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We show co-visitation recommender systems can be spoofed to
recommend items as an attacker desires

IOWA STATE UNIVERSITY



Brief Intro to Co-visitation Recommender System

® Key idea: ltems that are frequently visited together in the past are likely to be
visited together in the future
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Key Data Structure: Co-visitation Graph

Each vertex represents an item
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Key Data Structure: Co-visitation Graph
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Key Data Structure: Co-visitation Graph
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Two Recommendation Tasks
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ltem-to-ltem Recommendation
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Related Work

® Xing et al. (USENIX Security’13) proposed pollution attacks to the user-to-item
recommendation

B Relies on Cross-Site Request Forgery (CSRF)
B Not applicable to item-to-item recommendation

® Profile injection (Shilling) attacks to recommender systems via user-item rating
matrices

B Not applicable to co-visitation recommender systems which do not rely on user-item rating
matrix.

® Relationship to adversarial machine learning
® Our attack is data poisoning attack to recommender systems
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Roadmap

® Threat model
® Proposed attacks
® Evaluations on synthetic data

® Evaluations on real-world recommender systems

® Countermeasures

IOWA STATE UNIVERSITY



Threat Model

® Attacker’s background knowledge

High knowledge Medium knowledge Low knowledge
Co-visitation Recommendation Recommendation
Graph Lists Lists
Knowledge
Popularity Item
Threshold Popularity
Scenario Insider YouTube ... Amazon, eBay...

® Attacker’s goal
B User Impression (Ul) : The probability that a random visitor will see the item
B [ncrease Ul of a target item
B Decrease Ul of a target item
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Proposed Attacks

® Promotion attack
B Goal: Increase Ul of a Target ltem

B Make the target Item appear in the recommendation lists of as many items

as possible
f Recommend

items
items
Target Item
E Recommend
items
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Proposed Attacks

® Promotion attack
B Goal: Increase Ul of a Target ltem
B Make the target Item appear in the recommendation lists of as many items

as possible
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Proposed Attacks

® Promotion attack
B Goal: Increase Ul of a Target ltem
B Make the target Item appear in the recommendation lists of as many items

as possible
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Proposed Attacks

® Demotion attack
B Goal: Decrease Ul of a Target ltem
B Remove the target Item from the recommendation lists of as many items as

possible
Anchor ltem ®
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items
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Recommend X
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Anchor ltem
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Key Challenge

® Given a target item and a limited number fake co-visitations
B How to select the anchor item(s) to attack?
B How many fake co-visitations to insert for each anchor item?
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Key Challenge

® Given a target item
B How to select the anchor item(s) to attack?
B How many fake co-visitations to insert for each anchor item?

® Solution: Formulate the attack as an optimization problem
B Select the best anchor items to attack

B Determine how many fake co-visitation is needed to attack each anchor
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Promotion Attack — High Knowledge Attacker

Attacker’s Goal: Promote ltem 3

Select anchor items
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Promotion Attack — High Knowledge Attacker

Attacker’s Goal: Promote ltem 3

Insert 10 fake
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Promotion Attack — High Knowledge Attacker

Attacker’s Goal: Promote ltem 3
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Promotion Attack — High Knowledge Attacker

Attacker’s Goal: Promote ltem 3
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Promotion Attack — High Knowledge Attacker

Attacker’s Goal: Promote ltem 3

I14Anrs D

Recom
iten ® Medium knowledge attacker can be converted into high

Item knowledge attacker by estimating edge weight

® Low knowledge attacker can be converted into medium
knowledge attacker by estimating vertex weight
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Demotion Attack — High Knowledge Attacker

Attacker’s Goal: Demote Item 4
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Demotion Attack — High Knowledge Attacker

Attacker’s Goal: Demote Item 4
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Evaluation on Synthetic Data

® Question we aim to answer
B How does attacker’s background knowledge impact our attacks
B How does the co-visitation graph structure impact our attacks?
B How does the number of inserted fake co-visitations impact our attacks?
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Impact of Attacker’s Background Knowledge
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Impact of Co-visitation Graph Structure
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Impact of Number of Fake Co-visitations
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Evaluation on Real-World Recommender Systems
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Initialization { oo | Insert fake | Exam
anchor items co-visitations results

A

Repeated for approx. 21 days

IOWA STATE UNIVERSITY



Results on YouTube
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Results on YouTube
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Countermeasures

® Limiting background knowledge
B The website can discretize item popularities

Funny Video Funny Video Funny Video
3827 Views 3500+ Views 2000+ Views

Shows exact Discretize Granularity Discretize Granularity
popularity =500 = 2000
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Countermeasures

® Limiting background knowledge
B The website can discretize item popularities
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Conclusion

® Recommender systems are vulnerable to Fake Co-visitation Injection Attacks

® An attacker can use our attacks to spoof a recommender system to make
recommendations as the attacker desires.
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Parameter Estimation

® Convert medium/low knowledge attackers into high knowledge attacker
® The missing knowledge is estimated based on publically available information

Insert a fake item

as probe
Insert co-visitations
until it appears in the

Q Fake Item
recommendation list

of an item ﬁ}r #D\
&f— \o//
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Parameter Estimation

® Convert medium/low knowledge attackers into high knowledge attacker
® The missing knowledge is estimated based on publically available information
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Proposed Attack Algorithm

® General steps

e e s Select items | Insert fake Exam
Initialization > e L
to attack co-visitations results
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acquire solve the view selected
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Parameters optimization same browser
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Experiments on Real-world Recommder Systems
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® Results on YouTube
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Experiments on Real-world Recommder Systems

® Results on eBay
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N
Experiments on Real-world Recommder Systems
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Experiments on Real-world Recommder Systems
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Countermeasures

® Limiting fake co-visitations
B Use CAPTCHA

|

reCAPTCHA
Privac y - Terms

OverlgOks oGy

Type the two words:

I'm not a robot

B Fake co-visitation detection

B Using co-visitations from registered users only
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