PK .” Then, Tfulfill fulfills
this condition if it is validly signed under PK . The
signing condition is highly restrictive: (1) today’s Bit-
coin protocol requires the signature to be ECDSA over
the Secp256k1 elliptic curve [41]—no other elliptic
curves or types of signatures are supported, and (2)
the condition specifically requires Tfulfill itself to be
signed. Thus, one could not use the signing condi-
tion to build a contract whose condition requires an
arbitrary message m to be signed by PK .4 (Tum-
bleBit uses the OP_CHECKSIG opcode, which re-
quires verification of a single signature, and the “2-of-2
multisignature” template ‘OP_2 key1 key2 OP_2
OP_CHECKMULTISIG’ which requires verification of a
signature under key1 AND a signature under key2.)5

Script supports composing conditions under
“IF” and “ELSE”. Script also supports timelocking
(OP_CHECKLOCKTIMEVERIFY opcode [46]), where
Toffer also stipulates that Tfulfill is timelocked to time
window tw . (Note that tw is an absolute block height.)
This allows the party that posted Tfulfill to reclaim their
bitcoin if Tfulfill is unspent and the block height is
higher than tw . Section VIII-A details the scripts used
in our implementation.

2-of-2 escrow. TumbleBit relies heavily on the
commonly-used 2-of-2 escrow smart contract. Suppose
that Alice A wants to put Q bitcoin in escrow to
be redeemed under the condition C2of2: “the fulfilling
transaction includes two signatures: one under public
key PK 1 AND one under PK 2.”

To do so, A first creates a multisig address
PK (1,2) for the keys PK 1 and PK 2 using the Bit-
coin createmultisig command. Then, A posts an
escrow transaction Tescr on the blockchain that sends
Q bitcoin to this new multisig address PK (1,2). The
Tescr transaction is essentially a Toffer transaction that
requires the fulfilling transaction to meet condition
C2of2. We call the fulfilling transaction Tcash the cash-
out transaction. Given that A doesn’t control both PK 1

4This is why [21] is not Bitcoin-compatible. [21] requires a blind
signature to be computed over an arbitrary message. Also, ECDSA-
Secp256k1 does not support blind signatures.

5Unlike cryptographic multisignatures, a Bitcoin 2-of-2 multisig-
nature is a tuple of two distinct signatures and not a joint signature.

and PK 2 (i.e., doesn’t know the corresponding secret
keys), we also timelock the Tescr transaction for a time
window tw . Thus, if a valid Tcash is not confirmed by
the blockchain within time window tw , the escrowed
bitcoins can be reclaimed by A. Therefore, A’s bitcoins
are escrowed until either (1) the time window expires
and A reclaims her bitcoins or (2) a valid Tcash is
confirmed. TumbleBit uses 2-of-2 escrow to establish
pairwise payment channels, per Figure 1.

III. TUMBLEBIT: AN UNLINKABLE PAYMENT HUB

Our goal is to allow a payer, Alice A, to unlinkably
send 1 bitcoin to a payee, Bob B. Naturally, if Alice
A signed a regular Bitcoin transaction indicating that
AddrA pays 1 bitcoin to AddrB , then the blockchain
would record a link between Alice A and Bob B
and anonymity could be harmed using the techniques
of [31], [42], [8]. Instead, TumbleBit funnels payments
from multiple payer-payee pairs through the Tumbler T ,
using cryptographic techniques to ensure that, as long
as T does not collude with TumbleBit’s users, then no
one can link a payment from payer A to payee B.

A. Overview of Bob’s Interaction with the Tumbler

We overview TumbleBit’s phases under the assump-
tion that Bob B receives a single payment of value
1 bitcoin. TumbleBit’s Anonymity properties require
all payments made in the system to have the same
denomination; we use 1 bitcoin for simplicity. In our
full version [20] we also discuss how Bob can receive
multiple payments of denomination 1 bitcoin each.

TumbleBit has three phases (Fig 1). Off-blockchain
TumbleBit payments take place during the middle Pay-
ment Phase, which can last for hours or even days.
Meanwhile, the first Escrow Phase sets up payment
channels, and the last Cash-Out Phase closes them
down; these two phases require on-blockchain transac-
tions. All users of TumbleBit know exactly when each
phase begins and ends. One way to coordinate is to use
block height; for instance, if the payment phase lasts
for 1 day (i.e., ≈ 144 blocks) then the Escrow Phase is
when block height is divisible by 144, and the Cash-Out
Phase is when blockheight+1 is divisible by 144.

1: Escrow Phase. Every Alice A that wants to send
payments (and Bob B that wants to receive payments)
during the upcoming Payment Phase runs the escrow
phase with T . The escrow phase has two parts:

(a) Payee B asks the Tumbler T to set up a payment
channel. T escrows 1 bitcoin on the blockchain via
a 2-of-2 escrow transaction (Section II) denoted as
Tescr(T ,B) stipulating that 1 bitcoin can be claimed by
any transaction signed by both T and B. Tescr(T ,B) is
timelocked to time window tw2, after which T can
reclaim its bitcoin. Similarly, the payeer A escrows 1
bitcoin in a 2-of-2 escrow with T denoted as Tescr(A,T),
timelocked for time window tw1 such that tw1 < tw2.

4

(b) Bob B obtains a puzzle z through an off-
blockchain cryptographic protocol with T which we call
the puzzle-promise protocol. Conceptually, the output of
this protocol is a promise by T to pay 1 bitcoin to B
in exchange for the solution to a puzzle z. The puzzle
z is just an RSA encryption of a value ε

z = fRSA(ε, e, N) = εe mod N (1)

where (e, N) is the TumbleBit RSA public key of
the Tumbler T . “Solving the puzzle” is equivalent
to decrypting z and thus obtaining its “solution” ε.
Meanwhile, the “promise” c is a symmetric encryption
under key ε

c = Encε(σ)

where σ is the Tumbler’s ECDSA-Secp256k1 signature
on the transaction Tcash(T ,B) which transfers the bitcoin
escrowed in Tescr(T ,B) from T to B. (We use ECDSA-
Secp256k1 for compatibility with the Bitcoin protocol.)
Thus, the solution to a puzzle z enables B to claim 1
bitcoin from T . To prevent misbehavior by the Tumbler
T , our puzzle-promise protocol requires T to provide a
proof that the puzzle solution ε is indeed the key which
decrypts the promise ciphertext c. The details of this
protocol, and its security guarantees, are in Section VI.

2: Payment Phase. Once AliceA indicates she is ready
to pay Bob B, Bob B chooses a random blinding factor
r ∈ Z∗N and blinds the puzzle to

z = rez mod N. (2)

Blinding ensures that even T cannot link the original
puzzle z to its blinded version z. Bob B then sends z to
A. Next, A solves the blinded puzzle z by interacting
with T . This puzzle-solver protocol is a fair exchange
that ensures that A transfers 1 bitcoin to T iff T gives
a valid solution to the puzzle z. Finally, Alice A sends
the solution to the blinded puzzle ε back to Bob B. Bob
unblinds ε to obtain the solution

ε = ε/r mod N (3)

and accepts Alice’s payment if the solution is valid, i.e.,
εe = z mod N .

3: Cash-Out Phase. Bob B uses the puzzle solution ε
to decrypt the ciphertext c. From the result B can create
a transaction Tcash(T ,B) that is signed by both T and B.
B posts Tcash(T ,B) to the blockchain to receive 1 bitcoin
from T .

Our protocol crucially relies on the algebraic prop-
erties of RSA, and RSA blinding. To make sure that
the Tumbler is using a valid RSA public key (e, N),
TumbleBit also has an one-time setup phase:

0: Setup. Tumbler T announces its RSA public
key (e, N) and Bitcoin address AddrT , together with a
non-interactive zero-knowledge proof of knowledge π6

6Such a proof could be provided using the GQ identification pro-
tocol [19] made non-interactive using the Fiat-Shamir heuristic [14]
in the random oracle model.

of the corresponding RSA secret key d . Every user of
TumbleBit validates (e, N) using π.

B. Overview of Alice’s Interaction with the Tumbler

We now focus on the puzzle-solving protocol be-
tween A and the Tumbler T to show how TumbleBit
allows A to make many off-blockchain payments via
only two on-blockchain transactions (aiding scalability).

During the Escrow Phase, Alice opens a payment
channel with the Tumbler T by escrowing Q bitcoins in
an on-blockchain transaction Tescr(A,T). Each escrowed
bitcoin can pay T for the solution to one puzzle. Next,
during the off-blockchain Payment Phase, A makes off-
blockchain payments to j ≤ Q payees. Finally, during
the Cash-Out Phase, Alice A pays the Tumbler T by
posting a transaction Tcash(A,T)(j) that reflects the new
allocation of bitcoins; namely, that T holds j bitcoins,
while A holds Q− j bitcoins. The details of Alice A’s
interaction with T , which are based on a technique used
in micropayment channels [36, p. 86], are as follows:

1: Escrow Phase. Alice A posts a 2-of-2 escrow
transaction Tescr(A,T) to the blockchain that escrows Q
of Alice’s bitcoins. If no valid transaction Tcash(A,T) is
posted before time window tw1, then all Q escrowed
bitcoins can be reclaimed by A.

2: Payment Phase. Alice A uses her escrowed bitcoins
to make off-blockchain payments to the Tumbler T . For
each payment, A and T engage in an off-blockchain
puzzle-solver protocol (see Sections V-A,V-C).

Once the puzzle is solved, Alice signs and gives T
a new transaction Tcash(A,T)(i). Tcash(A,T)(i) points to
Tescr(A,T) and reflects the new balance between A and
T (i.e., that T holds i bitcoins while A holds Q − i
bitcoins). T collects a new Tcash(A,T)(i) from A for
each payment. If Alice refuses to sign Tcash(A,T)(i),
then the Tumbler refuses to help Alice solve further
puzzles. Importantly, each Tcash(A,T)(i) for i = 1...j
(for j < Q) is signed by Alice A but not by T , and is
not posted to the blockchain.

3: Cash-Out Phase. The Tumbler T claims its bit-
coins from Tescr(A,T) by signing Tcash(A,T)(j) and
posting it to the blockchain. This fulfills the condi-
tion in Tescr(A,T), which stipulated that the escrowed
coins be claimed by a transaction signed by both A
and T . (Notice that all the Tcash(A,T)(i) point to the
same escrow transaction Tescr(A,T). The blockchain
will therefore only confirm one of these transactions;
otherwise, double spending would occur. Rationally,
the Tumbler T always prefers to confirm Tcash(A,T)(j)
since it transfers the maximum number of bitcoins to
T .) Because Tcash(A,T)(j) is the only transaction signed
by the Tumbler T , a cheating Alice cannot steal bitcoins
by posting a transaction that allocates fewer than j
bitcoins to the Tumbler T .

Remark: Scaling Bitcoin. A similar (but more elaborate)
technique can be applied between B and T so that

5

𝓐1

𝓐2

t5

𝓐3

𝓐4

𝓑1

𝓑2

𝓑3
A compatiable interaction graph

t6

t1

t3

t5

t2

t3

t4

Payer puzzle-solver payments

2 BTC

Payee cashouts

3 BTC

3 BTC

?
?

?
?

?
?

?
?{ {Tumbler's View

Fig. 2. Our unlinkability definition: The Tumblers view and a
compatible interaction multi-graph.

only two on-blockchain transactions suffice for Bob
B to receive an arbitrary number of off-blockchain
payments. Details are in the full version [20]. Given
that each party uses two on-blockchain transactions
to make multiple off-blockchain playments, Tumblebit
helps Bitcoin scale.

C. TumbleBit’s Security Properties

Unlinkability. We assume that the Tumbler T does not
collude with other users. The view of T consists of (1)
the set of escrow transactions established between (a)
each payer Aj and the Tumbler (Aj

escrow,ai−→ T) of value
ai and (b) the Tumbler and each payee Bi (T escrow,bi−→ Bi),
(2) the set of puzzle-solver protocols completed with
each payer Aj at time t during the Payment Phase, and
(3) the set of cashout transactions made by each payer
Aj and each payee Bi during the Cash-Out Phase.

An interaction multi-graph is a mapping of pay-
ments from payers to payees (Figure 2). For each
successful puzzle-solver protocol completed by payer
Aj at time t, this graph has an edge, labeled with time
t, from Aj to some payee Bi. An interaction graph is
compatible if it explains the view of the Tumbler T ,
i.e., the number of edges incident on Bi is equal to the
total number of bitcoins cashed out by Bi. Unlinkability
requires all compatible interaction graphs to be equally
likely. Anonymity therefore depends on the number of
compatible interaction graphs.

Notice that payees Bi have better anonymity than
payers Aj . (This follows because the Tumbler T knows
the time t at which payer Aj makes each payment.
Meanwhile, the Tumbler T only knows the aggregate
amount of bitcoins cashed-out by each payee Bi.)

A high-level proof of TumbleBit’s unlinkability is
in Section VII, and the limitations of unlinkability are
discussed in Section VII-C.

Balance. The system should not be exploited to print
new money or steal money, even when parties collude.
As in [18], we call this property balance, which estab-
lishes that no party should be able to cash-out more
bitcoins than what is dictated by the payments that
were successfully completed in the Payment Phase. We
discuss how TumbleBit satisfies balance in Section VII.

DoS and Sybil protection. TumbleBit uses transaction
fees to resist DoS and Sybil attacks. Every Bitcoin
transaction can include a transaction fee that is paid
to the Bitcoin miner who confirms the transaction on
the blockchain as an incentive to confirm transactions.
However, because the Tumbler T does not trust Alice
A and Bob B, T should not be expected to pay fees
on the transactions posted during the Escrow Phase. To
this end, when Alice A establishes a payment channel
with T , she pays for both the Q escrowed in transaction
Tescr(A,T) and for its transaction fees. Meanwhile, when
the Tumbler T and Bob B establish a payment channel,
the Q escrowed bitcoins in Tescr(T ,B) are paid in the
Tumbler T , but the transaction fees are paid by Bob B
(Section III-A). Per [9], fees raise the cost of an DoS
attack where B starts and aborts many parallel sessions,
locking T ’s bitcoins in escrow transactions. This simi-
larly provides Sybil resistance, making it expensive for
an adversary to harm anonymity by tricking a user into
entering a run of TumbleBit where all other users are
Sybils under the adversary’s control.

IV. TUMBLEBIT: ALSO A CLASSIC TUMBLER.

We can also operate TumbleBit as classic Bitcoin
Tumbler. As a classic Tumbler, TumbleBit operates in
epoches, each of which (roughly) requires two blocks
to be confirmed on the blockchain (≈ 20 mins). During
each epoch, there are exactly ℵ distinct bitcoin addresses
making payments (payers) and ℵ bitcoin addresses
receiving payments (payees). Each payment is of de-
nomination 1 bitcoin, and the mapping from payers to
payees is a bijection. During one epoch, the protocol
itself is identical to that in Section III with the following
changes: (1) the duration of the Payment Phase shrinks
to seconds (rather than hours or days); (2) each payment
channel escrows exactly Q = 1 bitcoin; and (3) every
payee Bob B receives payments at an ephemeral bitcoin
address AddrB chosen freshly for the epoch.

A. Anonymity Properties

As a classic tumbler, TumbleBit has the same bal-
ance property, but stronger anonymity: k-anonymity
within an epoch [21], [9]. Specifically, while the
blockchain reveals which payers and payees participated
in an epoch, no one (not even the Tumbler T) can
tell which payer paid which payee during that specific
epoch. Thus, if k payments successfully completed
during an epoch, the anonymity set is of size k. (This
stronger property follows directly from our unlinkability
definition (Section III-C): there are k compatible inter-
action graphs because the interaction graph is bijection.)

Recovery from anonymity failures. It’s not always the
case that k = ℵ. The exact anonymity level achieved
in an epoch can be established only after its Cash-Out
Phase. For instance, anonymity is reduced to k = ℵ−1
if T aborts an payment made by payer Aj . We deal with
this by requiring B to uses an ephemeral Bitcoin address

6

AddrB in each epoch. As in [21], Bob B discards
AddrB if (1) the Tumbler T maliciously aborts Aj’s
payment in order to infer that Aj was attempting to
pay B (see Section VIII-C); or (2) k-anonymity was
too small. (In case (2), B can alternatively re-tumble
the bitcoin in AddrB in a future epoch.)

Remark: Intersection attacks. While this notion of k-
anonymity is commonly used in Bitcoin tumblers (e.g.,
[9], [21]), it does suffer from the following weakness.
Any adversary that observes the transactions posted to
the blockchain within one epoch can learn which payers
and payees participated in that epoch. Then, this infor-
mation can be correlated to de-anonymize users across
epochs (e.g., using frequency analysis or techniques
used to break k-anonymity [15]). See also [9], [32].

DoS and Sybil Attacks. We use fees to resist DoS
and Sybil attacks. Alice again pays for both the Q
escrowed in transaction Tescr(A,T) and for its transaction
fees. However, we run into a problem if we want Bob
B to pay the fee on the escrow transaction Tescr(T ,B).
Because Bob B uses a freshly-chosen Bitcoin address
AddrB , that is not linked to any prior transaction on
the blockchain, AddrB cannot hold any bitcoins. Thus,
Bob B will have to pay the Tumbler T out of band.
The anonymous fee vouchers described in [21] provide
one way to address this, which also has the additional
feature that payers A cover all fees.

V. A FAIR EXCHANGE FOR RSA PUZZLE SOLVING

We now explain how to realize a Bitcoin-compatible
fair-exchange where Alice A pays Tumbler T one
bitcoin iff the T provides a valid solution to an RSA
puzzle. The Tumbler T has an RSA secret key d and the
corresponding public key (e, N). The RSA puzzle y is
provided by Alice, and its solution is an RSA secret-key
exponentiation

ε = f−1RSA(y, d , N) = yd mod N (4)

The puzzle solution is essentially an RSA decryption or
RSA signing operation.

This protocol is at the heart of TumbleBit’s Payment
Phase. However, we also think that this protocol is
of independent interest, since there is also a growing
interest in techniques that can fairly exchange a bitcoin
for the solution to a computational “puzzle”. (The full
version [20] reviews the related work [27], [30], [24],
[6].) Section V-A presents our RSA-puzzle-solver proto-
col as a stand-alone protocol that requires two blocks to
be confirmed on the blockchain. Our protocol is fast—
solving 2048-bit RSA puzzles faster than [30]’s protocol
for solving 16x16 Sudoku puzzles (Section VIII)). Also,
the use of RSA means that our protocol supports solving
blinded puzzles (see equation (2)), and thus can be used
to create an unlinkable payment scheme. Section V-C
shows how our protocol is integrated into TumbleBit’s
Payment Phase. Implementation results are in Table II
of Section VIII-B.

Public input: (e, N).
π proves validity of (e, N) in a one-time-only setup phase.

Alice A Tumbler T
Input: Puzzle y Secret input: d

1. Prepare Real Puzzles R
For j ∈ [m], pick rj ∈ Z∗N
dj ← y · (rj)e mod N

2. Prepare Fake Values F
For i ∈ [n], pick ρi ∈ Z∗N
δi ← (ρi)

e mod N

3. Mix Sets.
Randomly permute 4. Evaluation
{d1 . . . dm, δ1 . . . δn} For i = 1 . . .m+ n

to {β1 . . . βm+n}
β1...βm+n−−−−−−→ Evaluate βi: si = βd

i mod N
Let R be the indices of the di Encrypt the result si:
Let F be the indices of the δi – Choose random ki ∈ {0, 1}λ1

– ci = Hprg(ki)⊕ si
Commit to the keys: hi = H(ki)

c1,...,cm+n←−−−−−−−
h1,...,hm+n←−−−−−−−

5. Identify Fake Set F
F,ρi ∀i∈F−−−−−−→ 6. Check Fake Set F

For all i ∈ F :
Verify βi = (ρi)

e mod N ,
If yes, reveal ki ∀i ∈ [F].

7. Check Fake Set F Else abort.
For all i ∈ F , ki ∀i∈F←−−−−−

Verify that hi = H(ki)
Decrypt si = Hprg(ki)⊕ ci
Verify (si)

e = (ρi) mod N
Abort if any check fails.

8. Post transaction Tpuzzle

Tpuzzle offers 1 bitcoin within timewindow tw1

under condition “the fulfilling transaction is
signed by T and has preimages of hj ∀j ∈ R”.

9. Check βj unblind to y ∀j ∈ R
y, rj∀j∈R−−−−−−−→ For all j ∈ R

Verify βj = y · (rj)e mod N
If not, abort.

10. Post transaction Tsolve
Tsolve contains kj∀j ∈ R

11. Obtain Puzzle Solution
For j ∈ R:

Learn kj from Tsolve
Decrypt cj to sj = Hprg(kj)⊕ cj
If sj is s.t. (sj)

e = βj mod N ,
Obtain solution sj/rj mod N
which is yd mod N .

Fig. 3. RSA puzzle solving protocol. H and Hprg are modeled as
random oracles. In our implementation, H is RIPEMD-160, and Hprg

is ChaCha20 with a 128-bit key, so that λ1 = 128.

A. Our (Stand-Alone) RSA-Puzzle-Solver Protocol

The following stand-alone protocol description as-
sumes Alice A wants to transfer 1 bitcoin in exchange
for one puzzle solution. Section V-C shows how to
support the transfer of up to Q bitcoins for Q puzzle
solutions (where each solution is worth 1 bitcoin).

The core idea is similar to that of contingent pay-
ments [27]: Tumbler T solves Alice’s A’s puzzle y by
computing the solution yd mod N , then encrypts the
solution under a randomly chosen key k to obtain a
ciphertext c, hashes the key k under bitcoin’s hash as
h = H(k) and finally, provides (c, h) to Alice. Alice A
prepares Tpuzzle offering one bitcoin in exchange for the
preimage of h. Tumbler T earns the bitcoin by posting
a transaction Tsolve that contains k, the preimage of h,
and thus fulfills the condition in Tpuzzle and claims a

7

bitcoin for T . Alice A learns k from Tsolve, and uses k
to decrypt c and obtain the solution to her puzzle.

Our challenge is to find a mechanism that allows A
to validate that c is the encryption of the correct value,
without using ZK proofs. Thus, instead of asking T to
provide just one (c, h) pair, T will be asked to provide
m + n pairs (Step 3). Then, we use cut and choose:
A asks T to “open” n of these pairs, by revealing the
randomly-chosen keys ki’s used to create each of the n
pairs (Step 7). For a malicious T to successfully cheat
A, it would have to correctly guess all the n “challenge”
pairs and form them properly (so it does not get caught),
while at the same time malforming all the m unopened
pairs (so it can claim a bitcoin from A without actually
solving the puzzle). Since T cannot predict which pairs
A asks it to open, T can only cheat with very low
probability 1/

(
m+n
n

)
.

However, we have a problem. Why should T agree
to open any of the (c, h) values that it produced? If A
received the opening of a correctly formed (c, h) pair,
she would be able to obtain a puzzle solution without
paying a bitcoin. As such, we introduce the notion of
“fake values”. Specifically, the n (c, h)-pairs that A asks
T to open will open to “fake values” rather than “real”
puzzles. Before T agrees to open them (Step 7), A must
prove that these n values are indeed fake (Step 6).

We must also ensure that T cannot distinguish “real
puzzles” from “fake values”. We do this with RSA
blinding. The real puzzle y is blinded m times with
different RSA-blinding factors (Step 1), while the n
fake values are RSA-blinded as well (Step 2). Finally,
A randomly permutes the real and fake values (Step 3).

Once Alice confirms the correctness of the opened
“fake” (c, h) values (Step 7), she signs a transaction
Tpuzzle offering one bitcoin for the keys k that open all
of the m “real” (c, h) values (Step 8). But what if Alice
cheated, so that each of the “real” (c, h) values opened
to the solution to a different puzzle? This would not be
fair to T , since A has only paid for the solution to a
single puzzle, but has tricked T into solving multiple
puzzles. We solve this problem in Step 9: once A posts
Tpuzzle, she proves to T that all m “real” values open to
the same puzzle y. This is done by revealing the RSA-
blinding factors blinding puzzle y. Once T verifies this,
T agrees to post Tsolve which reveals m of the k values
that open “real” (c, h) pairs (Step 10).

B. Fair Exchange

Fair exchange exchange entails the following: (1)
Fairness for T : After one execution of the protocol A
will learn the correct solution yd mod N to at most
one puzzle y of her choice. (2) Fairness for A: T will
earn 1 bitcoin iff A obtains a correct solution.

We prove this using the real-ideal paradigm [16].
We call the ideal functionality Ffair-RSA and present
it the full version [20]. Ffair-RSA acts like a trusted

party between A and T . Ffair-RSA gets a puzzle-solving
request (y, 1 bitcoin) from A, and forwards the request
to T . If T agrees to solve puzzle y for A, then T gets
1 bitcoin and A gets the puzzle solution. Otherwise, if
T refuses, A gets 1 bitcoin back, and T gets nothing.
Fairness for T is captured because A can request a
puzzle solution only if she sends 1 bitcoin to Ffair-RSA.
Fairness for B is captured because T receives 1 bitcoin
only if he agrees to solve the puzzle. The following
theorem is proved in the full version [20]:

Theorem 1: Let λ be the security parameter, m,n
be statistical security parameters, let N > 2λ. Let π be a
publicly verifiable zero-knowledge proof of knowledge
in the random oracle model. If the RSA assumption
holds in Z∗N , and if functions Hprg, H are independent
random oracles, there exists a negligible function ν,
such that protocol in Figure 3 securely realizes Ffair-RSA
in the random oracle model with the following security
guarantees. The security for T is 1−ν(λ) while security
for A is 1− 1

(m+n
n)
− ν(λ).

C. Solving Many Puzzles and Moving Off-Blockchain

To integrate the protocol in Figure 3 into TumbleBit,
we have to deal with three issues. First, if TumbleBit
is to scale Bitcoin (Section III-B), then Alice A must
be able to use only two on-blockchain transactions
Tescr(A,T) and Tcash(A,T) to pay for the an arbitrary
number of Q puzzle solutions (each worth 1 bitcoin)
during the Payment Phase; the protocol in Figure 3
only allows for the solution to a single puzzle. Second,
per Section III-B, the puzzle-solving protocol should
occur entirely off-blockchain; the protocol in Figure 3
uses two on-blockchain transactions Tpuzzle and Tsolve.
Third, the Tsolve transactions are longer than typical
transactions (since they contain m hash preimages), and
thus require higher transaction fees.

To deal with these issues, we now present a fair-
exchange protocol that uses only two on-blockchain
transactions to solve an arbitrary number of RSA
puzzles.

Escrow Phase. Before puzzle solving begins, Alice
posts a 2-of-2 escrow transaction Tescr(A,T) to the
blockchain that escrows Q bitcoins, (per Section III-B).
Tescr(A,T) is timelocked to time window tw1, and
stipulates that the escrowed bitcoins can be transferred
to a transaction signed by both A and T .

Payment Phase. Alice A can buy solutions for up to
Q puzzles, paying 1 bitcoin for each. Tumbler T keeps
a counter of how many puzzles it has solved for A,
making sure that the counter does not exceed Q. When
A wants her ith puzzle solved, she runs the protocol in
Figure 3 with the following modifications after Step 8
(so that it runs entirely off-blockchain):

(1) Because the Payment Phase is off-blockchain,
transaction Tpuzzle from Figure 3 is not posted to the

8

blockchain. Instead, AliceA forms and signs transaction
Tpuzzle and sends it to the Tumbler T . Importantly,
Tumbler T does not sign or post this transaction yet.

(2) Transaction Tpuzzle points to the escrow trans-
action Tescr(A,T); Tpuzzle changes its balance so that T
holds i bitcoin and Alice A holds Q− i bitcoins. Tpuzzle
is timelocked to time window tw1 and stipulates the
same condition in Figure 3: “the fulfilling transaction is
signed by T and has preimages of hj∀j ∈ R.”

(Suppose that T deviates from this protocol, and
instead immediately signs and post Tpuzzle. Then the
bitcoins in Tescr(A,T) would be transferred to Tpuzzle.
However, these bitcoins would remain locked in Tpuzzle
until either (a) the timelock tw expired, at which point
Alice A could reclaim her bitcoins, or (b) T signs and
posts a transaction fulfilling the condition in Tpuzzle,
which allows Alice to obtain the solution to her puzzle.)

(3) Instead of revealing the preimages kj∀j ∈ R in
an on-blockchain transaction Tsolve as in Figure 3, the
Tumbler T just sends the preimages directly to Alice.

(4) Finally, Alice A checks that the preimages open
a valid puzzle solution. If so, Alice signs a regular cash-
out transaction Tcash(A,T) (per Section III-B). Tcash(A,T)

points to the escrow transaction Tescr(A,T) and reflects
the new balance between A and T .

At the end of the ith payment, the Tumbler T should
have two new signed transactions from Alice: Tpuzzle(i)
and Tcash(A,T)(i), each reflecting the (same) balance of
bitcoins between T (holding i bitcoins) and A (holding
Q−i bitcoins). However, Alice A already has her puzzle
solution at this point (step (4) modification above). What
if she refuses to sign Tcash(A,T)(i)?

In this case, the Tumbler immediately begins to
cash out, even without waiting for the Cash-Out Phase.
Specifically, Tumbler T holds transaction Tpuzzle(i),
signed by A, which reflects a correct balance of i
bitcoins to T and Q − i bitcoins to A. Thus, T signs
Tpuzzle(i) and posts it to the blockchain. Then, T claims
the bitcoins locked in Tpuzzle(i) by signing and posting
transaction Tsolve. As in Figure 3, Tsolve fulfills Tpuzzle
by containing the m preimages kj∀j ∈ R. The bitcoin
in Tescr(A,T) will be transferred to Tpuzzle and then to
Tsolve and thus to the Tumbler T . The only harm done is
that T posts two longer transactions Tpuzzle(i),Tsolve(i)
(instead of just Tcash(A,T)), which require higher fees
to be confirmed on the blockchain. (Indeed, this is why
we have introduced the Tcash(A,T)(i) transaction.)

Cash-Out Phase. Alice has j puzzle solutions once
the the Payment Phase is over and the Cash-Out Phase
begins. If the Tumbler T has a transaction Tcash(A,T)(j)
signed by Alice, the Tumbler T just signs and post this
transaction to the blockchain, claiming its j bitcoins.

VI. PUZZLE-PROMISE PROTOCOL

We present the puzzle-promise protocol run be-
tween B and T in the Escrow Phase. Recall from
Section III-A, that the goal of this protocol is to
provide Bob B with a puzzle-promise pair (c, z). The
“promise” c is an encryption (under key ε) of the
Tumbler’s ECDSA-Secp256k1 signature σ on the trans-
action Tcash(T ,B) which transfers the bitcoin escrowed
in Tescr(T ,B) from T to B. Meanwhile the RSA-puzzle
z hides the encryption key ε per equation (1).

If Tumbler T just sent a pair (c, z) to Bob, then
Bob has no guarantee that the promise c is actually
encrypting the correct signature, or that z is actually
hiding the correct encryption key. On the other hand, T
cannot just reveal the signature σ directly, because Bob
could use σ to claim the bitcoin escrowed in Tescr(T ,B)
without actually being paid (off-blockchain) by Alice A
during TumbleBit’s Payment Phase.

To solve this problem, we again use cut and choose:
we ask T to compute many puzzle-promise pairs
(ci, zi), and have Bob B test that some of the pairs are
computed correctly. As in Section V-A, we use “fake”
transactions (that will be “opened” and used only to
check if the other party has cheated) and “real” trans-
actions (that remain “unopened” and result in correctly-
formed puzzle-promise pairs). Cut-and-choose guaran-
tees that B knows that at least one of the unopened pairs
is correctly formed. However, how does B know which
puzzle zi is correctly formed? Importantly, B can only
choose one puzzle zi that he will ask Alice A to solve
during TumbleBit’s Payment Phase (Section III-A). To
deal with this, we introduce an RSA quotient-chain
technique that ties together all puzzles zi so that solving
one puzzle zj1 gives the solution to all other puzzles.

In this section, we assume that B wishes to obtain
only a single payment of denomination 1 bitcoin; the
protocol as described in Figure 4 and Section VI-A
suffices to run TumbleBit as a classic tumbler. We
discuss its security properties in Section VI-B and im-
plementation in Section VIII-B. In the full version [20],
we show how to modify this protocol so that it allows
B to receive arbitrary number of Q off-blockchain
payments using only two on-blockchain transactions.

A. Protocol Walk Through

B prepares µ distinct “real” transactions and η
“fake” transactions, hides them by hashing them with
H ′ (Step 2-3), permutes them (Step 4), and finally sends
them to T as β1, ..., βm+n. T the evaluates each βi to
obtain a puzzle-promise pair (ci, zi) (Step 5).

Next, B needs to check that the η “fake” (ci, zi)
pairs are correctly formed by T (Step 8). To do this,
B needs T to provide the solutions εi to the puzzles
zi in fake pairs. T reveals these solutions only after
B has proved that the η pairs really are fake (Step 7).

9

Once this check is done, B knows that T can cheat with
probability less than 1/

(
µ+η
η

)
.

Now we need our new trick. We want to ensure that
if at least one of the “real” (ci, zi) pairs opens to a valid
ECDSA-Secp256k1 signature σi, then just one puzzle
solution εi with i ∈ R, can be used to open this pair.
(We need this because B must decide which puzzle zi
to give to the payer A for decryption without knowing
which pair (ci, zi) is validly formed.) We solve this by
having T provide B with µ−1 quotients (Step 9). This
solves our problem since knowledge of ε = εj1 allows
B to recover of all other εji , since

εji = ε1 · q2·, . . . , ·qi

On the flip side, what if B obtains more than one valid
ECDSA-Secp256k1 signatures by opening the (ci, zi)
pairs? Fortunately, however, we don’t need to worry
about this. The escrow transaction Tescr(T ,B) offers 1
bitcoin in exchange for a ECDSA-Secp256k1 signature
under an ephemeral key PK eph

T used only once during
this protocol execution with this specific payee B. Thus,
even if B gets many signatures, only one can be used
to form the cash-out transaction Tcash(T ,B) that redeems
the bitcoin escrowed in Tescr(T ,B).

B. Security Properties

We again capture the security requirements of the
puzzle-promise protocol using real-ideal paradigm [16].
The ideal functionality Fpromise-sign is presented the
full version [20]. Fpromise-sign is designed to guarantee
the following properties: (1) Fairness for T : Bob B
learns nothing except signatures on fake transactions.
(2) Fairness for B: If T agrees to complete the protocol,
then Bob B obtains at least one puzzle-promise pair. To
do this, Fpromise-sign acts a trusted party between B and
T . Bob B sends the “real” and “fake” transactions to
Fpromise-sign. Fpromise-sign has access to an oracle that can
compute the Tumbler’s T signatures on any messages.
(This provides property (2).) Then, if Tumbler T agrees,
Fpromise-sign provides Bob B with signatures on each
“fake” transaction only. (This provides property (1).)
The following theorem is proved the full version [20]:

Theorem 2: Let λ be the security parameter. If
RSA trapdoor function is hard in Z∗N , if H,H ′, Hshk

are independent random oracles, if ECDSA is strong
existentially unforgeable signature scheme, then the
puzzle-promise protocol in Figure 4 securely realizes
the Fpromise-sign functionality. The security for T is
1− ν(λ) while security for B is 1− 1

(µ+ηη)
− ν(λ).

VII. TUMBLEBIT SECURITY

We discuss TumbleBit’s unlinkability and balance
properties. See Section III-C for DoS/Sybil resistance.

Public input: (e, N,PK eph
T , π).

Tumbler T chooses fresh ephemeral ECDSA-Secp256k1 key, i.e., bitcoin address (SK eph
T ,PK eph

T).
π proves validity of (e, N) in a one-time-only setup phase.

Bob B Tumbler T . Secret input: d

1. Set up Tescr(T ,B)
Sign but do not post transaction Tescr(T ,B)
timelocked for tw2 offering one bitcoin
under the condition: “the fulfilling transaction
must be signed under key PK eph

T and
2. Prepare µ Real Unsigned Tcash(T ,B). under key PKB.”

For i ∈ 1, . . . , µ:
Tescr(T ,B)←−−−−−−

Choose random pad ρi ← {0, 1}λ
Set Tcash(T ,B)

i = CashOutTFormat(ρi)
hti = H ′(Tfulfill

i).

3. Prepare Fake Set.
For i ∈ 1, . . . , η:

Choose random pad ri ← {0, 1}λ
fti = H ′(FakeFormat||ri).

4. Mix Sets.
Randomly permute
{ft1, ..., ftη, ht1, ..., htµ}

to obtain {β1, ...βµ+η}
Let R be the indices of the hti
Let F be the indices of the fti

β1...βµ+η−−−−−−→
Choose salt ∈ {0, 1}λ
Compute: hR = H(salt||R)

hF = H(salt||F) 5. Evaluation.
hR,hF−−−−→ For i = 1, . . . , µ+ η:

ECDSA sign βi to get σi = Sig(SK eph
T , βi)

Randomly choose εi ∈ ZN .
Create promise ci = Hshk(εi)⊕ σi
Create puzzle zi=fRSA(εi, e, N)

(c1,z1),...(cµ+η,zµ+η)←−−−−−−−−−−−−−− i.e., zi = (εi)
e mod N

6. Identify Fake Set.
R,F−−→

ri ∀i∈F−−−−−→
salt−−→ 7. Check Fake Set.

Check hR = H(salt||R) and hF = H(salt||F)
For all i ∈ F :

8. Check Fake Set. verify βi = H ′(FakeFormat||ri).
For all i ∈ F εi ∀i∈F←−−−−− Abort if any check fails
- Validate that εi < N
- Validate RSA puzzle zi = (εi)

e mod N
- Validate promise ci:

(a) Decrypt σi = Hprg(εi)⊕ ci
(b) Verify σi, i.e.,
ECDSA-Ver(PK eph

T , H ′(fti), σi) = 1 9. Prepare Quotients.
Abort if any check fails For R = {j1, ..., jµ}:

q2,...,qµ←−−−−− set q2 =
εj2
εj1
, ..., qµ =

εjµ
εjµ−1

10. Quotient Test.
For R = {j1, ..., jµ} check equalities:
zj2 = zj1 · (q2)e mod N
...
zjµ = zjµ−1

· (qµ)e mod N
Abort if any check fails 11. Post transaction Tescr(T ,B) on blockchain

12. Begin Payment Phase.
Set z = zj1 . Send z̄ = z · (r)e to Payer A

Fig. 4. Puzzle-promise protocol when Q = 1. (d , (e, N)) are
the RSA keys for the tumbler T . (Sig, ECDSA-Ver) is an ECDSA-
Secp256k1 signature scheme. We model H,H′ and Hshk as random
oracles. In our implementation, H is HMAC-SHA256 (keyed with
salt) . H′ is ‘Hash256’, i.e., SHA-256 cascaded with itself, which
is the hash function used in Bitcoin’s “hash-and-sign” paradigm with
ECDSA-Secp256k1. Hshk is SHA-512. CashOutTFormat is shorthand
for the unsigned portion of a transaction that fulfills Tescr(T ,B). The
protocol uses ρi to ensure the output of CashOutTFormat contains
sufficient entropy. FakeFormat is a distinguishable public string.

A. Balance

The balance was defined, at high-level, in Sec-
tion III-C. We analyze balance in several cases.

Tumbler T ∗ is corrupt. We want to show that all the
bitcoins paid to T by all Aj’s can be later claimed
by the Bi’s. (That is, a malicious T ∗ cannot refuse a
payment to Bob after being paid by Alice.) If Bi suc-
cessfully completes the puzzle-promise protocol with
T ∗, fairness for this protocol guarantees that Bi gets
a correct “promise” c and puzzle z. Meanwhile, the
fairness of the puzzle-solver protocol guarantees that
each Aj gets a correct puzzle solution in exchange for

10

her bitcoin. Thus, for any puzzle z solved, some Bi
can open promise c and form the cash-out transaction
Tcash(T ,B) that allows Bi to claim one bitcoin. Moreover,
transaction Tescr(A,T) has timelock tw1 and transaction
Tescr(T ,B) has timelock tw2. Since tw1 < tw2, it
follows that either (1) T ∗ solves A’s puzzle or (2)
A reclaims the bitcoins in Tescr(A,T) (timelock tw1),
before T can (3) steal a bitcoin by reclaiming the
bitcoins in Tescr(T ,B) (timelock tw2).

CaseA∗j and B∗i are corrupt. Consider colluding payers
B∗i and payees A∗j . We show that the sum of bitcoins
cashed out by all B∗i is no more than the number of
puzzles solved by T in the Payment Phase with all A∗j .

First, the fairness of the puzzle-promise protocol
guarantees that any B∗i learns only (c, z) pairs; thus,
by the unforgeability of ECDSA signatures and the
hardness of solving RSA puzzles, B∗ cannot claim
any bitcoin at the end of the Escrow Phase. Next, the
fairness of the puzzle-solver protocol guarantees that
if T completes SPj successful puzzle-solver protocol
executions with A∗j , then A∗j gets the solution to exactly
SPj puzzles. Payees B∗i use the solved puzzles to
claim bitcoins from T . By the unforgeability of ECDSA
signatures (and assuming that the blockchain prevents
double-spending), all colluding B∗i cash-out no more
than min(t,

∑
j SPj) bitcoin in total, where t is the

total number of bitcoins escrowed by T across all B∗i .

Case B∗i and T collude. Now suppose that B∗i and
T ∗ collude to harm Aj . Fairness for Aj still follows
directly from the fairness of the puzzle-solver protocol.
This follows because the only interaction between Aj
and B∗i is the exchange of a puzzle (and its solution).
No other secret information about Aj is revealed to B∗i .
Thus, B∗i cannot add any additional information to the
view of T , that T can use to harm fairness for Aj .

We do note, however, that an irrational Bob B∗i can
misbehave by handing Alice Aj an incorrect puzzle z∗.
In this case, the fairness of the puzzle-solver protocol
ensures that Alice Aj will pay the Tumbler T for a
correct solution ε∗ to puzzle z∗. As such, Bob Bi will
be expected to provide Alice Aj with the appropriate
goods or services in exchange for the puzzle solution
ε∗. However, the puzzle solution ε∗ will be of no value
to Bob Bi, i.e., Bob cannot use ε∗ to claim a bitcoin
during the Cash-Out Phase. It follows that the only party
harmed by this misbehavior is Bob Bi himself. As such,
we argue that such an attack is of no importance.

Case A∗j and T collude. Similarly, even if A∗j and T
collude, fairness for an honest Bi still follows from the
fairness of the puzzle-promise protocol. This is because
A∗j ’s interaction with Bi is restricted in receiving a
puzzle z, and handing back a solution. While A∗j can
always give Bi an invalid solution ε∗, Bi can easily
check that the solution is invalid (since (ε∗)e 6= z
mod N) and refuse to provide goods or services.

Case A∗j , B∗i and T collude. Suppose A∗j , B∗i and T

all collude to harm some other honest A and/or B. This
can be reduced to one of the two cases above because
an honest A will only interact with B∗i and T ∗, while
an honest B will only interact with A∗j and T .

B. Unlinkability

Unlinkability is defined in Section III-C and must
hold against a T that does not collude with other users.
We show that all interaction multi-graphs G compatible
with T ’s view are equally likely.

First, note that all TumbleBit payments have the
same denomination (1 bitcoin). Thus, T ∗ cannot learn
anything by correlating the values in the transactions.
Next, recall from Section III-A, that all users of Tum-
bleBit coordinate on phases and epochs. Escrow trans-
actions are posted at the same time, during the Escrow
Phase only. All Tescr(T ,B) cash-out transactions are
posted during the Cash-Out Phase only. All payments
made from Ai and Bj occur during the Payment Phase
only, and payments involve no direct interaction be-
tween T and B. This rules out timing attacks where the
Tumbler purposely delays or speeds up its interaction
with some payer Aj , with the goal of distinguishing
some behavior at the intended payee Bi. Even if the
Tumbler T ∗ decides to cash-out with Aj before the
Payment Phase completes (as is done in Section V-C
when Aj misbehaves), all the Bi still cash out at the
same time, during the Cash-Out Phase.

Next, observe that transcripts of the puzzle-
promise and puzzle-solver protocols are information-
theoretically unlinkable. This follows because the puz-
zle z used by any Aj in the puzzle-solver protocol is
equally likely to be the blinding of any of the puzzles z
that appear in the puzzle-promise protocols played with
any Bi (see Section III-A, equation (2)).

Finally, we assume secure channels, so that T ∗
cannot eavesdrop on communication between Aj’s and
Bi’s, and that T ∗ cannot use network information to
correlate Aj’s and Bi’s (by e.g., observing that they
share the same IP address). Then, the above two obser-
vations imply that all interaction multi-graphs, that are
compatible with the view of T ∗, are equally likely.

C. Limitations of Unlinkability

TumbleBit’s unlinkability (see Section III-C) is in-
spired by Chaumian eCash [12], and thus suffers from
similar limitations. (The full version [20] discusses the
limitations of Chaumian eCash [12] in more detail.) In
what follows, we assume that Alice has a single Bitcoin
address AddrA, and Bob has Bitcoin address AddrB.

Alice/Tumbler collusion. Our unlinkability defini-
tion assumes that the Tumbler does not collude with
other TumbleBit users. However, collusion between the
Tumbler and Alice can be used in a ceiling attack.
Suppose that some Bob has set up a TumbleBit payment

11

channel that allows him to accept up to Q TumbleBit
payments, and suppose that Bob has already accepted Q
payments at time t0 of the Payment Phase. Importantly,
the Tumbler, working alone, cannot learn that Bob is no
longer accepting payments after time t0. (This follows
because the Tumbler and Bob do not interact during the
Payment Phase.) However, the Tumbler can learn this by
colluding with Alice: Alice offers to pay Bob at time t0,
and finds that Bob cannot accept her payment (because
Bob has “hit the ceiling” for his payment channel). Now
the Tumbler knows that Bob has obtained Q payments at
time t0, and he can rule out any compatible interaction
graphs that link any payment made after time t0 to Bob.

If we can prevent ceiling attacks (e.g., by requiring
Bob to initiate every interaction with Alice) then Bob’s
puzzle z cannot be linked to any payee’s Bitcoin address
AddrB1

, ...,AddrBι , even if Alice and the Tumbler
collude; see the full version [20].

Bob/Tumbler collusion. Bob and the Tumbler can
collude to learn the true identity of Alice. Importantly,
this collusion attack is useful only if Bob can be paid by
Alice without learning her true identity (e.g., if Alice is
a Tor user). The attack is simple. Bob reveals the blinded
puzzle value z to the Tumbler. Now, when Alice asks
that Tumbler to solve puzzle z, the Tumbler knows that
this Alice is attempting to pay Bob. Specifically, the
Tumbler learns that Bob was paid by the Bitcoin address
AddrA that paid for the solution to puzzle z.

There is also a simple way to mitigate this attack.
Alice chooses a fresh random blinding factor r′ ∈ Z∗N
and asks the Tumbler to solve the double-blinded puzzle

z = (r′)e · z mod N. (5)

Once the Tumbler solves the double-blinded puzzle z,
Alice can unblind it by dividing by r′ and recovering
the solution to single-blinded puzzle z. This way, the
Tumbler cannot link the double-blinded puzzle z from
Alice to the single-blinded puzzle z from Bob.

However, even with double blinding, there is still a
timing channel. Suppose Bob colludes with the Tum-
bler, and sends the blinded puzzle value z to both Alice
and the Tumbler at time t0. The Tumbler can rule out
the possibility that any payment made by any Alice
prior to time t0 should be linked to this payment to
Bob. Returning to the terminology of our unlinkability
definition (Section III-C), this means that Bob and the
Tumbler can collude to use timing information to rule
out some compatible interaction graphs.

Potato attack. Our definition of unlinkability does
not consider external information. Suppose Bob sells
potatoes that costs exactly 7 bitcoins, and the Tumbler
knows that no other payee sells items that cost exactly 7
bitcoins. The Tumbler can use this external information
rule out compatible interaction graphs. For instance, if
Alice made 6 TumbleBit payments, the Tumbler infers
that Alice could not have bought Bob’s potatoes.

Intersection attacks. Our definition of unlinkability
applies only to a single epoch. Thus, as mentioned in
Section IV-A and [9], [32], our definition does not rule
out the correlation of information across epochs.

Abort attacks. Our definition of unlinkability applies
to payments that complete during an epoch. It does not
account for information gained by strategically aborting
payments. As an example, suppose that the Tumbler
notices that during several TumbleBit epochs, (1) Alice
always makes a single payment, and (2) Bob hits the
ceiling for his payment channel. Now in the next epoch,
the Tumbler aborts Alice’s payment and notices that
Bob no longer hits his ceiling. The Tumbler might guess
that Alice was trying to pay Bob.

VIII. IMPLEMENTATION

To show that TumbleBit is performant and com-
patible with Bitcoin, we implemented TumbleBit as a
classic tumbler. (That is, each payer and payee can
send/receive Q = 1 payment/epoch.) We then used
TumbleBit to mix bitcoins from 800 payers (Alice A)
to 800 payees (Bob B). We describe how our imple-
mentation instantiates our TumbleBit protocols. We then
measure the off-blockchain performance, i.e., compute
time, running time, and bandwidth consumed. Finally,
we describe two on-blockchain tests of TumbleBit.

A. Protocol Instantiation

We instantiated our protocols with 2048-bit RSA.
The hash functions and signatures are instantiated as
described in the captions to Figure 3 and Figure 4.7

Choosing m and n in the puzzle-solving protocol. Per
Theorem 1, the probability that T can cheat is param-
eterized by 1/

(
m+n
m

)
where m is the number of “real”

values and n is the number of “fake” values in Figure 3.
From a security perspective, we want m and n to be
as large as possible, but in practice we are constrained
by the Bitcoin protocol. Our main constraint is that m
RIPEMD-160 hash outputs must be stored in Tpuzzle
of our puzzle-solver protocol. Bitcoin P2SH scripts
(as described below) are limited in size to 520 bytes,
which means m ≤ 21. Increasing m also increases the
transaction fees. Fortunately, n is not constrained by the
Bitcoin protocol; increasing n only means we perform
more off-blockchain RSA exponentiations. Therefore,
we chose m = 15 and n = 285 to bound T ’s
cheating probability to 2−80. (2−80 equals RIPEMD-
160’s collision probability.)

7There were slight difference between our protocols as described
in this paper and the implementation used in some of the tests. In
Figure 3,A reveals blinds rj∀j ∈ R to T , our implementation instead
reveals an encrypted version rej∀j ∈ R. This change does not affect
performance, since A hold both rj and rej . Also, our implementation
omits the index hashes hR and hF from Figure 4; these are two 256-
bit hash outputs and thus should not significantly affect performance.
We have since removed these differences.

12

Choosing µ and η in the puzzle-promise protocol.
Theorem 2 also allows T to cheat with probability
1/
(
µ+η
µ

)
. However, this protocol has no Bitcoin-related

constraints on µ and η. Thus, we take µ = η = 42 to
achieve a security level of 2−80 while minimizing the
number of off-blockchain RSA computations performed
in Figure 4 (which is µ+ η).

Scripts. By default, Bitcoin clients and miners only
operate on transactions that fall into one of the five
standard Bitcoin transaction templates. We therefore
conform to the Pay-To-Script-Hash (P2SH) [3] tem-
plate. To format transaction Toffer (per Section II) as
a P2SH, we specify a redeem script (written in Script)
whose condition C must be met to fulfill the transaction.
This redeem script is hashed and stored in transaction
Toffer. To transfer funds out of Toffer, a transaction Tfulfill
is constructed. Tfulfill includes (1) the redeem script and
(2) a set of input values that the redeem script is run
against. To programmatically validate that Tfulfill can
fulfill Toffer, the redeem script Tfulfill is hashed, and
the resulting hash value is compared to the hash value
stored in Toffer. If these match, the redeem script is run
against the input values in Tfulfill. Tfulfill fulfills Toffer if
the redeem script outputs true. All our redeem scripts
include a time-locked refund condition, that allows the
party offering Toffer to reclaim the funds after a time
window expires. To do so, the party signs and posts
a refund transaction Trefund that points to Toffer and
reclaims the funds locked in Toffer. We reproduce our
scripts in the full version [20].

B. Off-Blockchain Performance Evaluation

We evaluate the performance for a run of our pro-
tocols between one payer Alice A, one payee Bob B
and the Tumbler T . We used several machines: an EC2
t2.medium instance in Tokyo (2 Cores at 2.50 GHz,
4 GB of RAM), a MacBook Pro in Boston (2.8 GHz
processor, 16 GB RAM), and Digital Ocean nodes in
New York, Toronto and Frankfurt (1 Core at 2.40 GHz
and 512 MB RAM).

Puzzle-solver protocol (Table II). The total network
bandwidth consumed by our protocol was 269 Kb,
which is roughly 1/8th the size of the “average web-
page” per [45] (2212 Kb). Next, we test the total (off-
blockchain) computation time for our puzzle-solver pro-
tocol (Section V-A) by running both parties (A and T)
on the Boston machine. We test the impact of network
latency by running A in Boston and T in Tokyo, and
then with T in New York. (The average Boston-to-
Tokyo Round Trip Times (RTT) was 187 ms and the
Boston-to-New York RTT was 9 ms.) From Table II, we
see the protocol completes in < 4 seconds, with running
time dominated by network latency. Indeed, even when
A and T are very far apart, our 2048-bit RSA puzzle
solving protocol is still faster than [30]’s 16x16 Sudoku
puzzle solving protocol, which takes 20 seconds.

TumbleBit as a classic tumbler (Table II). Next,
we consider classic Tumbler mode (Section IV). We
consider a scenario where A and B use the same
machine, because Alice A wants anonymize her bitcoin
by transferring it to a fresh ephemeral bitcoin address
that she controls. Thus, we run (1) A and B in Boston
and T in Tokyo, and (2) A and B in Boston and T
in New York. To prevent the Tumbler T for linking
A and B via their IP address, we also tested with
(a) B connecting to T over Tor, and (b) both A and
B connected through Tor. Per Table II, running time
is bound by network latency, but is < 11 seconds
even with when both parties connect to Tokyo over
Tor. Connecting to New York (in clear) results in ≈ 1
second running time. Compute time is only 0.6 seconds,
again measured by running A, B and T on the Boston
machine. Thus, TumbleBit’s performance, as a classic
Tumbler, is bound by the time it takes to confirm 2
blocks on the blockchain (≈ 20 minutes).

Performance of TumbleBit’s Phases. (Table III) Next,
we break out the performance of each of TumbleBit’s
phases when Q = 1. We start by measuring compute
time by running all A, B and T on the Boston machine.
Then, we locate each party on different machines. We
first set A in Toronto, B in Boston and T in New York
and get RTTs to be 22 ms from Boston to New York, 23
ms from New York to Toronto, and 55 ms from Toronto
to Boston. Then we set A in Frankfurt, B in Boston and
T in Tokyo and get RTTs to be 106 ms from Boston
to Frankfurt, 240 ms from Frankfurt to Tokyo, and 197
ms from Tokyo to Boston. An off-blockchain payment
in the Payment Phase completes in under 5 seconds and
most of the running time is due to network latency.

C. Blockchain Tests

Our on-blockchain tests use TumbleBit as a classic
tumbler, where payers pay themselves into a fresh
ephemeral Bitcoin address. All transactions are visible
on the blockchain. Transaction IDs (TXIDs) are hyper-
linked below. The denomination of each TumbleBit pay-
ment (i.e., the price of puzzle solution) was 0.0000769
BTC (roughly $0.04 USD on 8/15/2016). Table IV
details the size and fees8used for each transaction.

Test where everyone behaves. In our first test, all
parties completed the protocol without aborting. We
tumbled 800 payments between ℵ = 800 payers and
ℵ = 800 payees, resulting in 3200 transactions posted
to the blockchain and a k-anonymity of k = 800.The
puzzle-promise escrow transactions Tescr(T ,B) are all
funded from this TXID and the puzzler-solver escrow
transactions Tescr(A,T) are all funded from this TXID.

8We use a lower transaction fee rate of 15 Satoshi/byte (see
Table IV) for Tpuzzle and Tsolve because we are in less of hurry to
have them confirmed. Specifically, if A refuses to sign Tcash(A,T),
then T ends the Payment Phase with A early (even before the Cash-
Out Phase begins), and immediately posts Tpuzzle and then Tsolve to
the blockchain. See Section V-C.

13

https://blockchain.info/tx/fd51bd844202ef050f1fbe0563e3babd2df3c3694b61af39ac811ad14f52b233
https://blockchain.info/tx/8520da7116a1e634baf415280fdac45f96e680270ea06810512531a783f0c9f6

TABLE II. AVERAGE PERFORMANCE OF RSA-PUZZLE-SOLVER AND CLASSIC TUMBLER, IN SECONDS. (100 TRIALS).
Compute
Time

Running Time
(Boston-New York)

RTT
(Boston-New York)

Running Time
(Boston-Tokyo)

RTT
(Boston-Tokyo) Bandwidth

RSA-puzzle-solving protocol 0.398 0.846 0.007949 4.18 0.186 269 KB
Classic Tumbler (in clear) 0.614 1.190 0.008036 5.99 0.187 326 KB
Classic Tumbler (B over Tor) 0.614 3.10 0.0875 8.37 0.273 342 KB
Classic Tumbler (Both over Tor) 0.614 6.84 0.0875 10.8 0.273 384 KB

TABLE III. AVERAGE OFF-BLOCKCHAIN RUNNING TIMES OF
TUMBLEBIT’S PHASES, IN SECONDS. (100 TRIALS)

Compute
Time

Running Time
(Boston-New York-Toronto)

Running Time
(Boston-Frankfurt-Tokyo)

Escrow 0.2052 0.3303 1.5503
Payment 0.3878 1.1352 4.3455
Cash-Out 0.0046 0.0069 0.0068

TABLE IV. TRANSACTION SIZES AND FEES IN OUR TESTS.
Transaction Size Satoshi/byte Fee (in BTC)
Tescr 190B 30 0.000057
Tcash 447B 30 0.000134
Trefund for Tescr 373B 30 0.000111
Tpuzzle 447B 15 0.000067
Tsolve 907B 15 0.000136
Trefund for Tpuzzle 651B 20 0.000130

This test completed in 23 blocks in total, with Escrow
Phase completing in 16 blocks, Payment Phase taking
1 block, and Cash-Out Phase completing in 6 blocks.

We note, however, that our protocol could also have
completed much faster, e.g., with 1 block for the Escrow
Phase, and 1 block for the Cash Out Phase. A Bitcoin
block can typically hold ≈ 5260 of our 2-of-2 escrow
transactions Tescr and ≈ 2440 of our cash-out transac-
tion Tcash. We could increase transaction fees to make
sure that our Escrow Phase and Cash-Out phase (each
confirming 2×800 transactions) occur within one block.
In our tests, we used fairly conservative transaction
fees (Table IV). As a classic Tumbler, we therefore
expect TumbleBit to have a higher denomination than
the 0.0000769 BTC we used for our test. For instance,
transaction fees of 60 Satoshi per Byte (0.0007644
BTC/user) are ≈ 1/1000 of a denomination of 0.5 BTC.

Test with uncooperative behavior. Our second run of
only 10 users (5 payers and 5 payees) demonstrates
how fair exchange is enforced in the face of uncooper-
ative or malicious parties. Transactions Tescr(A,T) and
Tpuzzle were timelocked for 10 blocks and Tescr(T ,B)
was timelocked for 15 blocks. All escrow transactions
Tescr(A,T) are funded by TXID and all escrow trans-
actions Tescr(T ,B) are funded by TXID. Two payer-
payee pairs completed the protocol successfully. For the
remaining three pairs, some party aborted the protocol:

Case 1: The Tumbler T (or, equivalently, Alice A1)
refused to cooperate after the Escrow Phase. Alice A1

reclaims her bitcoins from escrow transaction Tescr(A,T)

via a refund transaction after the timelock expires.
The Tumbler T reclaims its bitcoins from his payment
channel with Bob B1 escrow transaction Tescr(T ,B) via
a refund transaction after the timelock expires.

Case 2: The Tumbler aborts the puzzle-solver protocol
by posting the transaction Tpuzzle but refusing to provide
the transaction Tsolve. No payment completes from A2

to B2. Instead, A2 reclaims her bitcoin from Tpuzzle via

425500

425502
Escrow Phase
Tescr(𝓐, 𝓣) & Tescr(𝓣, 𝓑)

425505

425507

{Case 2 & 3: Tpuzzle

Case 3: Tsolve

425509

425511

Case 1: Tescr(𝓐, 𝓣) Refund
Case 2: Tpuzzle Refund

Block Height {

{

425514 {

 Case 1 & 2: Tescr(𝓣, 𝓑) Refund
425527

Fig. 5. Timeline of test with uncooperative behavior, showing block
height when each transaction was confirmed.

a refund transaction after the timelock in Tpuzzle expires.
Tumbler reclaims its bitcoins from its payment channel
with Bob B2 via a refund transaction after the timelock
on the escrow transaction Tescr(T ,B) expires.

Case 3: The Tumbler provides Alice A3 the solution
to her puzzle in the puzzle-solver protocol, and the
Tumbler has an Tpuzzle signed by A (Section V-C).
However, Alice refuses to sign the cash-out transaction
Tcash(A,T) to pay out from her escrow with the Tumbler.
Then, the Tumbler signs and posts the transaction Tpuzzle
and its fulfilling transaction Tsolve and claims its bitcoin.
Payment from A3 to B3 completes but the Tumbler has
to pay more in transaction fees. This is because the
Tumbler has to post both transactions Tpuzzle and Tsolve,
rather than just Tcash(A,T); see Table IV.

Remark: Anonymity when parties are uncooperative.
Notice that in Case 1 and Case 2, the protocol aborted
without completing payment from Alice to Bob. k-
anonymity for this TumbleBit run was therefore k = 3.
By aborting, the Tumbler T learns that payers A1,A2

were trying to pay payees B1,B2. However, anonymity
of A1,A2, B1, B2 remains unharmed, since B1 and
B2 were using ephemeral Bitcoin addresses they now
discard to safeguard their anonymity (see Section IV-A).

ACKNOWLEDGEMENTS

We thank Ethan Donowitz for assistance with the
preliminary stages of this project, and Nicolas Dorier,
Adam Ficsor, Gregory Galperin, Omer Paneth, Dimitris
Papadopoulos, Leonid Reyzin, Ann Ming Samborski,
Sophia Yakoubov, the anonymous reviewers and many
members of the Bitcoin community for useful discus-
sions and suggestions. Foteini Baldimtsi and Alessandra
Scafuro performed this work while at Boston University.
This work was supported by NSF grants 1012910,
1414119, and 1350733.

14

https://blockchain.info/tx/71484544a15f97d3f9adad5a631db7cfcd5f7ec552e17970b4d968c86d543939
https://blockchain.info/tx/44e25bc0ed840f9bf0e58d6227db15192d5b89e79ba4304da16b09703f68ceaf
https://blockchain.info/tx/fbfc8d5deb86bb51ad1af902c8f8ce2d646043bc1b185b43d6612908727bb1cc
https://blockchain.info/tx/ec2c71e180e23f7b8a23e80e86ebc7baa0a2bd92a900c88b0e81a5a524f15ac4
https://blockchain.info/tx/6bd9fe5986aba3868a24eb1e8ee3aac9121efe8892a767277192865c23eef46a
https://blockchain.info/tx/cfdb679ac64c53159b753d74f09c66f78c27a2be1de8d2a435ece3aa670f5367
https://blockchain.info/tx/d0a4f26ab7a0006713cbe63ab16e889b57dc14a837d0b954c996bf22c707dc20
https://blockchain.info/tx/4f98a8cf05a855016056fc2d12fa2cd7eeaed4f07ab8cc3d381b1a69d1ffd025
https://blockchain.info/tx/5ab204fc3c709ae877057537c5130eaa74f036c77ecc002a4132090d0ae50a42
https://blockchain.info/tx/0a356de3c61669011e2a77acdd618fcefd5711dc8089a85329035844b0772c35
https://blockchain.info/tx/a69fd26e6c7c8717c5833a8766faba5e6ded46fff4a730a426efcad19d245dff
https://blockchain.info/tx/6c3ecfe9a9ae5e41e4a699cac286270246e0f9d9e2373226b08b6f2cca71a3a8

REFERENCES

[1] Bitcoin Fog. Wikipedia, 2016.
[2] Monero, https://getmonero.org/home. 2016.
[3] Gavin Andresen. BIP-0016: Pay to Script Hash. Bitcoin

Improvement Proposals, 2014.
[4] Marcin Andrychowicz, Stefan Dziembowski, Daniel Mali-

nowski, and Lukasz Mazurek. Secure multiparty computations
on bitcoin. In IEEE S&P, pages 443–458, 2014.

[5] A Back, G Maxwell, M Corallo, M Friedenbach, and L Dashjr.
Enabling blockchain innovations with pegged sidechains.
Blockstream, https://blockstream.com/sidechains.pdf , 2014.

[6] Wacław Banasik, Stefan Dziembowski, and Daniel Malinowski.
Efficient Zero-Knowledge Contingent Payments in Cryptocur-
rencies Without Scripts. Cryptology ePrint Archive, Report
2016/451, 2016.

[7] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from Bitcoin.
In IEEE Security and Privacy (SP), pages 459–474, 2014.

[8] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.
Deanonymisation of Clients in Bitcoin P2P Network. In ACM-
CCS, pages 15–29, 2014.

[9] George Bissias, A Pinar Ozisik, Brian N Levine, and Marc
Liberatore. Sybil-resistant mixing for bitcoin. In Workshop on
Privacy in the Electronic Society, pages 149–158, 2014.

[10] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind
Narayanan, Joshua A Kroll, and Edward W Felten. SoK:
Research Perspectives and Challenges for Bitcoin and Cryp-
tocurrencies. In IEEE - SP, 2015.

[11] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy
Clark, JoshuaA. Kroll, and EdwardW. Felten. Mixcoin:
Anonymity for bitcoin with accountable mixes. In Financial
Cryptography and Data Security, 2014.

[12] David Chaum. Blind signature system. In CRYPTO, 1983.
[13] Christian Decker and Roger Wattenhofer. A fast and scalable

payment network with bitcoin duplex micropayment channels.
In Stabilization, Safety, and Security of Distributed Systems,
pages 3–18. Springer, 2015.

[14] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In CRYPTO,
1986.

[15] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and
Adam Smith. Composition attacks and auxiliary information
in data privacy. In ACM SIGKDD, pages 265–273, 2008.

[16] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In STOC. ACM, 1987.

[17] Grams. Helixlight: Helix made simple. https:
//grams7enufi7jmdl.onion.to/helix/light.

[18] Matthew Green and Ian Miers. Bolt: Anonymous Payment
Channels for Decentralized Currencies. Cryptology ePrint
Archive 2016/701, 2016.

[19] Louis C. Guillou and Jean-Jacques Quisquater. A practical
zero-knowledge protocol fitted to security microprocessor min-
imizing both transmission and memory. In EUROCRYPT, 1988.

[20] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra
Scafuro, and Sharon Goldberg. TumbleBit: An Untrusted
Bitcoin-Compatible Anonymous Payment Hub. Cryptology
ePrint Archive 2016/575, 2016.

[21] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg.
Blindly Signed Contracts: Anonymous On-Blockchain and Off-
Blockchain Bitcoin Transactions. In Workshop on Bitcoin and
Blockchain Research at Financial Crypto, February 2016.

[22] Chainalysis Inc. Chainalysis: Blockchain analysis, 2016. https:
//www.chainalysis.com/.

[23] Tom Elvis Jedusor. Mimblewimble. 2016.

[24] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to
incentivize correct computations. In ACM-CCS, 2014.

[25] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use
bitcoin to play decentralized poker. In ACM-CCS, 2015.

[26] Elliptic Enterprises Limited. Elliptic: The global standard for
blockchain intelligence, 2016. https://www.elliptic.co/.

[27] Gregory Maxwell. Zero Knowledge Contingent Payment.
Bitcoin Wiki, 2011.

[28] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world.
Bitcoin-talk, 2013.

[29] Gregory Maxwell. CoinSwap: transaction graph disjoint trust-
less trading. Bitcoin-talk, 2013.

[30] Gregory Maxwell. The first successful Zero-Knowledge Con-
tingent Payment. Bitcoin Core, February 2016.

[31] S Meiklejohn, M Pomarole, G Jordan, K Levchenko,
GM Voelker, S Savage, and D McCoy. A fistful of bitcoins:
Characterizing payments among men with no names. In ACM-
SIGCOMM Internet Measurement Conference, IMC, 2013.

[32] Sarah Meiklejohn and Claudio Orlandi. Privacy-Enhancing
Overlays in Bitcoin. In Lecture Notes in Computer Science,
volume 8976. Springer Berlin Heidelberg, 2015.

[33] Ian Miers, Christina Garman, Matthew Green, and Aviel D
Rubin. Zerocoin: Anonymous distributed e-cash from bitcoin.
In IEEE Security and Privacy (SP), pages 397–411, 2013.

[34] Pedro Moreno-Sanchez, Tim Ruffing, and Aniket Kate. P2P
Mixing and Unlinkable P2P Transactions. Draft, June 2016.

[35] Malte Möser and Rainer Böhme. Join Me on a Market for
Anonymity. Workshop on Privacy in the Electronic Society,
2016.

[36] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew
Miller, and Steven Goldfeder. Bitcoin and cryptocurrency
technologies. Princeton University Pres, 2016.

[37] Guevara Noubir and Amirali Sanatinia. Honey onions: Expos-
ing snooping tor hsdir relays. In DEF CON 24, 2016.

[38] Henning Pagnia and Felix C. Grtner. On the impossibility of
fair exchange without a trusted third party, 1999.

[39] Morgen Peck. DAO May Be Dead After $60 Million Theft.
IEEE Spectrum, Tech Talk Blog, 17 June 2016.

[40] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments. Technical report,
Technical Report (draft). https://lightning. network, 2015.

[41] Certicom Research. Sec 2: Recommended elliptic curve domain
parameters, 2010.

[42] Dorit Ron and Adi Shamir. Quantitative analysis of the full
bitcoin transaction graph. In Financial Cryptography and Data
Security, pages 6–24. Springer, 2013.

[43] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In
ESORICS, pages 345–364. Springer, 2014.

[44] Jeff Stone. Evolution Downfall: Insider ’Exit Scam’ Blamed
For Massive Drug Bazaar’s Sudden Disappearance. interna-
tional business times, 2015.

[45] the Internet Archive. Http Archive: Trends, 2015. http:
//httparchive.org/trends.php.

[46] Peter Todd. BIP-0065: OP CHECKLOCKTIMEVERIFY. Bit-
coin Improvement Proposal, 2014.

[47] F. Tschorsch and B. Scheuermann. Bitcoin and Beyond: A
Technical Survey on Decentralized Digital Currencies. IEEE
Communications Surveys Tutorials, PP(99), 2016.

[48] Luke Valenta and Brendan Rowan. Blindcoin: Blinded, ac-
countable mixes for bitcoin. In FC, 2015.

[49] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas
Inden, and Klaus Wehrle. Coinparty: Secure multi-party mixing
of bitcoins. In CODASPY, 2015.

15

https://en.wikipedia.org/wiki/Bitcoin_Fog
https://getmonero.org/home
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://eprint.iacr.org/2013/784.pdf
https://eprint.iacr.org/2013/784.pdf
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://eprint.iacr.org/2016/451
https://eprint.iacr.org/2016/451
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=695658
http://forensics.umass.edu/pubs/bissias.wpes.2014.pdf
https://grams7enufi7jmdl.onion.to/helix/light
https://grams7enufi7jmdl.onion.to/helix/light
http://eprint.iacr.org/2016/701
http://eprint.iacr.org/2016/701
http://eprint.iacr.org/2016/575
http://eprint.iacr.org/2016/575
http://eprint.iacr.org/2016/056.pdf
http://eprint.iacr.org/2016/056.pdf
https://www.chainalysis.com/
https://www.chainalysis.com/
https://www.elliptic.co/
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement
http://fc15.ifca.ai/preproceedings/bitcoin/paper_5.pdf
http://fc15.ifca.ai/preproceedings/bitcoin/paper_5.pdf
http://spectrum.ieee.org/tech-talk/computing/networks/dao-may-be-dead-after-40million-theft
http://httparchive.org/trends.php
http://httparchive.org/trends.php
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://eprint.iacr.org/2015/464.pdf
https://eprint.iacr.org/2015/464.pdf

	Introduction
	TumbleBit Features
	Related Work

	Bitcoin Scripts and Smart Contracts
	TumbleBit: An Unlinkable Payment Hub
	Overview of Bob's Interaction with the Tumbler
	Overview of Alice's Interaction with the Tumbler
	TumbleBit's Security Properties

	TumbleBit: Also a Classic Tumbler.
	Anonymity Properties

	A Fair Exchange for RSA Puzzle Solving
	Our (Stand-Alone) RSA-Puzzle-Solver Protocol
	Fair Exchange
	Solving Many Puzzles and Moving Off-Blockchain

	Puzzle-Promise Protocol
	Protocol Walk Through
	Security Properties

	TumbleBit Security
	Balance
	Unlinkability
	Limitations of Unlinkability

	Implementation
	Protocol Instantiation
	Off-Blockchain Performance Evaluation
	Blockchain Tests

	References

