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Abstract—Hypervisors have quickly become essential but are
vulnerable to attack. Unfortunately, efficiently hardening hypervi-
sors is challenging because they lack a privileged security monitor
and decomposition strategies. In this work we systematically
analyze the 191 Xen hypervisor vulnerabilities from Xen Security
Advisories, revealing that the majority (144) are in the core
hypervisor not Dom0. We then use the analysis to provide
a novel deconstruction of Xen, called Nexen, into a security
monitor, a shared service domain, and per-VM Xen slices that
are isolated by a least-privileged sandboxing framework. We
implement Nexen using the Nested Kernel architecture, efficiently
nesting itself within the Xen address space, and extend the
Nested Kernel design by adding services for arbitrarily many
protection domains along with dynamic allocators, data isolation,
and cross-domain control-flow integrity. The effect is that Nexen
confines VM-based hypervisor compromises to single Xen VM
instances, thwarts 74% (107/144) of known Xen vulnerabilities,
and enforces Xen code integrity (defending against all code
injection compromises) while observing negligible overhead (1.2%
on average). Overall, we believe that Nexen is uniquely positioned
to provide a fundamental need for hypervisor hardening at
minimal performance and implementation costs.

I. INTRODUCTION

Virtualization is one of the key enabling technologies of to-
day’s multi-tenant cloud. Through adding a privileged software
layer (i.e., the hypervisor), virtualization can simultaneously
support tens, hundreds, or even thousands of guest virtual
machines (VMs) on a single server. However, as the number
of concurrent VMs increases so too does the impact of a
hypervisor compromise, i.e., any single exploit undermines all
VM security.

Unfortunately, one of the most widely-used hypervisors,
Xen [7], is highly susceptible to attack because it employs
a monolithic design (a single point of failure) and com-
prises a complex set of growing functionality including VM
management, scheduling, instruction emulation, IPC (event

channels), and memory management. As Xen’s functionality
has increased so too has its code base, rising from 45K
lines-of-code (LoC) in v2.0 to 270K LoC in v4.0. Such a
large code base inevitably leads to a large number of bugs
that become security vulnerabilities [31]. Attackers can easily
exploit a known hypervisor vulnerability to “jail break” from
a guest VM to the hypervisor to gain full control of the
system. For example, a privilege escalation caused by non-
canonical address handling (in a hypercall) can lead to an
attacker gaining control of Xen [13], undermining all security
in multi-tenant cloud environments.

To understand the security threat to Xen, we systematically
studied all 191 security vulnerabilities published on the Xen
Security Advisories (XSA) list1 [35], of which 144 (75.39%)
are directly related to the core hypervisor. Among the 144
vulnerabilities, 61.81% lead to host denial-of-service (DoS)
attacks, 15.28% lead to privilege escalation, 13.89% lead to
information leak, and 13.20% use the hypervisor to attack
guest VMs. Furthermore, we found that more than half of
the core vulnerabilities are located in per-VM logic (e.g.,
guest memory management, CPU virtualization, instruction
emulation).

While there has been much work aiming at improving the
security of the virtualization layer [37], [12], [23], none of
it has provided an efficient way to harden the Xen core. For
example, CloudVisor [37] uses an “out-of-the-box” approach
by introducing a tiny nested hypervisor to protect VMs from
the potentially malicious Xen. Colp et al. [12] propose an
approach to decomposing the management VM of Xen (i.e.,
Dom0) into multiple unprivileged domains while Nguyen et
al. [23] propose Min-V, a hypervisor based on Microsoft’s
Hyper-V to disable non-critical virtual devices for a VM,
reducing the attack surface. However, none of them aim at
hardening the hypervisor itself. While DeHype [34] aims at
removing KVM out of the globally shared trusted computing
base (TCB), the hosted hypervisor, which includes a complete
Linux, remains in each VMs TCB while being large and
vulnerable (including all Linux vulnerabilities).

As our security analysis demonstrates, the Xen core is
fundamentally at risk. However, it is unclear how to effectively

1The actual number is 201, but 7 of them are not used, XSA-166 is too
vague to be counted in our study, XSA-161 was withdrawn, and XSA-99 is
irrelevant

Permission to freely reproduce all or part of this paper for noncommercial 
purposes is granted provided that copies bear this notice and the full citation 
on the first page. Reproduction for commercial purposes is strictly prohibited 
without the prior written consent of the Internet Society, the first-named author 
(for reproduction of an entire paper only), and the author’s employer if the 
paper was prepared within the scope of employment.

NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23455



mitigate these threats. Therefore, we present Nexen, a novel
deconstruction and reorganization of Xen that separates and
confines hypervisor operations. The design of Nexen is inspired
by the principle of least privilege [24] and informed directly
by our vulnerability analysis. We decompose Xen into multiple
internal domains (iDoms): a privileged security monitor, one
shared service domain, and multiple per-VM Xen slices. A
VM-slice contains a subset of duplicated Xen code and per-
instance private data. In this way, a malicious slice cannot
directly access data within guest VM address spaces, and
a malicious guest VM cannot affect other VMs or the host
system, even if it has compromised the per-VM slices.

In addition to deconstructing Xen we also address the
core challenge of efficiently enforcing separation, a unique
issue for Xen because the hypervisor operates at the highest
hardware privilege level. Nexen achieves this through same-
privilege memory isolation [14], [4] to enforce cross-VM
data and control-flow integrity. Specifically, Nexen extends
the privileged security monitor from the Nested Kernel ar-
chitecture, to isolate and control the memory management
unit (MMU), which mediates all memory mapping updates to
provide high level security policies. Nexen extends the Nested
Kernel by adding secure and private memory allocators, multi-
slice support, secure slice control transfers, and private and
shared slice data control: in this sense a slice is analogous to
a lightweight process.

We have implemented a prototype of our design which mit-
igates 107 out of 144 vulnerability (74%). Evaluation results
also indicate that the performance overhead is negligible.

Our contributions: To summarize, this paper makes the
following contributions:

• A systematic analysis on 191 Xen vulnerabilities (Sec-
tions II and V).

• Nexen, a novel deconstruction of Xen into a security
monitor, shared service domain, and sandboxed per-
VM slices (Section III) implemented in Xen (Sec-
tion IV) that efficiently uses paged based isolation
mechanisms for fine-grained data isolation.

• As informed by the analysis, a novel least-privilege
decomposition strategy that places highly vulnerable
code into per-VM slices while maintaining high per-
formance and either eliminating vulnerabilities en-
tirely or confining exploits (evaluated in Section V).

• Efficient code, memory, and control-flow integrity
enforcement between Xen and VMs (evaluated in
Section VI).

II. MOTIVATION AND BACKGROUND

A. Attack Surface of Xen

The Xen virtualization layer comprises the Xen hypervisor,
a privileged VM (i.e., Dom0) and a number of unprivileged
VMs. Each of these can be compromised in one of the fol-
lowing ways: 1) an unprivileged VM may attack another VM
through inter-domain communication (mostly shared mem-
ory); 2) a malicious platform user may compromise Dom0
through the management interface, resulting in control of all
management operations and I/O stacks of other VMs; and

TABLE I. XEN MODULES THAT THE ATTACKS TARGET

Target Ratio Target Ratio

Memory management 25.69% Domain control 4.17%

CPU virtualization 21.53% Domain building 3.47%

Code emulation 13.19% Event channel 2.08%

I/O 9.03% XSM 1.39%

Exception handling 5.56% Scheduler 0.69%

Grant table 4.86% Others 3.47%

Global 4.17%

worst of all, 3) an unprivileged VM may attack the hypervisor
through vulnerable hypercalls or buggy code emulation, fully
compromising all security on the system.

In this section we summarize our investigation of Xen
attacks as they relate to the target code module, vulnerability
steps, and high level compromise result. Our results are derived
from analyzing the Xen Security Advisories (XSA) vulnerabil-
ity database, which lists 191 discovered vulnerabilities between
early 2011 to the middle 2016. A comprehensive evaluation
and analysis of these results as well as how Nexen defends
against them is presented in an online appendix located at
http://ipads.se.sjtu.edu.cn/xsa/ [1].

A large portion of such vulnerabilities (75.39%) are related
to the hypervisor. They either directly target the hypervisor or
aims at VMs but take advantage of bugs in the hypervisor.
Other ones (24.61%) are mostly flaws in QEMU and tool stack,
which reside in Dom0. Since the latter ones can be effectively
mitigated by disaggregating drivers and domain management
tools, e.g., using different driver domains and management
domains for different guest VMs, we focus on vulnerabilities
related to the hypervisor in this paper.

We classified these vulnerabilities in three different ways.
The first way is based on target, i.e., the functionality module
where the exploit happens. Table I presents the distribution
of vulnerabilities. We can see that I/O, memory management
and CPU virtualization(including code emulation) are the most
dangerous modules, while modules like scheduler and event
channel has nearly no known vulnerabilities.

The second way is based on the result that a vulnerability
may cause. We can observe from the Table III that most of
these vulnerabilities cause host DoS, information leakage or
privilege escalation to the hypervisor.

Table II shows the result of our third way of classification
based on the key step of exploiting a vulnerability. Here live
lock means long non-preemptible operation can be performed
without rate limiting. An observation is that most vulnerabil-
ities simply cause a CPU hanging or a fault that will kill
the host. Although many vulnerabilities can cause memory
corruption, their affecting ranges are usually very limited. As
shown in the above table, only a few of them have the potential
to eventually achieve privilege escalation.

Another key observation is that, although most of the
catastrophic vulnerabilties and CPU hangings can be caught,
in most cases, the handler still has to kill the entire host instead
of recovering. The main reason is that the hypervisor lacks the
precision to identify individually corrupted components.
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Fig. 1. Comparison between hypervisor reorganization approaches for both Xen and KVM.

TABLE II. KEY STEPS OF

VULNERABILITY

Key Step Ratio

Memory corruption 45.14%

Misuse of h/w feature 22.22%

Live lock 8.33%

Infinite loop 6.25%

False BUG_ON 6.25%

General fault 4.86%

Run out of resource 4.17%

Dead lock 3.47%

TABLE III. THE RESULTS OF

DIFFERENT ATTACKS

Result Ratio

Host DoS 61.81%

Privilege escalation
(to host)

15.28%

Info leak 13.89%

Guest DoS (self) 6.25%

Guest DoS (other) 2.78%

Privilege escalation
(to guest kernel)

3.82%

TABLE IV. COMPARISON ON ATTACKS DEFENDING.

Hypervisor illegally

accesses VM’s data

Guest causes

host DoS

Guest application

hacks its own VM

by hypervisor

Disaggregated Xen [22] No No No

Xoar [12] No No No

Turtles KVM [9] No Yes No

DeHype [34] No Yes No

HyperLock [33] No Yes No

CloudVisor [37] Yes No Yes

Nexen Yes Yes Yes

Overall, we believe that a reliable isolation mechanism with
the ability to limit the privilege of each part of the hypervisor
can effectively prevent most attacks, which we demonstrate in
the rest of the paper.

B. Previous Solutions

Prior research has explored various hypervisor hardening
techniques. Figure 1 classifies core related efforts according
to their platform (Xen or KVM), trusted components, and the

hardware privilege layer each component resides: ring-0 or
ring-3 and root mode or non-root mode.

The top half of the figure shows the architectures securing
Xen. Xen has a Dom0, which is a privileged para-virtualized
VM that is responsible for I/O operations2. VMs run in
non-root mode without modification, a.k.a., hardware-assisted
virtual machine (HVM). Disaggregated Xen [22] decomposes
Dom0, moving all the code for building a guest VM to a
separate VM named DomB (“B” for “Builder”). Thus any
vulnerabilities of the domain builder can be isolated within
the VM boundary without affecting other VMs or the host
system. Xoar [12] takes a further step by decomposing Dom0
into 7 different kinds of VMs, each focusing on just one
functionality, to achieve better fault isolation and smaller attack
surface. CloudVisor [37] targets a different goal: to protect the
guest VMs from a malicious hypervisor. It leverages nested
virtualization that puts Xen and Dom0 in non-root mode so that
all privileged operations will trap to CloudVisor for security
checking. CloudVisor can effectively defend against attacks
leveraging the hypervisor’s vulnerabilities to attack the guest
VM, e.g., in-guest privilege escalation. Most of these systems
focus on isolating Dom0’s vulnerabilities, but none of them
can defend against host DoS attacks through Xen exploits.

The bottom half of the figure shows hardening of KVM.
Unlike Xen, KVM is a kernel module in Linux. It only handles
hardware events generated by the CPU, leaving most of the
resource management (like the virtual CPU scheduling and
memory management) to the Linux kernel. Qemu emulates
devices at user-level. The Turtles project [9] has implemented
nested virtualization for KVM that can run guest VMs inside
a guest VM as a sandboxing mechanism. Xen has since
added support for nested virtualization as well [16]. Although
Intel keeps updating its processor to have better support for

2Dom0 typically runs in ring-3 in x86-64 and ring-1 in x86-32. Here we
only consider x86-64.
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nested virtualization [11], performance overheads are still
non-negligible. DeHype [34] and HyperLock [33] decompose
KVM by creating a KVM instance for each guest VM. As a
result guest VMs can only impact (e.g., crash) its own instance.
DeHype puts the KVM instances in ring-3, resulting in high
performance overhead. HyperLock implements an in-kernel
isolation mechanism that enables different KVM instances
running within ring-0 to reduce the performance overhead
while still retaining isolation.

III. DESIGN

The primary goal of Nexen is to harden Xen against various
security threats. This is challenging because Xen operates with
ultimate system authority: there is no privilege layer to enforce
the hardening. Our key idea is to deconstruct Xen into separate
protection domains that apply the principle of least privilege
and to do so at a single privilege level.

In this section we overview Nexen, present our technique
to obtain single privilege layer isolation, describe the isolation
services that enable least-privilege, and present our decompo-
sition strategy for informed separation.

A. Nexen Overview

The Nexen architecture (Figure 2) decomposes the mono-
lithic hypervisor into a minimal, fully privileged security
monitor, monitor, a less privileged shared service domain,
and fully sandboxed Xen slices. All these domains run in
the highest privilege of the system, i.e., ring 0 of the root
mode. The core challenge of doing this at a single privilege
layer is obtaining a tamper-proof protection mechanism with
which to enforce isolation within Xen. To do so we utilize and
extend the Nested Kernel Architecture design [14] to isolate
the security monitor while operating in root-mode.

Nexen uses the isolated security monitor to control all
updates to the MMU. By controlling the MMU Nexen can
guarantee isolation between internal domains and manage
privileges. With carefully designed policies, Nexen can ensure
each internal domain has only the necessary privileges, which
significantly reduces the attack surface of the whole system.

The next challenge Nexen considers is to devise a valuable
deconstruction of Xen. In our security analysis we observed
that many vulnerabilities are localized to specific units of
functionality in Xen. If we sandbox this functionality then we

TABLE V. ATTACKS CONSIDERED & NOT CONSIDERED BY Nexen.

Malicious

Component

Steal or Tamper

with VM’s Data
Guest DoS Host DoS

VM (User) N.A. Considered Considered

VM (Kernel) Not Considered N.A. Considered

Other VM Considered Considered Considered

Xen Slice Considered Not considered Considered

Shared Service Considered Not considered Not considered

would be providing valuable security enhancement. This is
similar to the device driver isolation literature, where highly
susceptible code is sandboxed [38], [26].

Therefore, Nexen decomposes Xen into per-VM slices that
are naturally sandboxed from all other components in the
system. Each Xen slice is bound to one VM and serves only
this VM. VMs will only interact with their own Xen slice
during runtime. Xen slices share code but each has its own
data. They are the least privileged internal domains, and errors
in one Xen slice are not considered dangerous to the whole
system or other VMs.

Unfortunately, a simple decomposition of all functionality
into slices is untenable because subsets of functionality interact
across slice boundaries. High frequency privilege boundary
crossing cause high performance degradation. So we create
a single, slightly more privileged shared service domain—but
still not as privileged as the security monitor. Deciding what
to place in per-VM slices and the shared services domain is
non-trivial and one of the key contributions of this work.

In the following sections, we first introduce the design of
the core security monitor. Then we describe how to build in-
ternal domains based on the security monitor, along with their
interfaces and properties. Finally, we show how to deconstruct
the hypervisor to minimize its vulnerability.

B. Assumptions and Threat Model

We consider that an attacker can take full control of a user
application running in a guest VM, and tries to gain higher
privilege or issue DoS attack by exploiting the hypervisor and
its own OS. We consider the attack against hypervisor through
its flaws. We also consider the attack against guest OS through
the hypervisor’s vulnerability, but not through the guest OS’s
own bugs.

We also consider that an attacker can deploy a complete
malicious guest VM on the virtualized platform, and try to
attack the hypervisor to further attack other VMs and the entire
platform through illegal data accessing or DoS attacks.

The Xen slices and shared service are not in the TCB
of our system. Even if they are compromised, they cannot
illegally access guest VM’s data. However, they can issue
DoS attack. Specifically, a Xen slice can just stop serving
its own VM, while the shared service may crash the host by
disabling scheduling. However, we do not consider physical
attacks as well as side channel attacks between different VMs.
A complete threat model matrix is listed in Table V.

C. Isolating the Monitor

The monitor is the most fundamental element to Nexen
protections. If the monitor is compromised all security in the
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system is lost—this is true of any protection system. The
monitor must therefore be tamper-proof without creating high
overheads or forcing large changes to the Xen code base.

Instead of deprivileging Xen by moving it into Ring-3 we
use nested MMU virtualization [14], which nests a memory
protection domain within the larger system at a single privilege
level. The benefit is that Nexen creates minimal performance
degradation and modification to Xen while gaining a tamper-
proof monitor. Nested MMU virtualization works by monitor-
ing all modifications of virtual-to-physical translations (map-
pings) and explicitly removing MMU modifying instructions
from the unprivileged component—a technique called code
deprivileging.

Nexen virtualizes the MMU by configuring all virtual
address translations (mappings) to page-table-pages as read-
only. Then any unexpected modifications to the page tables can
be detected by having traps go directly to the monitor. Further,
accesses to the MMU through privileged instructions must be
protected. This includes accesses to CR0 controlling the paging
and to CR3 controlling the address spaces. Nexen removes
all instances of such operations from the deprivileged Xen
code base such that there are no instructions that can modify
the MMU state: we validate this assumption by performing
a binary scan to ensure no aligned or unaligned privileged
instructions exist. The last element is to ensure that none of
the Xen components inject privileged instructions. Because the
monitor has control of the page-tables it can easily enforce
code integrity and data execution prevention.

By restricting control of the MMU to the monitor, Nexen
greatly reduces the TCB for memory management and iso-
lation services. It also enables the monitor to control critical
privileges in Xen including properties like code execution and
entry gates.

D. Intra-Domain Slicing

The primary goal of Nexen is to enhance Xen’s security by
deconstruction. To do this Nexen provides the core abstraction
of a slice to represent internal domain. Nexen extends the
monitor to provide a set of basic functionality that is required
to securely create, manage, and permit interactions between
internal domains. As shown by our vulnerability analysis,
isolation and minimizing privileges are effective ways to limit
the attack surface and control the damage.

Nexen enables two types of internal domains. The global
shared service and per-VM Xen slices. Components like the
scheduler and domain management are placed in the shared
service while functions related to only one VM, e.g., code
emulation and nested page table management, are replicated
to each Xen slice.

1) Internal Domain API: Nexen provides an internal do-
main to the shared service for the management of slices.
Shared service and the monitor are built as the system boots.
All Xen slices must be built by explicitly calling the following
interfaces provided by the monitor.

• void* nx_create_dom(int dom_id)

• void nx_destroy_dom(int dom_id)

• void* nx_secure_malloc(size_t size,

int owner,int policy)

• void nx_free(void* p)

These interfaces are open only to the shared service which is
responsible for building new domains. Since we use memory
mapping based isolation mechanism, each domain has its own
address space. nx_create_dom() will create a new address
space for the specified new domain and return the address of
its root page table. This is called during guest VM booting.
nx_secure_malloc() is used to assign a memory region
for storing an internal domain’s own data. An owner will have
full read/write access to the data. Access permissions exposed
to other domains are specified by the ‘policy’ argument. The
other two functions are simply the reverse operations for them,
used during the shutdown or force a destruction of a domain.

2) Controlling Memory Access Permissions: Memory ac-
cess permission is the first class of privileges controlled by
Nexen. Memory regions are mapped differently in different in-
ternal domains so that one internal domain can only see/modify
what’s safe for it to see/modify. Mappings in internal domains
are initialized during domain building and updated later using
a tracing mechanism in the monitor if necessary. monitor
controls all MMU updates to make sure no internal domain
could break the isolation and violate memory access policies
by modifying page tables.

The memory access permissions are presented in Figure 3.
Shared service is allowed to manage memory access permis-
sions through the nx_secure_malloc() interface. Various
policies are available for different purposes. For example,
during booting, shared service will declare its own data as
invisible to all slices. When building a new Xen slice, its inner
data is “granted” to it, which means they can be modified only
in this internal domain. By default, everything inside a guest
VM should not be visible to any internal domain.

 Guest VM

Xen Slice

Shared Service

Secure Monitor

 Guest VM Xen Slice Shared Service Secure Monitor
Object

Viewer

read / write read only not mappedSelf-VM Other VM

Fig. 3. Memory access permissions of different components of Nexen.

The security monitor does not have its own address space.
It is shared by all internal domains. Every domain can directly
request its services, but no one is able to tamper with the
monitor’s inner data. Shared service and every Xen slice have
their own address space. Shared service has its own piece of
data and code. Xen slices share the same code while each has
its own data.

3) Controlling Privileged Instructions: Privileged instruc-
tion is the second class of privilege controlled by Nexen. Many
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special instructions may potentially violate the memory access
policies or even directly harm other internal domains than the
caller. Execution of these instructions must undergo careful
examination. We treat them as “privileged” instructions.

Nexen limits the instruction set each internal domain can
execute to avoid abuse of privileged instructions. No direct
execution of privileged instructions is allowed outside the
security monitor. Internal domains request the monitor to
execute the instructions for them. The monitor enforces a
sound sanity check to prevent unauthorized use and malicious
use of these instructions.

4) Control Flow: To support the interaction between in-
ternal domains, Nexen provides a secure call gate for domain
switching:

• nx_entry(int domain_type, int dom_id)

The domain_type argument specifies whether the switch target
is a Xen slice or the shared service. When domain type is Xen
slice, ‘dom_id’ shows the ID of the target Xen slice.

The call gate guarantee the following features:

• Non-bypassable: It is impossible to switch to another
internal domain without calling the gate.

• Unforgeable: Any call gate not called from its ex-
pected position is not accepted. Each call gate is bound
to both its return address and its domain_type

argument, which must be hard-coded.

• Atomic: Switches of control flow and address space
are atomic. Any attempt to switch to an internal
domain’s address space while redirecting the control
flow to another one will fail the return address check
and be rejected.

Even if the attacker has successfully exploited a vulnerability
leading to privilege escalation, she will only gain full control
inside one internal domain, which normally is a Xen slice. To
do any meaningful attack, the attacker must try to intrude into
another domain through the call gates, which is much harder
than the initial exploit.

We carefully restrict control flows to minimize the possi-
bility for internal domains to attack each other.

                 Secure MonitorGate Keeper

Guest VM

Xen Slice

Shared SrvNexen

Fig. 4. The control flow between components in Nexen.

There is a small piece of code called gate keeper that
controls all exits from VMs to the hypervisor and entries from

the hypervisor to VMs. On entering the hypervisor, the gate
keeper records the trap frame and dispatch the control flow
to the correct internal domain. On exiting the hypervisor, the
gate keeper checks VMCS and other necessary running states
to make sure no policy is violated. If the reason of entering the
hypervisor is an interrupt, the control flow will be transferred
to the shared service. The shared service will deal with the
interrupt itself or dispatch it to a VM and exit to current VM’s
Xen slice. For other reasons, mainly a hypercall or a code
emulation, the control flow directly goes to current VM’s Xen
slice.

A Xen slice usually deal with the request itself. It may use
some services provided by shared service or security monitor.
The control flow will always return to the Xen slice except
for scheduling. Eventually, the control flow goes to the gate
keeper to return to the VM.

We explicitly forbid switching between Xen slices since
no such a need exists. This eliminates the possibility that a
malicious Xen slice can directly intrude into another Xen slice
or further attack the bound VM. The only way to switch control
flow from one VM and its Xen slice to another is scheduling.
Since the scheduler doesn’t receive any input generated by
a guest, and the context after the switch is decided by the
target VM and its Xen slice, an attacker can hardly intrude
through this way, which is also evidenced by the scheduler’s
low vulnerability ratio even in unmodified Xen.

Communication between Xen slices and shared service is
strictly limited to prevent a malicious Xen slice from attacking
the shared service. The only situations where control flow is
allowed to transfer from a Xen slice to shared service are
discussed in the next subsection. We’ll show that all these
transfers are secure enough and can hardly be used as an attack
surface.

E. Decomposing into Slices

The monitor and slicing services provide powerful isolation
and code integrity properties for Xen. They form the founda-
tion for Nexen to apply security relevant partitioning of Xen.

Our deconstruction strategy is to apply the principle of
least-privilege: minimize the authority of each domain in the
system. The best solution would be to create a complete Xen
slice for each VM. Unfortunately, there is functionality that
interacts across much of the Xen system. Another challenge is
to select partitions that minimize the interface between the
shared service and per-VM slices to minimize API abuse.
Significant data structures must also be wisely arranged to
avoid destructive corruption.

As such Nexen must deconstruct Xen in a way that
intelligently partitions functionality—maximize the value of
least-privilege while minimizing cross-domain interactions.
To manage this we identify functionality that is shared and
place it in the Nexen shared service domain, which operates
at a slightly higher privilege level than per-VM slices. The
higher privilege enables special data and cross-domain calling
privileges solely for the shared service domain.

Another high level idea of our strategy is to derive our
partitioning from the vulnerability analysis. Much like device
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driver isolation was motivated by the high degree of vulnera-
bility of drivers, we identify the Xen functionality that is most
likely to be corrupted and place that into the per-VM slices.
On the other side we identify core components that must be in
the shared service domain due to the nature of their operations.

To sum up, we follow three principles in decomposition
work to enhance the security of the system. The first one
is to avoid inserting dangerous functionalities into the shared
service, which is very intuitive. The second one is to avoid
runtime communication. Components in shared service can
be safe even if it contains relatively more vulnerabilities as
long as guests are not able to invoke them actively during
runtime. The third one is to separate mechanism from policy.
Complex calculation and decision making can be processed by
untrusted code. But the final security sensitive operation must
be performed by trusted code. This principle can effectively
reduce the size of trusted code and alleviate the burden of
sanity check.

1) Significant Component Decisions: In decomposing Xen
there are several significant decisions to make either because
the functionality is pervasive or it is a highly vulnerable
component. In this section we provide further analysis of
our deconstruction. The Scheduler, Memory Management, and
Event Channels are all or partly placed in Nexen shared service.
Due to its high complexity and vulnerability, Code Emulation
and I/O are split across per-VM slices. Note that this is not an
exhaustive list.

Scheduler determines which VCPU currently runs on one
CPU. Each VCPU has a credit used to calculate its priority. It
burns as a VCPU runs. Each CPU has a runqueue recording
all VCPUs and their priority. The queue is periodically sorted
to maintain the priority order of VCPUs. There are also some
global parameters controlling the speed of burning credits, the
rate limit of scheduling and other issues. When a scheduling
operation happens, the VCPU with the highest priority is
picked to run in next round.

We can observe that all significant data is naturally closed
for scheduler’s inner use. Credit burning, runqueue sorting
and scheduling are all triggered by timer interrupts without
any interference from guests. Further, CPU is usually shared
between VMs and is not suitable to be assigned to any Xen
slice. Hence, we put the whole scheduler inside the shared
service. No Xen slice is allowed to modify the state of the
scheduler.

There are occasions where a guest wants to yield, sleep
or wake its VCPU. We open these three interfaces to Xen
slice. Their only input is the VCPU pointer used to find
its corresponding data structure inside the scheduler, whose
validity will be checked on the shared service’s side. Nothing
changes except for the guest’s own VCPU’s existence in the
runqueue after these operations. Hardly can any malicious data
be delivered through this interface, nor can any dangerous
behavior be performed.

Event Channel delivers various events between guest
VMs, the hypervisor and hardware. Each VM has its own event
channel bucket, which contains a number of event channel
ports. A port can be bound to an interrupt or another VM’s
port. VMs maintain their own buckets while the hypervisor
helps to deliver the events.

Since event channel buckets are tightly bound to VMs, we
put each VM’s bucket in its own Xen slice to avoid abuse from
other VMs. Interrupts related to one VM will be forwarded to
its Xen slice, so delivery of events bound to interrupts are
done by Xen slices. When a VM send event to another VM, it
will have difficulty writing the pending bit in the target VM’s
port for the lack of writing permission. We proxy this request
through the shared service, which is another interface open
to Xen slices. This request is safe enough because the only
information provided by the sender is the target VM’s port
number, which is easy to examine.

Memory Management contains everything related to
memory operation, mainly memory allocation and memory
mapping update. The core data structures are page tables and
a page_info region maintaining the usage state of each
physical page. Allocator’s free page list is built based on the
linked list field in page_info structure. Other information
in page_info is referred to and updated during memory
mapping update.

Allocator is only used during booting and domain building,
so we keep it in the shared service and do not expose any inter-
face to Xen slices. Memory mapping update is mostly related
to only one VM. Xen slices are allowed to manage their bound
VM’s memory mapping update. One challenge here is that
page_info region is required by both functionalities, each
in a different type of internal domain. Fortunately, memory
region of Xen and each VM has a clear boundary. We map the
region in every internal domain, but only grant to each Xen
slice the writing permission of their own page information.
Both functions work nicely in this way. Apart from that, no
internal domain has the permission to write page tables. After
making the page table update decision, they must request the
monitor to perform the operation. Such updates are carefully
checked to make sure no policy is violated.

Code Emulation and I/O are related to CPU features more
than memory. These parts of the hypervisor provide virtual
CPU and devices for VMs by catching and emulating VM’s
privileged operations. The emulation code sometimes runs the
privileged instructions itself to get necessary data. This whole
process is extremely error-prone. Attackers may directly cause
an exception, corrupting memory in another module, or steal
sensitive data from other VMs through the misuse of hardware
features.

We run the emulation code in each VM’s Xen slice and
grant VM’s VCPU running state to the Xen slice. Although
the misused hardware features are largely out of our control,
attempt to corrupt other parts of the system must go back
to memory. Even if the attacker has successfully raised her
privilege to that of the host, Nexen can still enforce the memory
access policies. The attacker will be isolate in the Xen slice and
achieve nothing worthwhile. If the attacker chooses to trigger
a deadly exception, the handlers are modified so that only
the Xen slice, instead of the whole system, is destroyed. We
are able to do this because Nexen’s memory isolation gives
the guarantee that no crucial data are corrupted during the
exception.
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TABLE VI. CONTENT OF SHARED SERVICE

Shared service content

Scheduler

Allocator part of memory management

Interrupt handlers

Domain building

Event delivery of event channel

IV. Nexen IMPLEMENTATION

We implemented a prototype of Nexen based on Xen
version 4.5 for Intel x86-64 architecture. This section describes
how we address three main technical challenges: First, how
to enforce inter-domain isolation and memory access policy?
Second, how to control privileged instructions? Third, how to
monitor the interposition between the hypervisor and VMs?

A. Isolation between Internal Domains

We used an isolation mechanism based on memory map-
ping. Each internal domain resides in its own virtual address
space. The permission bits in page table entries are set accord-
ing to memory access policies. In this way, Nexen controls
what every internal domain is allowed to read and write.

To achieve this, Nexen interposes memory mapping updates
and enforces a set of carefully selected invariants to provide
flexibility in applying policies on any memory region. Addi-
tionally, Nexen allows interaction between internal domains
while retaining the isolation.

1) Control Memory Mapping Update: Nexen maps all
page-table-pages as read-only in all address spaces and enables
the Write Protection (WP) bit, forbidding mapping updates.
The security monitor’s internal data is also mapped read-only
to avoid modification from malicious domains. As control
flows into the monitor the WP-bit is flipped so that the monitor
can update page tables and maintain its internal data structures.
On exiting the monitor, WP-bit is enabled. Interrupts are
disabled while executing in the monitor to make sure no entity
can hijack the control flow when the WP-bit is turned off.
In this way, the monitor completely controls all mappings.
Memory mapping updates in internal domains are replaced
by calls into the monitor, but the logic for their management
remains in the domain.

2) Enforcing Memory Invariants: Before each memory
mapping update, the security monitor needs to do sanity
checking to enforce certain invariants. These invariants are
independent of policies and have the highest priority in all
rules. They keep the memory layout and the most significant
data structures of the system intact in any condition. The
invariants of each type of memory are shown in Table VII.

The monitor maintains an internal data structure recording
the usage of each physical page. Invariants are mostly based
on the memory page’s usage type and owner.

3) Enforcing Memory Isolation Policies: To provide a
flexible way to protect internal domains’ data, memory of
Protected Data type can have various policies. The monitor
has a special allocator inside itself for allocating protected
data, through which policies can be specified for each memory
region. The allocator has an inner memory pool recording the
address, size and policy related information for every allocated

and free memory region. When building a domain, the shared
service will ask for memory from the allocator for the new Xen
slice’s data structures. The policy is given to the monitor along
with the request. All the information is recorded in the memory
pool. When the new address space is eventually created, the
monitor will traverse the memory pool and modify mappings
for recorded memory regions according to their policy. As is
described in the invariants, mappings for protected data will
not be changed once the owner VM has started. So no one can
trick the monitor into exposing other domain’s data.

Frequently used policies are:

• Grant: Data is granted to a Xen slice. They can be
modified by its owner Xen slice. In other internal
domains they are mapped read-only.

• Half Grant: Data is granted to a Xen slice. They can
be modified by the owner Xen slice and the shared
service. In other Xen slices they are mapped read-
only.

• Grant and Hide: Data is granted to a Xen slice. They
can be modified by owner Xen slice. In other internal
domains they are unmapped.

• Limit: Data is granted to the shared service. In all
Xen slices they are mapped read-only.

• Limit and Hide: Data is granted to the shared service.
In all Xen slices they are unmapped.

4) Securing Call Gate: Nexen provides a gate allowing the
switch between internal domains. It is a function call with the
target internal domain’s type and id as arguments. The function
itself switches the address space to that of the target domain.
The return address determines the target domain’s entry point.

To make sure the switches of control flow and address
space happen atomically, we turn off interrupt during the
execution of the gate and check the validity of the function
call’s return address. All gates are placed at fixed places in the
code. Calling through a function pointer is forbidden. All valid
return addresses for an internal domain are collected with the
help of the compiler and stored in a table. At each call of the
gate, the return address is searched in the table. Only if it is a
valid one recorded in the table will the address space switch
be executed. The table is sorted and search with binary search
to speed up the process.

B. Confining Privileged Instructions

To ensure isolation, Nexen must control the execution of
sensitive instructions. Nexen achieves this with two methods:
“monopolize” and “hide”. Internal domains are deprivileged
from direct access to sensitive instructions. Similar to memory
mapping validations, any uses of sensitive instructions are
forwarded to the security monitor, which ensures all invariants
to maintain isolation.

A “monopolized” instruction only has one instance within
the monitor’s code. Under this constraint, the instruction is
still visible to internal domains. The attacker can either call the
monitor’s interface or directly jump to the instruction if she has
successfully hijacked control flow. If the bad consequence of
the instruction does not occur immediately after the execution,
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TABLE VII. PROTECTION INVARIANTS FOR DIFFERENT TYPES OF MEMORY PAGES

Page Type Protection Invariants

Guest Memory These pages belong to a VM. They are invisible to the whole hypervisor but can be accessed by their Xen slice, which can change their mapping

and type when the VM wants to exchange pages with the hypervisor.

Sensitive Guest Memory These pages contain guest VM’s secret data. They are invisible to the whole hypervisor and cannot be accessed by even its own Xen slice.

They are declared by the guest using a special hypercall and cannot be changed by the hypervisor.

Host Code These pages contain the code of the hypervisor. They are initialized during booting and will never change. They are the only non-user pages

with execution permission and should always be mapped read-only.

Monitor Data These pages contain the security monitor’s inner data. They are always read-only to internal domains.

Protected Data These pages contain internal domain’s own data. Their mappings are initialized according to the policies applied to them. They are initialized

during owner’s domain building and will never change.

Page Table These pages contain the hypervisor’s page tables. They can be declared and undeclared by the shared service. They are always mapped as

read-only. Their type will not be changed unless explicitly undeclared.

Nested Page Table These pages contain nested page tables describing guest physical to host machine memory mapping. They can be declared and undeclared by

owner’s Xen slices. They are always mapped as read-only. The owner’s Xen slice can request to update their content. Rules for this update is

relatively simple: pages of other VMs and the whole hypervisor except for its Xen slice are always invisible.

Others Other trivial and unused pages are described by this label, which Nexen provides no special protection for.

the monitor could do sanity checking after the instruction and
fix the misuse.

“Hide” is based on “monopolize”. It takes a step further
and unmaps the only presence of the instruction. Only when
the operation is used and the sanity checking is passed will
the page be mapped. After execution, the instruction will
immediately be unmapped to avoid abuse. If the execution
of the instruction instantly disables isolation without control-
flow going to the monitor, it should be hidden. When hidden,
the attacker must go through the monitor and sanity checking
since she does not have the privilege to “unhide” via mapping
updates. A malicious execution of the instruction will not pass
the sanity check.

We did a binary code scanning to make sure such instruc-
tions, aligned to instruction boundaries or not, do not exist
in unwanted code region. To prevent an attacker generating
new privileged instructions, we must guarantee the integrity
of hypervisor’s code. The invariants in the memory protection
part has already guaranteed that code section is always read-
only and no new kernel mode code mapping is allowed. Instead
of directly modifying the code section, an attacker may want
to generate code using data region or guest VM’s memory
region. To block these two bypasses, we explicitly forbid the
execution of user code in privileged context. Table VIII shows
privileged instructions and invariants.

C. Interposition between VM and Xen

Apart from enforcing isolation inside the hypervisor, the
monitor plays the role of a gate keeper between guest VMs
and the hypervisor. All interpositions between VMs and the
hypervisor are monitored to enhance bidirectional security.

The monitor dispatches the event to a proper internal
domain when VMs trap to the hypervisor. Once a guest VM is
running and a VMExit occurs, the CPU will trap to the monitor
first, which will check the VMExit reason. If the VMExit
is VM related, e.g., instruction emulation or hypercall, the
monitor will transfer control to the corresponding Xen slice
to handle it. For other reasons like timer interrupt, the monitor
will transfer control to a shared service component like the
scheduler. Once the VMExit has been handled, the handler will
transfer control to the monitor, which will eventually resume
the execution of guest VM.

If a VMExit handler needs to access some data of the
guest VM as auxiliary information, e.g., the instruction to be

emulated, it will also call the security monitor module which
will then access VM’s data and check if it is OK to be retrieved
by the handler. A Xen slice can update VMCS arbitrarily.
When returning to a guest VM, the VMCS will be checked
against a list of fields allowed to be modified for the certain
VMExit reason. Unnecessary updates are rolled back before
resuming the guest VM.

D. Export Nexen to Other Platforms

Nexen can be exported to any other platform with mem-
ory mapping mechanisms similar to x86’s. Memory related
policies, invariants and design decisions are independent of
platforms. They can mostly be reused. Control instructions and
control registers are specific to x86 platform. The system in
the new platform must find alternatives to following features:
controling memory access permissions of the highest privilege
level, forbidding arbitrary code generation and execution,
capturing all interrupts, exceptions and interpositions between
the hypervisor and VMs. Instructions related to these features,
along with any MMU updating instructions, should be consid-
ered privileged intructions and be protected.

V. SECURITY ANALYSIS

This section presents a security analysis on how Nexen can
ensure security isolation and defend against exploits on each
category of security vulnerabilities.

A. Security Isolation

An attacker gaining control of a Xen slice may try to
undermine the isolation enforced by Nexen in four ways. Yet,
none of them will succeed:

Escalating memory access privilege: Either writing pro-
tected memory region directly or writing page table to gain
access to protected memory will result in a page fault. Nexen
will kill the attacker’s Xen slice and VM in this case. If
an attacker tries to intrude through the secure call gate, she
will either lose execution control or fail to gain the desired
permission due to the sanity checking enforced by the monitor.

Abusing privileged instructions: Since privileged instruc-
tions have been removed from the per-VM slices, the attacker
has to reuse those in the security monitor. If she normally calls
monitor’s interface, the malicious behavior will not pass the
sanity checking. If she forges a malicious context and directly
jumps to the instruction, the attacker will lose execution
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TABLE VIII. INSTRUCTION PROTECTION INVARIANTS.

Instruction Protection Invariants

MOV CR0 These pages belong to a VM. They are invisible to the whole hypervisor but can be accessed by their Xen slice, which can change their mapping and

type when the VM wants to exchange pages with the hypervisor.

MOV CR3 By this instruction, an attacker can change the whole address space and will probably redirect the control flow. Considering that, we hide this instruction

and forbid any use of this instruction except for secure call gates and context switch. The target page table base address must point to a declared root

page table.

MOV CR4 SMEP bit in CR4 forbids the execution of user code, which is crucial for code integrity. Considering this instruction will not directly hijack the control

flow, we can protect it with the same method for CR0, by monopolizing and checking loop.

MOV IDTR The monitor must control the entry points of all traps. Interrupt descriptor table (IDT) is mapped as read-only to avoid arbitrary modification. IDTR

records the base address of IDT, which must be set to a verified value. Since interrupt is turned off inside the monitor, any modification to IDTR will not

take effect before exiting. There is no need to hide this instruction.

WRMSR The NX (Non-eXecutable) bit controls non-executable memory execution. Similar to CR0 and CR4, a checking loop is enough for this instruction.

VMOFF This instruction turns off the VMX (VM eXtension) mode of CPU, which is destructive in a virtualization system. This will further allow an attacker to

turn on real mode, which will probably hijack the control flow. Since the consequence is immediate, we hide this instruction.

VMRESUME This instruction immediately returns control flow to guest VM. An attack targeting the guest will work after its execution. An attack targeting the hypervisor

by corrupting the VMCS will take effect on next VMExit. Sanity check is necessary before the instruction. We hide this instruction and only allow Xen

slices to request its execution. Since the control registers will be loaded from the VMCS on next VMExit, we check and enforce the same invariants as

listed above before the resume.

control for a while before exiting the monitor. This is because
instructions that can immediately hijack the control flow are all
hidden from the attacker. The monitor will do sanity checking
and fix the misuse during this period.

Fooling The Monitor: The attacker may try to trick
the monitor into giving her extra privileges. If the attacker
directly requests an operation for which she does not have
the permission, the monitor will immediately discover the
violation of invariants and reject the request. Instead, the
attacker may pretend to be another iDom. Nexen will not give
her any chance since the only identification used by Nexen is
a unique number mapped into the read-only region of each
iDom’s address space.

Fooling Xen: The Nexen architecture largely reused Xen
hypervisor’s code. Since Nexen has more restrictions on each
component’s permissions than the original Xen, such reused
code may assume themselves having more permissions than
those allowed by Nexen. However, since memory and in-
struction invariants and policies are enforced by the security
monitor, which has the highest privilege in the system, these
operations performed by the less privileged Xen slice code
will not succeed, nor will they give the attacker any extra
permission.

B. Effectiveness in Preventing Exploits

In this subsection we analyze how Nexen defends against
different types of vulnerabilities.

In total, there are 144 vulnerabilities related to the Xen
hypervisor. 127 of them are on the Intel x86 platform. We
can directly test the effectiveness over them. Our system can
effectively defend against 96 (75.59%) of them. The other 17
vulnerabilities are specific to ARM or AMD processors. Given
an equivalent implementation of Nexen in these platforms,
11 (64.71%) of them can be prevented. In total, Nexen can
effectively defend against 107 out of 144 vulnerabilities(74%).

When considering how to prevent attacks, a key observation
is that most attacks have a critical step that is non-bypassable.
Table I, II, and III categorize vulnerabilities by the position of
this key step, attacker’s behavior in this step, and the result of
the attack. If we can assure (1) this key step happens in the
sandbox of Xen slice and (2) any further destructive results
will be stopped or limited within the Xen slice, the attack
will be successfully prevented. In the design section, we have

described how to achieve (1) by moving the most vulnerable
parts into Xen slices. They contain most of vulnerabilities that
can be exploited as the key step. So the attacker has to be in
the context of a Xen slice to do the key step. In this subsection,
we will discuss why Nexen can achieve (2) by giving concrete
data and examples corresponding to each result type.
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Fig. 5. Effectiveness based on target and result

Figure 5 is a summary of Nexen’s effectiveness based on
the key step’s target and result types. In this figure, we only
consider the final results of an attack because Nexen stops
most attacks in the last step. Most attacks can only cause
one result, which are counted with a colored bar representing
whether Nexen prevents them. Exceptions are those attacks
that can potentially achieve privilege escalation, which is an
intermediate state that can lead to all kinds of results. They
should have been counted once in each of the result types.
However, we list their numbers in a separate column to avoid
confusion.

There is a clear boundary between those attacks Nexen can
and can not prevent. Attacks with their key steps happening
in Xen slices can mostly be prevented. This is because Xen
slice is a sandbox that can be sacrificed. Exceptions are those
trying to crash or leak information to a guest VM with Iago
attacks. They do not try to harm the hypervisor or other
VMs so sandboxing does not work for them. The gate keeper
guards interactions between the hypervisor and VMs. Part of
attacks that takes effect in a guest VM can be prevented.
However, verifying data corrupted by an Iago attack requires
recomputing, which the gate keeper is incapable of.

The following includes analysis and experiments about how
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Nexen prevents each type of attacks. Case studies can be found
in Table IX. For those attacks Nexen can not prevent, reasons
are analyzed in Table X.

Host DoS – False BUG_ON, Page Fault, General Fault
The methods used by these attack types to cause a Host DoS
are almost the same. They directly trigger an exception (a
BUG, e.g., XSA-37/XSA-102/XSA-111/XSA-145/XSA-168, a
page fault, e.g., XSA-26/XSA-84/XSA-92/XSA-96/XSA-173,
or other kinds of fatal fault, e.g., XSA-12/XSA-44, respec-
tively), the handler of which causes the hypervisor to panic. In
an unmodified Xen, this will directly crash the hypervisor and
lead to host DoS. In Nexen, the handlers for such exceptions
are modified: when the attack happens in the context of a Xen
slice, the attacker’s VM and Xen slice, instead of the whole
hypervisor, are killed.

We tested Nexen’s effectiveness against this type of attack
by calling a customized hypercall that directly triggered a fatal
exception. Our system successfully survived the attack with
only the attacker’s guest VM killed.

Host DoS – Infinite Loop, Dead Lock, Live Lock
The methods used by these attack types to cause a Host
DoS are almost the same. They trap a CPU in a task that
is non-preemptible for a long time (an extremely long or
infinite loop, e.g., XSA-24/XSA-31/XSA-60/XSA-150/XSA-
158, a dead lock, e.g., XSA-30/XSA-74/XSA-127, or repet-
itive long operations, e.g., XSA-11/XSA-45/XSA-89/XSA-
118/XSA-146, respectively). One CPU or the entire hypervisor
will lose response in this condition. If the watchdog is in use,
an NMI will be sent to the CPU after timeout, the handler of
which will kill the hypervisor. Either way will cause a DoS in
the unmodified Xen. In Nexen, the watchdog is in use to detect
the trap of the CPU. The NMI will be received normally, but
its handler is modified in a similar way as fatal exceptions,
that is, only the attacker’s Xen slice and VM are killed. If this
attack occurs in the context of a Xen slice, no critical data
in the hypervisor will be corrupted due to aborting the slice,
because a Xen slice does not have the permission to read/write
data in other parts of the hypervisor.

We tested Nexen’s effectiveness against this type of attack
by calling a customized hypercall that directly traps a CPU
in a task that is non-preemptible, e.g., an infinite loop in the
context of hypervisor. Nexen successfully survived under the
attack while only the attacker’s guest VM was killed.

Host DoS – Run Out of Resource Attacks of this type try
to cause a host DoS by running out specific resources: memory
(XSA-149), disk (XSA-130), or slots of a data structure (XSA-
34). Eventually, an unmodified Xen could hang, panic for
violating an ASSERTION, or crash for a memory corruption. In
Nexen, each Xen slice and the VM are assigned with their own
share of memory and data structure pools. Attacks attempting
to exhaust resources will only run out its own shares, resulting
in an error in Xen slice. As described in previous cases, this
error, no matter which type, will kill the attacker’s own VM
and Xen slice.

We tested Nexen’s effectiveness against this type of attack
by calling a customized hypercall that keeps allocating mem-
ory in the context of the hypervisor. When Nexen’s secure
allocator was used, nothing happened, because a running Xen
slice allocating extra memory is not allowed. When Xen’s

original allocator was used, the attacker’s VM was killed,
because Xen slice does not have the permission to touch any
data in the allocator and a page fault was triggered.

Info Leak – Memory Out-of-boundary Access Attacks
of this type could try to read sensitive data from any part
of the system through memory, e.g., XSA-66/XSA-100/XSA-
101/XSA-108/XSA-132. They either begin with a memory
corruption, e.g., reading out of boundary, or begin with an
uninitialized memory mapped or copied to attacker’s VM or
Xen slice. In the unmodified Xen, a memory corruption could
expose the memory of the whole system to the attacker. Also,
memory pages can be passed freely inside the hypervisor,
leaving a chance for sensitive data to flow to the attacker. In
Nexen, Xen slices are strictly isolated from each other and the
shared service. Sensitive data from other parts of the system
are not visible ( not mapped ) in a Xen slice. In addition to that,
pages recycled and passed to a new Xen slice are monitored by
the security monitor, who will make sure they are completely
cleared during this transition. Thus, all paths from the attacker
to victims’ sensitive data through memory are blocked.

We tested Nexen’s effectiveness against this type of attack
by calling a customized hypercall that directly read another
VM’s state data , to be specific, the domain data structure, in
the context of hypervisor. The attacker’s guest VM was killed
instantly without any return address from the hypercall.

Info Leak – Misuse Hardware Feature Attacks of this
type try to get sensitive data directly through registers in
the hardware instead of memory, e.g., XSA-52, XSA-62,
XSA-172. They mostly start with the hypervisor’s failure to
completely clear up a register’s value. In unmodified Xen,
when a register starts to serve another VM, value left in it
will be accessible to the new VM, potentially leaking the
previous user’s information. In Nexen, important registers’
values are checked and initialized when necessary before
entering into the guest. Although some fields are too expensive
or semantically too complex to check, information leaked
through those containing most valuable information, e.g. stack
pointer, PC, EFLAGS, can be avoided.

We tested Nexen’s effectiveness against this type of attacks
by repeatedly calling a customized hypercall that hang for a
while and returns without restoring stack pointer. The hypercall
returns normally with the stack pointer restored every time.

Guest DoS (self) Although guest VM is not the primary
protection target, Nexen does provide some protection against
direct attacks aiming at a guest VM. Typically, a bug in
the VM’s Xen slice, mostly related to CPU virtualization, is
exploited by the VM’s user program to configure the guest’s
running state in a malicious way. For example, in XSA-40,
an incorrect stack pointer is set for the guest in an operation
that can be triggered by a user program. After returning to the
guest, the malicious running state will crash the VM’s kernel.
Other examples of this type include XSA-10, XSA-42, XSA-
103, and XSA-106. In Nexen, the important running states will
be checked by the gate keeper before context switching to
guest. Incorrect and malicious configurations are fixed, which
will eliminate a considerable number of attacks.

We tested Nexen’s effectiveness against this type of attack
by calling a customized hypercall that sets the guest VM’s
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program counter (PC) to 0 before returning. The hypercall
returns normally with PC properly restored.

Guest DoS (other) This attack type is very similar to
Guest DoS (self). The difference is that the bug in Xen slice
is triggered by another VM instead of the victim VM’s user
program. For example, in XSA-91, Xen fails to context switch
the ‘CNTKCTL_EL1‘ register, which allows a malicious guest
to change the timer configuration of any other guest VM. Other
examples include XSA-33, XSA-36, and XSA-49. In Nexen,
the approach is also similar, namely, by checking the important
running states before context switching to guest and fixing
incorrect and malicious configurations.

We tested Nexen’s effectiveness against this type of attack
by calling a customized hypercall that hang for a while and
set guest VM’s PC to 0 before returning. The hypercall returns
normally with PC properly restored.

Limitation Nexen has mainly three aspects of limitations,
which will be fixed in our future work. First, Nexen cannot
handle vulnerabilities in the shared service. In our design,
shared service is a unique component and is shared by all
Xen slices. If a logic error residing in this part is exploited,
the hypervisor may be compromised. Second, Nexen does not
prevent abuse of I/O devices well. For example, disks are not
managed by Nexen, which may be exhausted to cause a DoS.
This problem can be addressed by extending Nexen’s features
to cover these I/O device resources. Third, since Nexen is
unable to capture all iret instructions used to return to a PV
guest currently, a PV guest’s Xen slice compromised by other
VMs can bypass the gate keeper’s sanity check and arbitrarily
modify the guest’s running state. Fortunately, this can only
result from a malicious administrator.

VI. PERFORMANCE EVALUATION

We evaluated Nexen’s performance overhead by running
standard benchmarks in a guest VM. We use SPEC CPU2006
and Linux kernel compilation to evaluate CPU and memory
overhead and IOzone (a filesystem performance benchmark)
and iperf3 (a network performance benchmark) to evaluate the
I/O overhead. The configuration of the testing machine is listed
in the Table XI. The configuration of benchmarks are listed in
Table XII. “Round” means the times we ran the benchmark.
We show the average results along with standard deviations in
bar graphs.

The results of CPU and memory related benchmarks are
presented in Figure 6. The Y-axis shows the running time
of benchmarks. For purely CPU-intensive applications, e.g.,
perlbench, h264ref, and astar, there is nearly no overhead.
This is reasonable because Nexen mostly lies in the critical
path of memory operations. CPU execution can rarely be
intercepted by Nexen. Even for the relatively memory-intensive
kernel compilation benchmark, the overhead, less than 1%, is
negligible. One reason is that the good control flow pattern
of Nexen avoids excessive interleaving among different Xen
slices and the shared service. Xen hypervisor’s proper usage
of EPT related hardware feature reduces a lot of VMExits for
EPT violation, which further reduces the frequency of calling
Nexen’s sanity checking function There are benchmarks where
Nexen slightly out-performs the unmodified Xen, e.g., gcc,
mcf and libquantum. Considering they show relatively high
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standard deviations, this could be attributed to measurement
variation.

The results for I/O related benchmarks are presented in Fig-
ure 7. Iperf3 is a simple tool measuring the network throughput
of a system. In our test, the PV drivers, now supported by the
native Linux kernel, were used for I/O. Since the data mostly
flows through the shared memory between the guest VM and
Dom0, the hypervisor is out of the critical path of network I/O.
This explains the extremely low overhead in this test (0.02%).
IOzone tests various aspects of a filesystem, which indirectly
reflect the disk I/O throughput. 4KB block size, 20MB file size
and 4 threads were used in this test. The standard deviations
for this benchmark set is extremely large. We ran 50 rounds of
the test to stabilize the result as much as possible. Benchmarks
where Nexen out-performs the unmodified Xen are probably
result of measurement variation. However, we can not rule
out the possibility that Nexen changes the pattern of caching
and buffering in a way that favors these specific operations.
Generally speaking, reading operations are less affected by
Nexen compared to writing operations. The average overhead
in the I/O part is about 2.4%.

Overall, the average overhead of Nexen is about 1.2%.
Nexen mainly adds to the latency of VMExits and MMU
updates. With PV drivers and latest hypervisor version used
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TABLE IX. CASE STUDY ON DIFFERENT RESULTS AND TYPES OF ATTACKS.

Result Attack Type Number Case Studies

Host DoS

False

BUG_ON

6 XSA-111 (CVE-2014-8866). A piece of hypercall parameter translation code assumes that only the lower 32 bits of a

64-bit register variable are used, violation of which will trigger a BUG_ON that kills the hypervisor. This condition can be

deliberately violated by an HVM guest by temporarily changing to 64-bit mode and pass an invalid 64-bit parameter. In

Nexen, the vulnerable code runs in the context of a Xen slice because it can only be invoked by a memory management

hypercall. The modified BUG_ON logic will only kill current Xen slice VM when it is triggered.

General Fault 9 XSA-44 (CVE-2014-1917). The logic processing SYSENTER instruction fails to clear NT flag in EFLAGS register, which

will lead to a nested GP fault in some situations. This is considered by the original Xen a fatal fault, and will cause the

hypervisor to crash. In Nexen, the vulnerable code runs in the context of a Xen slice because it,is part of code emulation

subsystem. The modified GP fault handler will kill only the current Xen slice and VM in this situation.

Page Fault 26 CVE-2014-3967 (one of two CVEs in XSA-96). The implementation of a HVM control operation (HVMOP_inject_msi)

fails to do sufficient check for possible conditions of an IRQ. This allows a NULL pointer to be de- referenced, which will

lead to a page fault that crashes the hypervisor. In Nexen, this piece of code runs in the context of a Xen slice because it

is part of code emulation subsystem. The modified page fault handler will kill only the current Xen slice and VM after

the fault.

Live Lock 9 XSA-5 (CVE-2011-3131). A VM directly controlling a PCI(E) device could issue DMA request to an invalid address.

Although this request will be properly rejected, the error handling logic is not preemptable and takes quite some time.

Repeating this invalid operation will live lock the CPU. In unmodified Xen, the hypervisor will probably be hung and

result in a DoS. In Nexen, this piece of code belongs to the I/O subsystem, which runs in Xen slice context. The CPU

under attack will be detected by the watchdog due to losing response for a long time. The NMI sent by the watchdog will

interrupt the task and its handler will kill the attacker’s Xen slice and VM.

Dead Lock 4 XSA-74 (CVE-2013-4553). The two locks ’page_alloc_lock’ and ’mm_rwlock’ are not always taken in the same order.

A malicious guest could possibly trigger a deadlock due to this flaw, leading to a host DoS in the unmodified Xen. In

Nexen, this piece of code, although deprecated now, should belong to domain control subsystem in Xen slice context. The

deadlock will cause one or more CPUs to lose response and trigger watchdog’s NMI. Its handler will kill the attacker’s

Xen slice and VM.

Infinite Loop 8 XSA-150 (CVE-2015-7970). Under certain circumstance, the hypervisor will search an HVM domain in Populate-on-

Demand mode for memory to reclaim. This operation runs without preemption. The guest VM could manipulate its

memory in a way that the search becomes a liner scanning, which will hang the hypervisor for a long time. In unmodified

Xen, this means a host DoS. In Nexen, this logic, belonging to memory management subsystem, works in the context of

Xen slice. Similar to previous examples, the task will be interrupted by watchdog’s NMI and the attacker’s Xen slice and

VM will get killed in the handler.

Run Out of

Resource

4 XSA-149 (CVE-2015-7969). The VCPU pointer array in a domain data structure is not freed on domain teardown. This

memory leak, when accumulated over time, could exhaust the host’s memory. In an unmodified Xen, this will lead to

host DoS. In Nexen, this leak will not accumulate overtime. The VCPU data structure, one of per-domain data structures,

is allocated by Nexen’s secure allocator and assigned to the domain’s Xen slice. Its memory region is recorded in the

allocator’s memory pool along with the domain’s ID. On domain teardown, the memory pool is traversed to search for all

memory regions bound to it. Leaked memory will be detected and recycled during this process.

Info Leak
Memory Out-

of-boundary

Access

11 XSA-108. Xen’s code emulation for APIC erroneously emulates read and write permissions for 1024 MSRs where there

are actually 256 MSRs. Although writing out of boundary is replaced by no-op which will do nothing, the read operation

can go beyond the page set up for APIC emulation and potentially get sensitive data from the hypervisor or other VMs. In

Nexen, this piece of code runs in the context of Xen slice because it is part of code emulation subsystem. Since sensitive

data of other VMs and the hypervisor are all hidden (unmapped) from the Xen slice, the attacker will either read her own

data or read an unmapped page, which leads to a page fault that kills her own VM and Xen slice.

Misuse Hard-

ware Feature

3 XSA-52. This vulnerability appears on AMD CPU, which is different from Nexen’s platform. Given an equivalent

implementation on that platform, this attack can be stopped. XSAVE/XSTORE, commonly used to save and restore user

running state, is misused so that information other than FOP, FIP and FDP x87 registers are ignored while saving and

restoring states with a pending exception. This leaks the running state of previous VM to the attacker. In Nexen, the gate

keeper has an internal save for important running states. When returning to guest, registers not restored will be detected

and fixed, which wipes the information left by the previous user.

Guest

DoS (self)

Various 10 In XSA-40, an incorrect stack pointer is set for the guest in an operation that can be triggered by a user program. In

unmodified Xen, a malicious user could crash the guest VM by triggering this bug.In Nexen, the incorrect value of stack

pointer will be detected and fixed by the gate keeper before returning to the guest. The guest VM will keep working

normally.

Guest

DoS

(other)

Various 1 In XSA-91, Xen fails to context switch the ’CNTKCTL_EL1 ’register, which allows a malicious guest to change the timer

configuration of any other guest VM. This vulnerability appears on ARM platform.Given a system equivalent to Nexen

implemented on ARM, the malicious value of timer register will be detected and fixed by the gate keeper before returning

to the victim guest VM. The guest VM will keep working normally.

TABLE X. ANALYSIS OF ATTACKS NEXEN CAN NOT PREVENT

Target Reason Number Analysis

Shared Part

Logic Error 15 This type of vulnerabilities results from the inherent error of codes in the shared part of the system, e.g., domain

building(XSA-83). Since the shared part is critical in our system and has relatively higher privilege, exploiting a bug

in this part will allow the attacker to do almost anything destructive towards the whole system. Due to the design of Nexen,

these destructive results can not be prevented.

Not

Supported

Feature

7 Xen includes some features that are not essential for virtualization, e.g., PMU(XSA-163). Nexen currently does not consider

vulnerabilities in these parts. As a result, they are shared by the whole system by default and vulnerabilities in them can

lead to the compromising of the whole system. However, this problem can be solved by extending Nexen and covering

these features.

Not

Supported

Resource

2 Nexen only limit memory usage of Xen slices and guest VMs. Other hardware resources are left uncontrolled and shared

by the whole system, e.g., disk (XSA-130). If an attacker wants to exhaust one of these resources, the host could crash.

They can be solved by extending our architecture to cover these non-memory resources and protect and isolate them in a

similar way as memory.

Hardware

Bug

3 They are caused by bugs in hardware. For example, in XSA-9, after executing a certain sequence of safe operations, the

CPU could unexpectedly lock itself up. These vulnerabilities can not be avoided unless the manufacturer of the hardware

fixes the bug or the system refuses to boot when detecting these problematic hardware.

Guest Iago Attack 10 The gate keeper monitors every transition between the hypervisor and guest VMs. Typically, if an attacker wants to attack

the guest VM kernel or leak some information to the guest, the running state of the VM will be compromised to carry

malicious or sensitive data. If the compromised data is simple enough so that a previous state and the operation number

are sufficient to check the validity of a new data, Nexen can stop this attack. However, if the attack is well designed like

an Iago attack, which attacks without breaking the isolation, and verifying which requires a recomputing, Nexen can not

prevent it currently.
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TABLE XI. H/W S/W ENVIRONMENT

Host system Xen 4.5

Host CPU Intel Core i7-4470 @ 3.4GHz * 8

Host memory 16GB

Guest system Ubuntu 16.04-1 (HVM)

Guest VCPU number 4

Guest memory 4GB

TABLE XII. BENCHMARK CONFIGURATION

benchmark round config

IOzone 50 4KB block size, 20MB file size, 4 threads

SPEC CPU2006 9 real world workload

Kernel Compiling 20 linux 4.7, default config

iperf3 20 TCP package

where the frequency of both events dramatically drops, the
overhead of Nexen can be further reduced.

VII. RELATED WORK

Hypervisor Re-organization for Security. Besides the
systems mentioned in II-B, Nova [25] reorganized the hy-
pervisor to several per-VM hypervisors running in user mode
and one small privileged micro-hypervisor running in kernel
mode. The attacks from one VM can be limited in one per-
VM hypervisor. Min-V [23] uses reduce the TCB of the
hypervisor by removing all the unused code base dynamically,
which is called delusional boot. Min-V first boots a guest
VM on a full-fledged hypervisor, then takes a snapshot of
the VM and migrates it to the production platform with a
different hypervisor that disables all the virtual devices that
are not critical to running VMs, and restores the VM on
the new platform. SSC [10] proposes a solution to enable
multiple Dom0s, which is called “UDom0” that runs as user-
level service domains, and enforce the isolation between the
UDom0s. These works aimed to protect the hypervisor from
guest VMs by reducing the trusted computing base (TCB).
However, they only provide limited protection against attacks
from a malicious hypervisor.

Hypervisor Fault Tolerance. There are also many re-
searches that target hypervisor’s fault isolation and tolerance.
ReHype [20] tolerates hardware faults and hypervisor bugs by
microrebooting. It can preserve the state of all running VMs
so the recovery is transparent to the guest VMs. FTXen [18]
focuses on tolerating in-field hardware errors of virtualization
software stack on relaxed hardware. It isolates the faults of
a relaxed core within the boundary of the guest VM running
on that core without affecting other VMs or the hypervisor.
Another way to isolate the fault is nested virtualization,
e.g., the Turtles project [9] and CloudVisor [37]. Intel keeps
improving the hardware support for nested virtualization for
better performance, and recently Xen also adds support for
nested virtualization in its mainstream [16]. TinyChecker [30]
achieves similar goal with nested virtualization by adding
a small software layer for hypervisor failure detection and
recovery. These systems consider hardware faults and software
bugs instead of security vulnerabilities, thus they do not take
attacks like privilege escalation or bypassing the mechanism
of fault tolerance into consideration.

Hardware-assisted Hypervisor Security. NoHype [19],
[29] replaces the software hypervisor by hardware virtual-
ization extensions of processor and I/O devices. However
it loses the flexibility of resource management brought by
virtualization. HyperSentry [5] leverages System Management
Mode (SMM) to protect the hypervisor’s control flow. H-
SVM [17] and HyperWall [27] decouple memory management
and security protection. The hypervisor can manage all the
memory resource but cannot access the memory arbitrarily,
e.g., once some memory pages are assigned to a guest VM, the
hardware ensures that it cannot be accessed by the hypervisor
without explicitly sharing. Such design can effectively prevent
attacks from the hypervisor to guest VMs, but requires non-
trivial hardware modifications.

There are also many work on designing new hardware to
protect guest VMs from untrusted hypervisor [17], [28], [36].
Some of the design has already been deployed in commodity
hardware, e.g., Intel SGX [3], [15], [21]. Haven [8] success-
fully runs unmodified application inside enclave protected by
hardware from system software including operating system and
hypervisor. However, these systems usually consider the attack
from the malicious hypervisor, but does not consider some
types of attack against the hypervisor, e.g., the DoS attack
that crashes the entire host machine.

MMU Virtualization. HyperSafe [32] proposes a tech-
nique named non-bypassable memory lockdown that gathers
all the MMU operations to a specific module and deprivileges
other modules to do similar operations. HyperSafe focuses on
protection of hypervisor’s control flow integrity (CFI), while
our system considers on Xen decomposition and deprivileging
besides CFI. Nested Kernel [14] further provides MMU vir-
tualization as a primitive of operating system to enhance the
security of all kinds of kernel modules. On ARM platform,
TZ-RKP [4] puts the MMU controller into a “secure world”
protected by ARM TrustZone [2]. SKEE [6] also depriving the
OS kernel from controlling MMU, but not using TrustZone for
better performance.

VIII. CONCLUSION

In this paper, we have conducted a systematic research on
all the 191 (effective) vulnerabilities published in Xen Security
Advisories (XSA), of which 144 (75.39%) are directly related
to the hypervisor itself. We then analyzed the distribution of
bugs among different components and consequences. Based on
the above analysis, we proposed a new architecture for Xen
hypervisor, named Nexen, that provides a way to deconstruct
Xen so that a malicious hypervisor cannot directly access the
data within a guest VM, and a malicious guest VM cannot
affect other VM or the host system. Nexen decomposes the
Xen hypervisor into different internal domains: multiple per-
VM slices and one shared service. Each internal domain has
least privilege and are isolated, so that even if one gets com-
promised, it will not affect other ones. We have implemented a
prototype of our design which can correctly handle 107 out of
144 vulnerabilities (74%). The performance evaluation results
also indicate that the overhead is negligible.
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