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Abstract—Despite soaring investments in IT infrastructure,
the state of operational network security continues to be abysmal.
We argue that this is because existing enterprise security ap-
proaches fundamentally lack precision in one or more dimen-
sions: (1) isolation to ensure that the enforcement mechanism does
not induce interference across different principals; (2) context
to customize policies for different devices; and (3) agility to
rapidly change the security posture in response to events. To
address these shortcomings, we present PSI, a new enterprise
network security architecture that addresses these pain points.
PSI enables fine-grained and dynamic security postures for
different network devices. These are implemented in isolated
enclaves and thus provides precise instrumentation on these above
dimensions by construction. To this end, PSI leverages recent
advances in software-defined networking (SDN) and network
functions virtualization (NFV). We design expressive policy ab-
stractions and scalable orchestration mechanisms to implement
the security postures. We implement PSI using an industry-grade
SDN controller (OpenDaylight) and integrate several commonly
used enforcement tools (e.g., Snort, Bro, Squid). We show that
PSI is scalable and is an enabler for new detection and preven-
tion capabilities that would be difficult to realize with existing
solutions.

I. INTRODUCTION

Despite dramatic escalation in cost (e.g., 7.3 billion dol-
lars/year for the US Government [47]) the state of operational
network security is still abysmal. We continue to hear about
high-profile breaches and failures of existing network security
infrastructures [33], [37], [56]. In many ways, these indicate
the collective failure of traditional network security approaches
for enterprises including perimeter-defenses [65], distributed
firewalls [41], Security Information and Event Management
(SIEM) systems [21], network management products [13],
[71], among others.

As a well-known fact in the operational security commu-
nity [1], [26], current solutions do not and cannot effectively
implement precise defenses along three key dimensions: iso-
lation, context, and agility (§II):
• Isolation: First, a defense system must ensure that security

policies do not interfere with each other and cause collateral
damage. Due to cost and network management limitations,

existing approaches enforce policies at topological “choke
points” [41]. This induces both logical and performance
interference. For example, reconfiguring a firewall to block
a specific user can unintentionally block others (logical
interference), or processing traffic may overload the firewall,
cause dropped packets (performance interference) and may
lead to the shutting down of advanced security functions
[16].
• Context: Second, a defense system must be able to enforce

customized policies for individual network devices based on
the context — all the security-related device attributes and
states. For example, a firewall protecting a database should
allow a http server with OpenSSL 1.0.1g to access the
database (heartbleed patched), but should deny the access of
the other http server with OpenSSL 1.0.1f (vulnerable
to heartbleed), even if both servers are exposing the same
IP and ports to the firewall (via NAT). The state of the
practice relies on traffic attributes such as IP addresses
or netblocks. Unfortunately, this induces significant “blind
spots” as the relevant contextual attributes may be obscured
due to topological artifacts; e.g., the device origin may be
hidden behind a NAT [36].
• Agility: Finally, a defense system must be able to change

policy at fine-grained timescales. We know that attackers dy-
namically alter their strategies (e.g., moving laterally inside
the perimeter, switching to different exploit kits at different
stage [55]). Ideally, we should be able to dynamically
change our posture when specific internal hosts appear to
be engaging in suspicious activities. Unfortunately, today’s
mechanisms are derived from static abstractions (e.g., ACLs,
signatures) and cannot express and implement such dynamic
capabilities.

To address these limitations, let us consider a hypothet-
ical design point as shown in Figure 1 where we can: (1)
physically and logically isolate the processing applied to the
traffic to/from one device from traffic to/from other devices;
(2) ensure fine-grained customization based on the relevant
context (e.g., this traffic is from a device with heartbleed
vulnerability); and (3) dynamically instantiate the necessary
security processing (e.g., if a BYOD device suddenly tries to
connect to an irrelevant internal server (suspicious), subject
it to deep inspection or quarantine it). By construction, this
design addresses the above limitations—it has deep context
into every packet, the processing can be dynamically adjusted,
and it guarantees zero interference. Based on the current trajec-
tory of enterprise security solutions (i.e., relying on statically
configured hardware appliances deployed at designated net-
work chokepoints), however, this design may seem hopelessly
elusive in terms of cost, complexity, and deployability.
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Fig. 1: Contrasting today’s approaches vs. PSI

In this paper, we present Precise Security Instrumentation
(PSI), which serves as a proof-by-construction realization of
this hypothetical design (§III). PSI uses recent advances in
Network Functions Virtualization (NFV) to launch virtualized
security functions (e.g., virtual NIDS) on demand [30] inside
an on-premise cluster and SDN capabilities to route the traffic
to the desired virtual appliances. Thus, PSI can serve as an
enabler for new precise security detection and prevention ca-
pabilities that would be exceedingly difficult, if not impossible,
with existing mechanisms.

Contributions: Our goal in this paper is to design the tech-
nical foundations for PSI, rather than develop new detection
and prevention algorithms. To this end, we make three key
contributions:
• Expressive Polices (§IV): We design a PSI policy abstrac-

tion that can express agile and contextual traffic processing.
This allows us to express rich multi-stage security-relevant
processing mapped to a security-relevant state for each
device; e.g., a host in normal state is subject to simple IDS-
followed-by-firewall but in “suspicious” state may be subject
to additional on-demand exfiltration detection modules. We
also provide mechanisms to incorporate legacy policies that
need to be applied to a group of devices.
• Scalability and Responsiveness (§V): Naively applying

SDN/NFV mechanisms in security context is problematic
and can introduce new avenues for DoS attacks [63]. We
develop a scalable orchestration platform by synthesizing
three key ideas: (a) proactive forwarding schemes based on
logical tags that do not need to involve the controller; (b)
effective techniques for horizontally scaling the controller
infrastructure; and (c) prefetching future enforcement states
to improve responsiveness.
• Practical Implementation (§VI–§VII): We prototype

PSI in an industry-grade SDN control platform
(OpenDaylight) [17]. We extend a range of widely
used open source network security tools (e.g., Snort, Squid,
iptables) and integrate them within PSI. We show that
PSI can coordinate complex policies on networks of up to
100,000 hosts without significant performance overload.
Finally, we demonstrate use cases showing how PSI can
enable new security capabilities (e.g., IoT patch).
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Fig. 2: An example enterprise network from an enterprise
intrusion incident [10].

II. MOTIVATION

In this section, we motivate the need for isolation, context,
and agility using a simple but realistic enterprise network
topology (§II-A). Then, we discuss our threat model, highlight-
ing the attackers’ goals, capabilities, and potential strategies
in §II-B. Given this setup, §II-C presents attack scenarios that
highlight key shortcomings in current mechanisms with respect
to isolation, context, and agility.

A. Problem setting

Network Description: Figure 2 depicts a small enterprise
network composed of multiple switches1 and middleboxes
(e.g., firewalls, NATs, proxies, IPSes). This network connects
multiple devices such as hosts, databases and servers. The
devices are protected by a collection of security middleboxes
(e.g., FW1 , FW2 and IPS1 ). Like most enterprise networks,
the depicted network has some more complex subcomponents:
a NAT changes IP and port addresses of packets; DHCP dy-
namically assigns IP to some devices and server1 is connected
to both s2 and s3 with different IP addresses to support failure
recovery or high throughput [20].

Security intent: The intent of the operator is to enforce secu-
rity postures as a function of network devices and their context
(device attributes and security states), namely, intent =
function(device, contextdevice). For example, a device may
be a HTTP server, and the context may be it has n-day
Heartbleed vulnerability.

B. Threat Model

The goal of attackers is to compromise devices, exfiltrate
data, or disrupt services. To achieve these goals, attackers
need to evade the detection and mitigation of current defense
system. There are four general strategies the attackers can use:
being stealthy, being dynamic, causing collateral damage, and
overloading the defense:
• Being stealthy: Attackers can use “blind spots”—devices

or traffic routes not visible to the defense system, to avoid
detection. For example, an attacker can exploit a BYOD
device and use it to launch internal attacks that can avoid
the detection of IPS at the department gateway, as seen in
the Shady RAT exploit [10].

1We use the terms router and switch interchangeably.
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• Being dynamic: Attackers can adjust their attack postures
to achieve their goals. For instance, we commonly see multi-
stage and multi-vector attacks such as using a zero-day
attack to bypass the defense and compromise an initial
device [5], then using multiple exploit toolkits [11] to
compromise others from private network.
• Causing collateral damage: Attackers can force the de-

fense system to act on innocent users or not act at all.
For example, an attacker behind a NAT can force an IPS
to enforce deep packet inspection (DPI) for all traffic at
the gateway, which can degrade performance for legitimate
traffic [16].
• Overloading the defense: Attackers can overload the de-

fense systems or the administrator. For example, an attacker
can increase the traffic volume to overload an IPS or use
malformed packets to generate a large scale of alerts to
overload the alerting systems or the administrator.

Our threat model assumes that the attacker cannot directly
compromise the defense system (e.g., infect the IDS or the
SIEM system).

C. Motivating Scenarios

Next we walk through several scenarios to highlight how
the attackers can evade existing mechanisms such as perimeter
defense [24], distributed Firewall/IPS [12], [41], [51], [58],
SIEM (Security Information & Event Management) [6], [21],
and network segmentation (e.g., vLAN [13]). These scenarios
highlight the importance of isolation, context, and agility in
mitigating the attacker’s strategies above.

Isolation: Our example network (Figure 2) lacks isolation in
two ways: performance interference and logical interference.
Attackers can exploit this interference to cause collateral dam-
age. Performance interference results from the need to process
traffic through narrow enforcement points. For example, in
Figure 2, IPS1 is shared across all devices’ traffic from/to the
Internet. Suppose, an attacker is exploiting server1, which has
massive inbound/outbound traffic, and the administrator uses
a DPI module at IPS1 to stop the exploit. Here IPS1 can be
overloaded, and the throughput of other devices (e.g., host3)
will also decrease. Thus, the attack causes collateral damage to
host3. Logical interference results from the fact that common
enforcement points often result in policy specifications that are
coarse-grained or prone to misconfiguration [75]. For example,
suppose an attacker has compromised host1 and use it to
access to the database server DB. To stop the attack, the
administrator updates the firewall policy at FW2 to block the
IP of host1. Due to the NAT, host1 and host2 are exposing the
same IP and the updated policy can unintentionally interfere
with host2’s access to DB. This kind of problem is commonly
reported on operational forums [3], [49]. In terms of the
security intent we defined in §II-A, interference conceptually
means that the same device can be affected with conflicting
intents.

Current approaches: existing isolation mechanisms are
either too coarse-gained or too costly to resolve all the
logical/performance interferences. For example, network seg-
mentation mechanisms (e.g.vLAN) cannot support fine-grained
isolation at a subnet level [73], e.g., host1 and host2 in
Figure 2 cannot be isolation as they share the same subnet.
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Fig. 3: A typical APT attack: firewall and IPS lacks the
context and visibility to prevent internal exploit and data
exfiltration.

Then to provide isolation using distributed Firewall/IPS tech-
niques would require costly distributed Firewall/IPS hardware
deployed for each device and rewiring the network.

Context: By definition, enforcing security intents as discussed
in §II-A requires taking into account the context of devices.
To illustrate why this is challenging in practice, Figure 3
shows an advanced persistent threat (APT) [10] in the example
network. The goal of the attacker is to compromise server2
and exfiltrate sensitive data. To do so, the attacker can use a
stealthy strategy: exploiting several blind spots in the defense
(FW1, IPS1 and vLAN at s2 and s3). In the first step, the
attacker compromises a laptop in a loosely protected home
network with malware. Then, the attacker uses the laptop (as
a BYOD device) to access other enterprise network devices.
Unfortunately, the context that BYOD laptop is accessing
server1 is not visible to FW1 and IPS1 for enforcing more
stringent policies. Next, the attacker compromises server1
from the laptop with internal scan and exploits, uses it to
get through the segmented vLANs between s2 and s3, and
exfiltrate data from server1.

Current approaches: Perimeter defenses (FW1, IPS1)
lack visibility and context about devices inside the network.
Similarly, vLAN are coarse and lack context about server1
across two subnets. Even if we use distributed Firewall/IPS
and deploy two IPSes at s2 and s3, the fact that server1
is accessed by a BYOD laptop is hidden from IPS at s2
(could be access from host3?). This is because DHCP may
dynamically assigns IPs to laptop and host3, and the IPS
cannot distinguish them by IP address (i.e., hidden context);
Ideally, we want the enforcement mechanism to be logically
deep inside the network and have fine-grained visibility into
the security relevant context of individual devices.
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Fig. 4: Does defense system have the agility to mitigate a
multistage attack [5]?

Agility: Security postures need to be updated as the context of
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a device may change. Figure 4 describes a multi-stage attack on
our example network similar to those seen in recent incidents
[5]. At time 0, host1 receives a phishing mail containing a
zero-day attack exploiting a Flash Player vulnerability. At
time 1, the host1 contacts a drive-by-download website and
install a powerful toolkit Magnitude EK [11]. The infected
host1 initiates the download (so the defender does not block
the outgoing request), the attacker uses a short-lived name for
the download (so the site is not blacklisted). The (dynamic)
context here is host1 is accessing a suspicious website and
getting infected. At time 2, host1 contacts and infects host2
using the toolkit, bringing it under the botnet’s control. Note
that the attacker dynamically adjusted the attack posture by
using different techniques at each step, as described in § II-B,
which makes it hard for static defenses to mitigate.

Current approaches: To address such dynamic attacks, we
need to change the network defenses across different stages.
For example, from time 0 to time 1, the administrator would
need to reconfigure the defense mechanisms from checking
for malicious destination IPs in packet headers to checking
for suspicious file download with DPI. From time 1 to time
2, having determined that host1 might have been compro-
mised, the administrator would want to subject host1’s traffic
to heavier intrusion prevention to prevent potential exploits
against critical resources such as host2. However, adjusting the
behavior of existing systems, such as distributed Firewall/IPS,
is difficult as they are constrained by topology; e.g., placing
an IPS filter in inline mode on demand requires rewiring the
network topology and routing. In addition, changes need to
happen at the time scale of minutes or seconds. Unfortunately,
current approaches are not designed to evolve at such fine
timescales.

In summary, these motivating scenarios highlight that isola-
tion, context, and agility are fundamental requirements that any
enterprise network security strategy should provide. However,
existing approaches exhibit key shortcomings on one or all
of these dimensions, as they are constrained by the network
topology, the use of fixed hardware-based defenses, and by
static policy abstractions. Our goal in designing PSI is to
address these pain points.

III. SYSTEM OVERVIEW

In this section, we begin with an idealized approach to
address the above problems and highlight why realizing it with
current techniques may incur high cost and complexity. Then,
we describe the PSI architecture and show how PSI leverages
recent advances in SDN/NFV to realize this ideal approach.
We conclude by highlighting key technical challenges that we
address in designing PSI.

Idealized solution: Let us consider an ideal solution that can
provide the desired isolation, context, and agility. We start with
a collection of integrated “omnipotent” security appliances that
can perform any of the necessary security functions; e.g., Layer
3 firewall, DPI, anti-virus, and application-level firewalling. We
ensure that each device has one of these appliances physically
connected as its immediate “next hop”. Finally, we employ
a global policy enforcement algorithm that can dynamically
configure these appliances in real-time to add/drop processing
modules as needed and change the configuration; e.g., invoking
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Fig. 5: A high-level view of the PSI.

the DPI module on-demand for TCP flows to suspicious
destinations.

By construction, this design addresses the pain points
mentioned earlier. First, since we have a dedicated processing
appliance per-device, the policy applied is logically isolated
and there is no cross-device performance interference due
to multiplexing. Second, because this appliance is directly
connected to the device it is protecting, it has all the relevant
processing context needed to apply a given security posture.
Finally, the rules and modules can be added/dropped dynami-
cally to provide the necessary agility to change the posture.

Challenges with the idealized solution: Unfortunately, the
approach described above is impractical on several fronts.
First, in terms of deployment complexity, we need a dedicated
hardware appliance attached to every device. Even ignoring
the complexity of rewiring the network, this is an uphill task
given the number of wireless, mobile, and virtualized devices.
The second issue is cost; adding as many physical hardware
appliances as there are devices is a non-starter for medium-
to-large scale enterprise networks with tens of thousands of
devices. Third, such an omnipotent device that can dynamically
reconfigure its traffic processing does not exist today. While
future solutions (e.g., [59]) may offer such a consolidated
appliance, we have to embrace the practical concern that
security functions are fragmented across different vendors with
diverse capabilities. Finally, even if we had the appliances,
the policy abstractions offered by current frameworks are not
expressive enough to capture agile security postures.

The obvious question then is whether we can realize the
ideal solution with low cost, without requiring changes to the
existing network topology, and by using existing appliance
capabilities? In a nutshell, this is the practical problem that
PSI solves.

PSI approach: To address this problem, PSI decouples the
deployment of security appliances from topological constraints
by tunneling a device’s traffic to a server cluster ψcluster .2
This ψcluster can provide an appropriate appliance for any

2PSI read as the Greek symbol ψ.
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traffic, on demand. To address the cost issue, PSI leverages
NFV to build “tiny” virtualized appliances (ψmbox in Fig-
ure 5) to share commodity hardware and reduce cost. Note
that one commodity server can support up to hundreds of such
appliances [46]. To address the lack of dynamic omnipotent
appliances, PSI uses SDN capabilities to compose existing
appliances (e.g., Snort or Bro) to dynamically steer the traffic
within the ψcluster .

Incremental deployability: To deploy PSI, the enterprise
needs to add a pool of commodity server machines. Each
device’s first-hop edge switch is configured to tunnel packets
to/from the device to the gateway switch of the ψcluster . Note
that this tunneling capability is supported even in commodity
non-SDN switches. Note that we need SDN and NFV capa-
bilities only inside the ψcluster , which is easy to deploy [14].

PSI walkthrough: Next, we conceptually walk through the
various components of PSI. The PSI PolicyEngine takes as
input the high-level security posture from the administrator and
translates these into per-device intents. The Orchestration mod-
ule enforces these intents by launching/configuring ψmboxes
and switches. Each device’s traffic is tunneled to/from, and
processed, in the ψcluster . Event from the ψmbox or switch
are sent to the Orchestration module and passed to Policy
Engine. The logic in PolicyEngine will update the intent based
on the context, and the Orchestration module dynamically
launches and/or reconfigures the ψmboxes (and switches)
based on the updated intent.

Isolation, context and agility provided by PSI: Now let’s
briefly explain how PSI framework provides the isolation,
context and agility desired. For isolation, the Orchestration
module will assign a number of dedicated ψmboxes to each
device, and by default allocate a fixed amount of CPU cores
and memory to each ψmbox . To isolate the logic, each device
has dedicated policies enforced by its dedicated ψmboxes so
that updating the policies will not effect the other devices. For
context, PSI attaches the detection and mitigation ψmboxes to
the device’s next-hop switches with tunneling, so the traffic
from/to the device can not bypass the security enforcements.
Therefore, PSI has full visibility to all the context of a device
and there is no “blind spot” that attackers can exploit. For
agility, PSI simplifies and speeds up the procedure to update
security postures. Deploying new security function is as simple
as launching a few virtualized instances, avoiding the high cost
of deploying hardwares. Similarly, the network configuration
is simplified as PSI automatically translates the security policy
to context-based forwarding on switches and ψmboxes .

Challenges: Given this overview, two key challenges remain:
• Expressive policy abstractions (§IV): Traditional policy ab-

stractions (e.g., in firewall, IDS, ACL) that rely on a simple
if-match-then-action paradigm are not sufficient for the
agile and context-aware defenses we envision. To this end,
we develop an expressive policy abstraction based on an
intuitive combination of finite state machines to capture
the security state and directed acyclic graphs to capture
context-based security actions. We design a Policy Engine
that interpret the policy abstraction and computes the real-
time security intent updates for each device based on the
current context.

• Scalable and responsive orchestration (§V): Naive orchestra-
tion schemes to realize PSI would cause several scalability
and responsiveness problems. For instance, naively send-
ing the first packet of every context change to a central
controller introduces new control plane attacks [29], [64].
Naive scheme to launch new ψmboxes instances at every
context change wastes time and resources (CPU/memory).
Finally, if the orchestration cannot scale out, the attacker can
easily overload the system of PSI. To address these issues,
we develop a scalable orchestration platform using a com-
bination of proactive orchestration, pre-fetched installation
of ψmboxes , and horizontal scaling.

IV. PSI POLICY ABSTRACTION

In this section, we identify key expressiveness requirements
that PSI policies should satisfy and then describe our solution.

A. Requirements

We begin by highlighting three key requirements that the
PSI policy abstraction should meet to help the administrator
to express intents that govern how the devices’ traffic should
be processed/forwarded.:
• Context-based forwarding & processing: The administrator

should be allowed to define a set of context for each device,
and express forwarding & processing based on the context.
For example, if a host is sending oversized DNS packets
(detected by header checker), the administrator should be
allowed to define a context to note that a host is suspicious
for data exfiltration (DNS-based), and specifies that the
oversized DNS packets should be forwarded to a DPI for
payload check to prevent potential data exfiltration.
• Agile intent evolution: The administrator’s intent over a

device’s traffic may evolve over time as the context changes.
For instance, if a host initiated a HTTP connection to a
suspicious website, the context is changed from host is
normal to host is suspicious, and the inbound traffic to this
host should be put under deeper scrutiny (e.g., DPI) to stop
malicious downloads.
• Supporting legacy aggregate policies: Given that existing

deployments use security functions that monitor many de-
vices, there may be legacy policies that an administrator
may want to define over aggregated views of the traffic,
e.g., per department policies or global policies [18]. The
PSI policy abstraction should also be able to express such
legacy policies.

A natural question then is whether prior policy abstrac-
tions can satisfy the requirements. We evaluated a num-
ber of existing approaches including distributed Firewall/IPS
configurations (Cisco’s PIX [9],Bro [51]) and more recent
SDN policy languages (Kinetic [43], Merlin [67], Group-based
Policies (GBP) [18], PGA [52]), and found that they cannot
meet the first two requirements. For distributed Firewall/IPS
configurations, the context and agility that can be expressed
is limited to one type of tools, e.g., a firewall cannot tell
a oversized packet to be forwarded to a IPS for DPI. We
qualitatively evaluated distributed Firewall/IPS configurations
in the coverage test in Section VII-A, and the result shows
that the context-based and agile policies prevented 35% more
potential attacks than distributed Firewall/IPS configurations.
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Fig. 6: Express context-based intent with ψDAG .

Similarly, SDN policy languages are largely limited to switch
contexts (packet header attributes), and their agility is limited
to static forwarding capabilities.

Our goal in designing the PSI policy abstraction is not to
claim a novel theoretical or programming language contribu-
tion (e.g., [31], [54]). Rather, it is a practical abstraction for
capturing context-dependent and agile processing.

B. High-Level Ideas

Context-based processing: To enable administrator to ex-
press traffic forwarding and processing based on context,
PSI uses a Directed Acyclic Graph called ψDAG , as shown
in Figure 6. Formally, this is a two tuple ψDAG =
〈NFInstances,NextHops〉. Each vertex in ψDAG represents
a processing function (e.g., IPS) denoted as NFInstance that
can: (1) tag the traffic based on the processing outcome (e.g.,
tag packet with “oversized” as context); (2) apply custom pro-
cess based on the tags (e.g., check the payload for packet with
“oversized” context). The edge relation NextHops specifies
the intended sequence of traversal through processing tools
with respect to context; e.g., packet with “oversized” context
is forwarded to a IPS (to check payload).

Supporting intent evolution with ψFSM : While the ψDAG
abstraction captures context-dependent processing, it does
not capture the evolution of security intent. For instance,
the operator may have an inkling of future “states” of the
host (contexts at different time) and may want to proac-
tively express the intent for these subsequent likely states
as well. Similarly, the intent may evolve as new information
arrives; e.g., new vulnerabilities or new alerts from external
sources. To capture such intent evolution, we introduce the
ψFSM abstraction. Formally, the ψFSM is a Moore machine
ψFSM := 〈S , sstart , E ,F ,T ,O〉 that maps the traffic’s state
to a specific ψDAG via the output function O (S → F). In
the simplest case, we have a single global state for a specific
class with a single ψDAG . More generally, we can define state
transitions based on different events Ej ∈ E and the ψDAG
will depend on the current state.

state1	

state2	

event	ψFSM	

ψDAG1	

ψDAG2	

state 
evolution 

intent 
evolution 

Fig. 7: PSI agile intent evolution.

Note that from Section III, our policy is isolated at a
per device/traffic granularity. Therefore, each device/traffic is
assigned with a ψFSM and a ψDAG , as shown in Figure 8;

the ψFSM captures current state and future state evolution;
and the ψDAG captures the current intent with respect to the
current state.

traffic class 

state 

intent 

…	predicate1	

ψFSM1	

ψDAG1	

predicate2	

ψFSM2	

ψDAG2	

predicaten	

ψFSMn	

ψDAGn	

…	

…	

Network	traffic	space		

Fig. 8: PSI policy at per device/traffic granularity.

Expressing aggregate policies by scoping: Next we discuss
how we can support legacy policies expressed in terms of
traffic aggregates, e.g., a device belongs to multiple logical
groups [18]. To this end, we add the notion of scope to denote
the range of devices that a ψFSM and a ψmbox would apply
to. For example, local ψmboxes denoted as XL : NFInstance
is dedicated to a device, while global ψmboxes denoted as
XG : NFInstance apply to all devices. For each device, we
compose its local XL : ψFSM and global XG : ψFSM as
a new ψFSM . Then for each state in the composed ψFSM ,
we merge the local XL : ψDAG and global XG : ψDAG .
Following the above process, it’s easy to convert legacy group-
based policies to per-device PSI policies. For example, using
the scope notion, we port 348 distributed Firewall/IPS policies
to PSI policies in the logical interference part in SectionVII-A.

Illustrative Example: Let’s consider an end-to-end example
to put the ideas together and see how PSI policy abstraction
enables us to express effective security postures. Figure 9
illustrates a dynamic policy that can filter out spurious alarms
and precisely identify a multistage attack in real-time. The
multi-stage attack includes two stages: 1) Tempting a user to
click a link to suspicious websites (unknown IP, initial sign);
2) Device initiated downloads of malicious payloads (worms,
Trojans, Exploit Kits). Currently, the initial sign of the attack is
hidden in a deluge of alerts (accessing a unknown website can
be normal user activity) and always checking the payload will
cause collateral damage to the network. With the PSI policy
language, the administrator can enforce a dynamic scrutiny
policy [60] to react to the initial sign of the attack. As shown in
Figure 9, the administrator can define the traffic of a device (IP
10.2.0.1) by set the sip field of a predicate to 10.2.0.1. Then
the administrator uses the corresponding ψDAG to specify
the possible security states (normal, suspicious and malicious)
and state transitions of the traffic. By setting a ψDAG for
each state, the administrator means that: when the traffic is at
normal state, the traffic will be processed by a light weight
IPS (L-IPS) performing only header check (e.g., checking for
access to unknown IP); if L-IPS detects access to unknown
IP, the context will be updated with unknown IP event and
triggers the traffic to transit from normal to suspicious, and
L-IPS will forward the packet to a heavy payload check (H-
IPS); if exploit payload is detected, then the multi-stage attack
is confirmed, the traffic state will be changed to malicious, and
corresponding packets will be dropped.

Once we have the abstract policy, the PSI Policy Engine
will interpret the abstract policy and compute the real-time se-
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Fig. 9: A dynamic scrutiny policy expressed via PSI.

curity intent (ψDAG) for each device’s traffic based on current
context. In Section V, we show how to translate the intents to
concrete ψmbox deployment and network configurations. We
also describe a GUI for the administrators to simplify the input
of the abstract policy in Section VI.

V. PSI CONTROLLER

In this section, we describe the PSI controller’s orches-
tration mechanisms to translate the high-level intents into
a concrete realization. To highlight the key scalability and
responsiveness challenges, we begin with a simple reactive
design. Then, we discuss our ideas to address these challenges:
proactive tag-based forwarding, elastic controller scaling, and
ψDAG prefetching.

A. Conceptual View and Challenges

The input to the PSI orchestration module is the policy
intent (ψDAG) for each device. The goal of the controller
is to translate these into a concrete realization; i.e., launch
ψmbox instances and set up forwarding rules. Recall that
PSI intents capture dynamic packet processing at two levels.
First, the forwarding path may depend on flow-specific context
information from upstream nodes in the ψDAG . For example,
in Figure 9, traffic with context unknown IP from L-IPS should
be forwarded to H-IPS for further payload analysis. Second,
the ψDAG may itself be updated based on ψFSM transitions
in response to alerts or other events. For example, in Figure 9,
the ψDAG will be updated when L-IPS raise an unknown IP
alert and the state transits from normal to suspicious.

A seemingly natural solution to implement these intents is
to adopt a reactive mechanism, which configures forwarding
rules and deploy ψmboxes on-demand whenever the context
changes. Let us use the intents for normal state and suspicious
state in Figure 9 as an example to show how such a reactive
controller would react to packet arrivals and other events/alerts
(Figure 10).

Per-packet processing: Suppose a packet belonging to class i
arrives at a network interface (either at a ψmbox or a switch).
By default, this node will not have any forwarding rule. Thus it
buffers the packet and sends an PKTIN event to the controller
with the packet’s header and any relevant processing context.
On receiving the PKTIN event, the controller retrieves the
current state si

current corresponding to this packet’s class and
uses it to get ψDAGcurrent . Based on the current context and
the node that generated the packet, the controller decides the
next hop for this packet and sets up forwarding rules to ensure
that the packet will traverse the intended path. For example,

in Figure 10(a), PSI will configure the L-IPS to send pkt1
(destination IP is in the normal IP list) with context “normal”
to the controller, and the controller will reactively install a rule
at the switch to forward pkt1 to port1.

Event processing: The previous discussion handles the case
for a given state s . Other types of events (e.g., IDS alerts)
may trigger a state transition in the ψFSM i , e.g., transition
from normal state to suspicious state in Figure 9. This in
turn may require a new ψDAG to be instantiated. In this
case, the controller retrieves the ψFSM i corresponding to the
event,3 looks up the si

current and identifies the si
next . The

controller then identifies the new ψDAGnext corresponding to
the new state s , deactivates the current ψDAG , and launches
new ψmbox instances to implement ψDAGnext , and updates
internal data structures to indicate a state change. For example,
when transiting from normal state to suspicious state, the
orchestration module will launch a ψmbox running IPS with a
set of payload check rules to implement the H-IPS node with
the payload check. Figure 10(a) shows one of the rules in the
IPS: check if the payload contains “meta” and ”EmulateIE7”
to block Magnitude EK.

Challenges: While this above workflow is conceptually
correct, we identify two key challenges:

1. Scalability with adversarial workloads: First, handling ev-
ery packet presents a fundamental scaling challenge - a
single controller has to process a control message for
every packet in the network. Second, even if we do not
interpose the controller on every packet at every hop, the
controller needs to deal with a large number of events in any
reasonable-sized network that will induce ψDAG updates.4
Thus, an adversary can easily saturate the CPU, memory,
or the control channel bandwidth with this naive approach.

2. Security downtime: Transitioning from the ψDAGcurrent

to the ψDAGnext will need new VMs to be launched
and other forwarding rules to be setup. Even with fast
VM bootup techniques, there will be a non-trivial latency.
Thus, adversaries can exploit these delays in setting up
ψDAGnext to achieve their goals for the types of multi-
stage attacks described earlier.

B. Key Ideas in PSI

Next, we describe how address each of these challenges.

Proactive context-based forwarding: The reactive controller
does not scale as it interposes on every packet at every logical
forwarding between two ψmboxes .

To avoid this, our goal is to keep packets in the data plane
as much as possible [36]. We achieve this with a proactive
forwarding approach extending prior work [36]. The core idea
is illustrated in Figure 10. Each ψmbox tags outgoing packets
specifying the relevant context needed for forwarding along
the ψDAG . For example, in Figure 10, all packets are initially
under “normal” tag and the tag changes to “suspicious”. The
forwarding logic of the network switches will incorporate these

3We assume that events are annotated with the class value (i).
4Even if the likelihood of updates for a single device is low, at any given

time there are likely to be several devices that need updates.
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Fig. 10: Comparing reactive and proactive design.

tags as part of their packet processing actions. For example, in
Figure 10, if the packet is tagged as “normal”, it is forwarded
to port 1, and if the packet is tagged as ”suspicious” it is
forwarded to port 2. Note that because the controller has a
logically global view it can proactively install these per-tag
forwarding rules for each class class without waiting for a
PKTIN event.

Now, there might be two potential deployment concerns.
First, we need sufficient space in the packet header to add
these tags. This is not an issue as new standards for virtual
network forwarding and network service chaining headers
explicitly include additional header space for metadata [70],
[71]. With software switching (e.g., OpenvSwitch) and new
switch pipelines [28], it is possible to add flexible header
matching rules based on these tag bits. Furthermore, these
header tags are only needed inside the ψcluster , where we are
not constrained by legacy networking. Second, the ψmboxes
have to explicitly expose these tags. Prior work shows that the
modifications required to commodity middleboxes to add the
tagging logic is less than 50 lines of code [36].

Scale-out controller: While proactive forwarding addresses
the scaling problem in dealing with PKTIN arrivals, it does
not address the issue of an adversary sending crafted data to
generate a large event/alert volume to overload the controller.
Note, however, that it may be hard to distinguish events
triggered by adversary actions vs. legitimate users. Rather
than introduce ad hoc anomaly detection algorithms to try
and differentiate legitimate vs. adversary-induced events, we
exploit the fact that the PSI design allows us to logically
partition the event handling across different traffic classes. That
is, we can simply horizontally scale the PSI controller and add
more instances as needed depending on the offered load [32],
[45]. This is especially easy because the different traffic classes
are independent and do not introduce any synchronization
bottlenecks at the controller.

We design a scale-out mechanism similar to elastic scaling
solutions in cloud deployments [4], [32]. While the elastic
scaling solutions only migrates switches states, PSI’s scale-
out mechanism migrates device attributes, security states and
policy specifications within the predicates, ψFSM and ψDAG
structures. A simple runtime monitor inspects the response
time for each controller instance. If the response time is
starting to increase more than a preset threshold, it invokes
an elastic scaling routine that adds an extra control instance
and splits the traffic classes currently handled by the over-
loaded instance across the added instances, and migrate the
corresponding structures.

ψDAG prefetching: The combination of proactive context-
based forwarding, partitioning, and elastic scaling effectively
addresses the scalability bottleneck. However, the problem of
security downtime during ψFSM transitions still remains.

To address this, we use the following idea. Since the
controller has the entire ψFSM described by the policy intent,
it can look ahead and predict the next k possible states for
each class class. Then, it proactively installs the ψmboxes
corresponding to the ψDAGs for these next k possible states,
in order to mask the latency involved when these might be
needed in the future.

One concern might be that this needlessly increases the
resources used by the ψcluster as ψDAG instances may never
be exercised. While this is theoretically valid, in practice, we
can address it as follows. First, the controller installs the future
ψDAGs for the same class to be multiplexed on the same
hardware as the current ψDAG for that class. Since there is
only one active ψDAG for a given traffic class at a given
time, this incurs no additional hardware resources. Second,
we implement some simple optimizations to do an incremental
launch; e.g., if there are common ψmbox instances across the
future ψDAGs then we can reuse these instead of cloning
them. This last optimization also indirectly helps to reduce the
downtime by reducing the number of new VMs we need to
launch.

VI. PSI IMPLEMENTATION

We have implemented a fully functional PSI system using
open source SDN/NFV tools, consisting of around 8K lines of
code [19]. In this section, we briefly our implementation and
the extensions we made to open source tools to enable the PSI
vision.

Controller: We choose OpenDaylight a popular
industry-grade SDN controller as our starting point. Since
OpenDaylight only focuses on simple forwarding func-
tions, we add several extensions to support PSI:

1. Operator interface: We write a custom GUI to make it
easy for operators to enter intended policies, as shown in
Figure 11. The PSI GUI can take in both textual (in a
domain-specific language) and graphical (by adding and
inter-connecting graph nodes) forms. Then a policy parser
translates the input into ψFSM and ψDAG data structures
for each traffic class. The policy parser also verifies the
consistency of the policy (e.g., the same traffic flow is not be
assigned conflicting policy actions, such as drop/pass) using
checking mechanisms similar to those of Fireman [74].

2. Event handler: OpenDaylight natively only handles
OpenFlow messages from SDN switches. We extend it to
handle events from common security appliances; e.g., Snort
IDS alerts.

3. Orchestration: We write custom code to setup tag-based
forwarding rules on switches. Our VM launching scripts
interact with the KVM hypervisor running at the ψmbox
node (see below). This orchestration module is also respon-
sible for implementing the ψDAG prefetching logic from
the previous section.
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Fig. 11: The dynamic scrutiny policy expressed via PSI
GUI.

4. ψmbox control channel: We also implement custom control
channels between the PSI controller and the individual
ψmboxes . These serve two purposes. First, they implement
ψmbox -specific messages for reconfiguring policies; e.g.,
installing and updating ψmbox -specific configurations. Sec-
ond, these control the tagging behavior of the ψmbox to
enable the proactive tag-based forwarding scheme described
earlier.

5. Runtime scale-out: We implemented simple Java runtime
monitors to inspect the response time on each controller
instance. Once the response time exceeds a threshold, we
scale out the instance as follows. Suppose the stressed con-
troller instance is C1 , the corresponding runtime monitor
RM1 then: 1) launch a new instance C2 ; 2) offload half
of the traffic classes, and their FSM , NFDAG with the
FSM current state into a policy configuration file and
send to C2 in a notify message. C2 then inputs the policy
configuration file from RM1, and setup connections with the
related NFs and switches. Finally, C2 send a ACK message
to C1 and C1 closes the socket connections with the related
NFs and switches.

6. Composing ψFSM and scoping ψmbox instances: We
implemented an ψFSM composition module that can input
all policy intents that applies to a device and compose
the policy ψFSM by calculating the cross product of the
states, the union of events and the new transitions. To scope
ψmbox instances, we implemented a scoping scheme that
inputs the natural scoping order (a sequence of scope IDs)
from the administrator, assigning each ψmbox instance with
a corresponding scope ID, and steering all the traffic in
scope through the instance, following the scoping order.

PSI data plane: To realize each ψmbox , we use virtual
machines. We chose this over alternatives like containers (e.g.,
Docker) as it offers stronger performance isolation across
different traffic classes. We currently support several open
source security functions; e.g., NAT/firewalls using iptables,
IDS/IPS using Snort [57], proxies using Squid [23], and load
balancers using Balance [7]. Each ψmbox runs inside a VM;
we use Centos 6.5 as the host OS running the KVM hypervisor.
We set up simple tunnel-based forwarding rules at the ingress
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Fig. 12: Evaluation topologies.

switch to steer the traffic to the ψcluster . These ψmboxes need
two minimal extensions to integrate with PSI. First, we extend
the ψmbox implementations to support the addition of tags
to outgoing packets to enable the tag-based forwarding [36].
Second, we need to forward events/alerts to the PSI controller.
We implement this by having a light-weight PSI client program
that parses these alerts (e.g., Snort alerts) and forwards them to
the controller. This alert parsing program is configurable and
can be customized to only forward relevant events to reduce
the control plane load.

VII. EVALUATION

In this section, we evaluate PSI to show that:
• Security benefits: When working against stealthy attacks,

PSI identifies and mitigates 35% more attacks than a dis-
tributed Firewall/IPS solution. PSI is able to more effectively
implement complex distributed solutions. PSI eliminates the
logical interference and reduces the performance interfer-
ence damage by 85%.
• Scalability, responsiveness and resilience: Proactive

context-based forwarding reduces the end-to-end latency by
at least 10X over the baseline performance. PSI’s ψDAG
prefetching mechanism reduces security downtime during
ψFSM transitions from seconds scale to zero. With the
optimizations, a single PSI controller can support a network
with 100K devices, and can support complex policies with
up to 10 states with a size-10 DAG for each state. Our scale-
out scheme cuts the response time down to 10ms even in
the presence of an adversary.

Since PSI is an enabler for existing/emerging security tools,
not a new detection algorithm for a specific attack, we evaluate
the benefits for a whole enterprise network (coverage over
attack paths, collateral damage) rather than show the ROC
(receiver operating characteristic) curve (FP vs. FN) for a
particular end-point.

Experimental Testbed: Our experiments run on a cluster
of 12 Dell R720 machines, each with 20-core 2.8 GHz Xeon
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CPUs and 128GB of RAM. A single PSI controller is running
on a VM with CentOs 6.5, assigned with 4 cores and 8GB
RAM. On the testbed, we setup three typical enterprise/campus
topologies as shown in Figure 12, details about the topologies
are given in Table I. We use 1 Dell R720 machine as the PSI
ψcluster . To stress test our setup (controller scalability/over-
loading from adversary), we extended the cbench tool [68]
to emulate IDS/IPS alerts in large enterprise-like settings.5

Topology Devices Switches Information
mini-stanford [42] 56 12 Stanford backbone network
apt-mcafee [10] 12 6 Enterprise network with

APT, reported by McAfee
pix-cisco [22] 14 8 Enterprise network with

Cisco PIX firewall

TABLE I: Experiment topologies.

A. Security Benefits for Network Structure

We now show how PSI’s context-aware, dynamic and
isolated approach can mitigate stealthy attacks and reduce the
collateral damage caused by logic&performance interference.
Here a stealthy attack is one where the attacker can exploit
a blind spot in network design to circumvent defenses. For
example, an insider threat that originates within a network,
evading all outward-facing defenses. In this section, we con-
duct two analyses. First, we compare PSI against distributed
Firewall/IPS approach by evaluating their capabilities to pre-
vent potential insider threats and APT (Advanced Persistent
Threats) in three sample enterprise networks. Second, we use
real enterprise policy and manipulated enterprise traffic to
show how PSI’s isolation mechanism can effectively reduce the
collateral damage caused by logic/performance interference.

Coverage over stealthy attacks: We now evaluate PSI’s
ability to deal with stealthy attacks. To do so, we conduct an
attack graph analysis against two example stealthy attacks: an
example insider threat attack and an example APT. We com-
pare distributed Firewall/IPS’s and PSI’s ability to detect and
mitigate both attacks over three different network topologies
shown in Table I. Through this analysis, we show that PSI
is capable of identifying and mitigating 35% more potential
stealthy attacks than a distributed Firewall/IPS approach, as
demonstrated in Table II. These results are due to topological
blind spots that PSI is designed to address, and which are
common on live enterprise networks such as the examples in
Table I.

Attack graph analysis [61] evaluates defensive systems via
graph coverage. Each attack is expanded to a graph showing
the potential routes the attacker can use to achieve their goals,
and defenses are evaluated by comparing the number of paths
each defense cuts off from the attack. We chose attack graph
analysis because it integrates the structural impact of the
network’s design on the attack’s effectiveness, and enables us
to identify the cause of defensive failure. Our attack graphs
consist of a tree, G, where each node is a device on the
network, and each edge is an attack step. In G, an attack
is a path from the root device (the source of the attack) to
the leaf (target), e.g., an malware exploit from a laptop to a
server through a local switch. An attack is prevented if one
step of the attack is detected and prevented by the defense
system, e.g., a IPS connected to the switch detects and blocks

5cbench only supports simple OpenFlow messages by default.

the malware traffic. This yields a coverage metric of the form:
coverage = num. of prevented attacks

num. of all possible attacks . This coverage metric
evaluates how many potential attacks are prevented in a given
network topology.

Topology distributed Firewall/IPS Coverage PSI Coverage
mini-stanford [42] 52% 92%
apt-mcafee [10] 59% 91%
pix-cisco [22] 56% 89%
all 56% 91%

TABLE II: Coverage over stealthy attacks.

In our evaluation, we instantiate the three enterprise net-
works in Table I in our testbed and install distributed Fire-
wall/IPS and PSI respectively. For distributed Firewall/IPS,
we assume there are no resource constraints and deploy a
distributed instance at every switch in the topology. To setup
insider threats in each enterprise network, each time a device
is set as an insider and it exfiltrate data from all other devices
using ftp-based exfiltration or DNS-based exfiltration [2]. For
APT, we setup a device in external network as an attacker,
and assume it can always break-in with a zero-day attack. We,
then, use two pcap traces (Angler EK and Magnitude EK [15])
to emulate the following port-scanning and exploits phases of
the APT attack and see if the exploit traffic can reach another
device (if yes, the APT attack on the device is valid).

mini-stanford apt-macafee pix-cisco
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Fig. 13: Detailed results about coverage for insider threats
and APT in each enterprise network.

The detailed evaluation results are presented in Figure 13
and Table II. In summary, out of 428 potential attack paths,
distributed Firewall/IPS mitigates 240 paths (56% coverage),
while PSI mitigates 392 potential paths (91% coverage). We
analyzed the 152 paths that PSI mitigated but distributed
Firewall/IPS did not—all of them are caused by one or more
fundamental topology constraints that distributed Firewall/IPS
cannot address. Specifically, 103 paths involve NAT/DHCP;
75 paths involve devices connected to multiple switches (e.g.,
For high bandwidth or failure tolerance [20]); and 54 paths
involve dumb, unmanaged switches. PSI cannot provide perfect
coverage because first step, a zero-day attack, is undetectable.
In summary, PSI improves the coverage for stealthy attacks by
35%.

Logical interference: Now, we evaluate the defense system’s
ability to reduce logical interference. To do so, we take real
ACL policies [22] from enterprise/campus networks and see if
distributed Firewall/IPS configuration or PSI policy language
causes any logical interference when expressing them. The
ACL policies are already expressed as distributed Firewall/IPS
configurations by the administrator; 249 are expressed using
Cisco PIX, 65 policies using Juniper SRX, and 34 using
iptables. We use Springbok [22], an automated firewall miscon-
figuration checking tool using the mechanisms in Fireman [74],
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to check the logical interference in the distributed Firewall/IPS
configurations. Springbok checks for three types of logical
interferences: shadowing, redundancy and correlation; in each
case a packet is specified with two interfering actions (pass/-
drop). Then, we express all 348 policies using PSI policy
abstraction and check the logical interference with a Springbok
implementation extended to support PSI policies.

System policies Shadowing Redundancy Correlation
Cisco PIX 249 8 14 4
Jupiter SRX 65 5 5 3
Iptable 34 4 6 4
PSI 348 0 0 0

TABLE III: logical interferences in distributed Firewal-
l/IPS configurations/PSI policy abstractions.

Table III shows the number of interferences of each type
between configuration rules. As the table suggests, logical
interference occurs in the PIX, SRC and iptable configurations,
while it is absent in PSI. The key reason is that the distributed
Firewall/IPS configurations follow an If-Match-Then-Action
list where preceding rules can interference with the rules
after; while PSI provides isolated states and intents for non-
overlapping traffic.

Performance Interference: Next, we evaluate the defense
system’s ability to reduce performance interference. To do
so, we generate one elephant traffic flow and several mice
flows in the network when different security functionalities
are deployed, and measure the damage induced by the elephant
flow (in terms of packet drops).

We install both PSI and distributed Firewall/IPS on the
three topologies in Table I. The security functionalities we
run include deep packet inspection (DPI), anti-virus (AV) and
application control (AppCtrl). We generate 8 pcap files by
accessing a server in our testbed that runs ssh, ftp, smtp and
http service; each pcap file records 24 hours’ traffic. The pcap
files contains 9% of SSH (secure shell), 12% of FTP (file
transfer), 19% of SMTP (email) and 60% of HTTP traffic (by
traffic volume). Then, we replay the pcap files on 8 devices
in each topology. To generate the elephant flow, we replay a
24 hours trace in 10 min. The other 7 traces are replayed at
normal speed as mice flows. We enforce DPI , DPI + AV
or DPI + AV + AppCtrl on the elephant flow with PSI or
distributed Firewall/IPS. We measure the average packet loss
rate over all 8 Devices as the metric to indicate the collateral
damage. The results in Figure 14 show that PSI generates
around 5% average packet drop rate in three cases, while
packet drop rate with distributed Firewall/IPS is 34%. This is
because PSI provides customized & isolated ψmbox for each
device, and can precisely enforce DPI only on the elephant
flow. In conclusion, PSI reduces the collateral damage of an
elephant flow (in terms of average packet drop) by 85%.

B. Benefits of PSI optimizations

Next, we demonstrate how PSI’s optimizations from Sec-
tion V improve the system performance.

Proactive context-based forwarding: To analyze the impact
of proactive controller setup, we send flows from one host to
another using a ψDAG with two paths and measure the latency
per flow. With a reactive controller, the first packet of the flow
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Fig. 14: Collateral damage due to an elephant flow.

generates an event (Snort alert) and waits for the controller to
process the event, select the path, and install the forwarding
rules. With proactive handling, the packet is tagged at the NF
as discussed in §V-B. We gradually increase the load and see
how it affects the end-to-end latency in Figure 15. We see
that proactive handling mechanism reduces latency by at least
10X. Note that, unlike the reactive controller, the latency of
proactive handling is independent of the traffic rate.
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Fig. 15: Proactive context-based forwarding.

ψDAG prefetching: To evaluate the effect of ψDAG
prefetching, we test the following scenario: a host H1 is
protected by a policy with 11 states, each with a unique
ψDAG . For simplicity, the state transitions are sequential as
s0

E1−−→ s1
E2−−→ s2

E3−−→ · · · E10−−→ s10. An attacker create 10
types attack flows a1, · · · , a10 against H1, which triggers the
transition event E1, · · · , E10 respectively. The hope of the
attacker is to make transitions from a1 to a10 sequentially
to get through before the defense system can respond. In
our evaluation, we write a script to send 10 attack flows
a1, · · · , a10 as a group (with different payloads) sequentially
from H2 to H1 to simulate such this attacker. We vary
the attack flow arrive interval from 2s to 5s to simulate the
frequency of the attack, as illustrated by the x axis of Figure 16.
We measure the time between the arrivals of the first and the
last packets of the flow at H1 as the downtime of the flow and
calculate the average down time across 10000 groups of flows.
We compare a naive update scheme which waits for the event
to trigger ψDAG launch vs. our prefetch scheme with 1-hop
and 2-hop look-ahead. For the naive-scheme, there are 3 VMs
in each ψDAG and they are launched in parallel. Figure 16
shows that with a 2-hop prelaunch, we can ensure zero security
downtime.

Controller scale-out: In this evaluation, we stress our con-
troller with our test generator to emulate an adversary and
see how PSI’s scale-out scheme maintains a small response
time under attack. We connect 20 test generators to our
controller, with a 100 events/s rate initially. Then, we select
10 test generators to increase the rate to 110,000 events/s
simultaneously to emulate the adversary. At each PSI controller

11



Flow arrive interval (s)
2 3 4 5

D
ow

nt
im

e 
(m

s)

0

1000

2000

3000

4000

no prefetch
1-hop prefetch
2-hop prefetch

Fig. 16: Effect of ψDAG prefetching.

VM, PSI monitors the average process time of each event with
an high delay threshold (set to 8ms). If the threshold is reached,
then PSI scale-out scheme will launch new VMs to scale-out
as described in Section V-B.

Figure 17 shows the changes of the response time as
the load increases. We observed that each peak decrease is
caused by scaling out the PSI controller to 2, 3, 4 and 5 VMs
respectively. From the result we can conclude that the PSI
scale-out scheme successfully prevents the response time from
increasing beyond 10ms in the presence of an adversary.
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Fig. 17: PSI controller scale-out.

C. PSI Scalability

We now evaluate PSI’s scalability in supporting a large-
scale enterprise network.

Single controller benchmark: First, we benchmark the event
processing throughput a single PSI controller instance. Our
test generator sends event messages to the controller as fast as
possible (until their TCP send buffer blocks). Each message
triggers a state change in the controller logic. We increase the
number of generators and measure the observed throughput.6
In this evaluation, the controller is assigned 8 GB RAM, and
hosts ψFSM and ψDAGs for 100,000 devices (one policy for
each device). Each ψFSM has 4 states and each ψDAG has
4 NFInstances. The result shows that a single PSI Controller
has a maximum throughput of around 230,000 events/s (not
shown). To put this in context, if each device generates one
event every 5s (a high average alert rate [43]); a single instance
could still handle a network with 100,000 devices.

Sensitivity to policy complexity: Next, we evaluate the
impact of ψFSM and ψDAG size, which reflect the policy
complexity. In this evaluation, the controller is fixed to host
ψFSM and ψDAGs for 100k devices (one policy for each
device). Then increase the size of ψFSM (number of states)
and size of ψDAG (number of security appliances for one

6We observed that a single generator cannot saturate the controller.

state) respectively from 2 to 10 to measure the controller’s
performance’s sensitivity to policy complexity. Figure 18
shows that while the policy complexity does impact throughput
and response time, it is quite negligible. The RAM increases
linearly with the number of ψFSM s or ψDAGs but can easily
supported by extension. In summary, we observe that richer
policies are not fundamental bottlenecks for PSI deployment.
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Fig. 18: Sensitivity to policy complexity.

D. PSI Use Cases

In this section, we describe a number of use cases that
demonstrate how PSI can enable new security capabilities:

Protecting IoT devices with default passwords: Commonly
known default passwords are a problem for embedded devices.
To secure these devices, we implemented a simple proxy
system as shown in Figure 19. This IoT-ψmbox (A Ubuntu
VM with a customized Squid proxy) serves as a gateway to
all traffic to embedded systems on the network. The target
in this example, was a D-link surveillance camera, which
ships with a hardcoded admin password that the user has no
interface to delete. In this case, incoming traffic is inspected for
known suspicious password combinations (e.g., admin/admin)
are dropped and actual access is only granted by rewriting
packets to the correct password combination. The ψmbox can
enforce the use of a new administrator-chosen password to
access the camera’s management interface or images.

��

Patch	camera	with	new	secure	password	

Current		
World	

With		
PSI	

admin/admin�

new	secure	password	

IoT	password	proxy�

PSI	Controller	

Fig. 19: ψmbox to Patch Embedded Vulnerability.

Disrupting botnets via on-demand captchas: Today’s com-
munication between bots and command-and-control (C&C)
servers use common protocols such as HTTP to hide among
legitimate traffic flows. Now a naive whitelist-based approach
(i.e., allowing known popular sites) that raises an alert (or
worse block) every off-whitelist HTTP URL access can result
in very high false positives (or disrupt legitimate traffic.)
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Instead, we can enable a agile botnet disruptor to verify if the
connection was intended by the user as shown in Figure 20.
We implement this a ψmbox running an Apache server, with
the Google ReCaptcha service as follows. when a user is
seen sending a log of suspicious HTTP requests (e.g., short-
lived domains), then the botnet disruptor dynamically forces
the user to enter a “captive portal” with a captcha forcing the
user to verify the connections. If the request was legitimate
and validated as human, the connection is allowed, otherwise
the device is flagged (or disconnected pending further investi-
gation).

normal�
IPS�

PSI	Controller	

Admin�

“google.com”�

Step1:	human/bot?	

“meethue.com”�

or�

Step2:	Ac7ve	Check	

is	Human�

Step3:	is	bot	

Fig. 20: PSI Bot Disruptor.

Context-Aware On-Demand Decoys: Scans and background
radiation are an operational reality today viewed as “ankle
biters” that are fundamentally not worth analyst attention [26].
However, in some cases, scans might foreshadow an upcoming
attack; e.g., after HeartBleed is disclosed, and understanding
the attack workflow may provide valuable information for
future defenses. Building on the earlier example, we implement
a context-aware dynamic decoy system [25]. Once we identify
a specific scanner IP from a host H1 (e.g., Ubuntu-12.04,
SSL1.01-4), we subject it to tighter monitoring via an IPS. If
the IPS detects a follow-up exploit action, then PSI instantiate
a “decoy” honeypot ψmbox tailored to Ubuntu-12.04 with
SSL1.01-4 and redirects the exploit traffic to the honeypot in
order to investigate the attack’s intent.
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Fig. 21: Context-aware Decoy.

VIII. RELATED WORK

Firewalls and IDSes: Middleboxes such as firewalls and
IDS/IPS [51], [57] are the “workhorses” of network security
mechanisms today. Unfortunately, these have well-documented
concerns with respect to (a) performance (e.g., 30% of ad-
ministrator disable useful security features such as DPI and
anti spoofing [16]); (b) misconfigurations (e.g., [35], [49]);

(c) lack of expressiveness to tackle novel threats; and (d)
undesirable tradeoffs between stronger security postures vs.
user backlash [16]. By design, PSI addresses these pain
points. PSI’s vision shares conceptual similarity with classical
work on distributed firewalls [27], [41]. Other work addresses
orthogonal problems related to scalability (e.g., [69]) and alert
correlation (e.g., [58]).

SDN, NFV, and Security: Prior work has aimed to take
advantage of SDN and NFV to make network security enforce-
ment more flexible. Ethante [29] uses a centralized controller
controls switches at critical points to authorized traffic. Flow-
Guard [40] resolves interfering ACL policies from firewalls
in SDN network. However, Ethane or FlowGuard does not
support security policies beyond ACLs and do not allow
more advanced security policies captured by ψDAGs and
ψFSM s. Flowtags [36] and Simple [53] are two other related
works close to PSI. Flowtags provides interfaces between
middleboxes and the SDN controller to enable the enforcement
of “fixed” ψDAG . Simple provides simplified traffic steering
over a set of statically deployed middleboxes. FlowTags or
Simple supports neither dynamically changing ψDAGs (which
are accommodated in PSI using ψFSM s) nor guarantees policy
isolation.

FRESCO [62] implements detection and mitigation mod-
ules in the SDN controller. However, the controller becomes a
critical bottleneck for scalability and requires reimplementing
functionality that is commonly available in security mid-
dleboxes. OFX [66] and Kinetic [43] focuses on networks
composed of switches. PBS [39] shares some our motivation
in addressing security challenges induced by BYOD. In con-
trast to PSI, PBS: (a) only focuses on BYOD mobile apps;
(b) involves a reactive controller; and (c) needs end-point
instrumentation on Android. Other work focuses on exploiting
SDN/NFV to provide elastic scaling of security functions [34],
[50]; such elastic scaling is orthogonal to the focus of PSI.
That said, the PSI ψcluster can leverage these elastic scaling
capabilities if needed.

Controller scaling, either via horizontal scaling (e.g., [32],
[44]) or proactive orchestration (e.g., [34], [36]) are active
areas of work in SDN/NFV. PSI synthesizes and extends
these efforts through a combination of proactive tag-based
forwarding and elastic scaling.

Policy languages: There has been renewed interest in pro-
gramming abstractions for networks [43], [48]. Kinetic pro-
vides a domain specific language and an SDN controller to
dynamically change OpenFlow switch actions [43]. However,
Kinetic is constrained and cannot express richer policies
that involve stateful middleboxes [38]. PGA [52] provides
support for composing forwarding policies across aggregates
and detecting conflicts. PSI provides a richer abstraction that
subsumes these prior efforts.

Industry efforts: Google’s BeyondCorp initiative [72] focuses
on authentication and user trust, and can conceivably be de-
feated by evading the authentication system (e.g., a malicious
insider). PSI’s focus on traffic behavior is intended to be
robust to insider threat and other attacks by avoiding a single
point of trust. VMWare’s NSX and microsegmentation tackles
datacenter security by pushing firewalling functionality into
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hypervisors to tackle “east-west” traffic, which is not protected
by perimeter firewalls [71]. However, the security mechanisms
and abstractions are restricted to simple firewalling rules. In
contrast, PSI targets a much richer set of policies that can
involve multiple security middleboxes and does not rely on
every device to run atop a hypervisor. Finally, the vision of
SDN/NFV is gaining a lot of traction in industry; e.g., Cisco’s
Evolved services platform [8] describes a high-level architec-
ture similar to PSI. Based on public documentation, however,
it does not specifically tackle the kinds of security, policy, and
scalability challenges we describe here. These trends further
corroborate our arguments that the PSI architecture is viable,
and likely the inevitable culmination in response to today’s
security woes.

IX. CONCLUSIONS

Existing network security mechanisms leave defenders at
a disadvantage as they have fundamental limitations in terms
of: (1) isolation, leading to policies interfering with each other;
(2) context, preventing the defenders from creating a truly cus-
tomized response; and (3) agility, constraining the defenders’
abilities to specify dynamic security postures. To address these
pain points, PSI leverages recent advances in software-defined
networking and network functions virtualization to enable iso-
lated, context-aware, and agile security postures. We addressed
key challenges in developing expressive policy abstractions
and scalable orchestration mechanisms. We showed that PSI
is scalable and can be an enabler for new security capabilities
that would be exceedingly difficult to implement with legacy
solutions.

We identify two natural directions for future work: (1) bet-
ter user interfaces for operators to express PSI-based policies
and (2) support for cross-device policies (e.g., when the IPS
flags a host, the administrator may want to increase monitoring
fidelity for other hosts in the same subnet.) Finally, we
acknowledge that PSI is not a panacea and can be vulnerable to
covert channels used by attackers; e.g., malware via encrypted
cloud storage. That said, PSI is a significant step that can help
restore some balance in favor of defenders in the constant
tussle with more advanced adversaries.
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