
A Large-scale Analysis of the
Mnemonic Password Advice

Johannes Kiesel Benno Stein Stefan Lucks
Bauhaus-Universität Weimar

<first name>.<last name>@uni-weimar.de

Abstract—How to choose a strong but still easily memorable
password? An often recommended advice is to memorize a
random sentence (the mnemonic) and to concatenate the words’
initials: a so-called mnemonic password. The paper in hand
analyzes the effectiveness of this advice—in terms of the obtained
password strength—and sheds light on various related aspects.
While it is infeasible to obtain a sufficiently large sample of
human-chosen mnemonics, the password strength depends only
on the distribution of certain character probabilities. We provide
several pieces of evidence that these character probabilities
are approximately the same for human-chosen mnemonics and
sentences from a web crawl and exploit this connection for our
analyses. The presented analyses are independent of cracking
software, avoid privacy concerns, and allow full control over
the details of how passwords are generated from sentences. In
particular, the paper introduces the following original research
contributions: (1) construction of one of the largest corpora of
human-chosen mnemonics, (2) construction of two web sentence
corpora from the 27.3 TB ClueWeb12 web crawl, (3) demon-
stration of the suitability of web sentences as substitutes for
mnemonics in password strength analyses, (4) improved estima-
tion of password probabilities by position-dependent language
models, and (5) analysis of the obtained password strength using
web sentence samples of different sentence complexity and using
18 generation rules for mnemonic password construction.

Our findings include both expected and less expected results,
among others: mnemonic passwords from lowercase letters only
provide comparable strength to mnemonic passwords that exploit
the 7-bit visible ASCII character set, less complex mnemonics
reduce password strength in offline scenarios by less than ex-
pected, and longer mnemonic passwords provide more security
in an offline but not necessarily in an online scenario. When
compared to passwords generated by uniform sampling from a
dictionary, distributions of mnemonic passwords can reach the
same strength against offline attacks with less characters.

I. INTRODUCTION

Password authentication is widely accepted, has low tech-
nical requirements, and hence is expected to stay as a part of
authentication systems [4], [16]. Irrespective their popularity,
password authentication has always been criticised for the fact
that users tend to choose weak passwords—simply to avoid the

extra effort of memorizing strong passwords. To animate users
to devise stronger passwords, so-called mnemonic passwords
are often recommended, which shall provide both strength and
memorability [14], [31], [41]. Such advice boils down to the
following:

Create a sentence. Memorize it. Concatenate the first
characters of each word. Use the string as password.

The strength of mnemonic passwords is based on three as-
sumptions. First, humans can easily remember their mnemon-
ics, a fact that has been shown within several studies [26],
[41]. Second, it is infeasible to guess a mnemonic, even if an
adversary was able to generate and test millions of guesses per
second. This can be assumed, if the user in fact follows the
advice and creates the mnemonic himself instead of picking
a famous sentence [26]. Third, and most importantly, the
derived passwords inherit most of the guessing difficulty of the
mnemonic, so that guessing the password remains infeasible
as well. To the best of our knowledge, regarding the last point
no results have been published in the relevant literature.

This paper contributes various new and interesting results
in this regard. Our approach is to generate passwords from a
huge sample of human-generated sentences using a generation
rule (a variant of “concatenate the first characters of each
word”), estimate the resulting password distribution with lan-
guage models, and calculate common strength estimates from
the distribution. The contributions in detail:

• We collect one of the largest available corpora of
human-chosen mnemonics (Section III-A).

• We extract a total of 3.1 billion web sentences from
the ClueWeb12 crawl [36] with a specialized filter
algorithm (Section III-B), show that these sentences
are more complex than mnemonics using a standard
readability score, and take a sample with appropriate
sentence complexity (Section III-C).

• We use the corpus of mnemonics to provide evidence
that the distributions of the character probabilities
which are used by common password strength mea-
sures are approximately the same for mnemonics
and web sentences (both all and the less complex
sample). This allows us to substitute web sentences
for mnemonics (Section III-D).

• To model mnemonic password distributions we opti-
mize language models. For this, we introduce position-
dependent language models to password modeling, for
which we show that they improve the estimation over
regular language models (Section IV-B).
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• Using common password strength measures that cover
both online and offline attack scenarios (Section IV-C),
we compare the strengths of password distributions
from all and only the simpler sentences under 18 dif-
ferent password-generation rules (Section V).

Our approach comes along with a number of important
advantages. It is fully reproducible since it uses a static web
crawl. It exploits the knowledge of the password generation
to its full effect, which makes the strength estimates more
reliable compared to estimates obtained from dictionary-based
cracking attempts. It causes no privacy concerns since no
private authentication data is involved. It allows to precisely
compare password generation rules, such as concatenating the
words’ last characters instead of the first.

II. RELATED WORK

Different to existing studies we do not analyze a password
corpus, but put a well-known1 generation principle for pass-
words to the test.

Mnemonic password strength analyses have previously
focused on cracking them by using dictionary or brute-force
attacks [41] or a collection of quotes, lyrics, and similar
known phrases [26]. However, these analyses are based on very
small sample sizes (see Table I), the results depend largely
on the employed cracking dictionaries, and they leave the
exact generation process to the participants. Also, the used
mnemonics are not available. It is interesting to note that
Kuo et al. find that, if not explicitly forbidden, users tend to
choose famous sentences as mnemonics, with the—expected—
negative impact on security.

Very recently, Yang et al. [42] published a strength analysis
on what they call mnemonic-based strategy variants, which are
variations of the “create a sentence” part of the mnemonic
password advice. They find that the security against online
attacks can be increased when suggesting to the users to
use personalized mnemonics and providing them an example
mnemonic and password. In contrast, we analyze the security
for different variants of generating the password from the
sentence. Furthermore, since we use a much larger sample of
passwords, we can also estimate the strength of mnemonic
passwords against offline attacks and our estimates against
online attacks are more robust.

Password strength analysis in general used way larger
password samples (up to 70 million [3]), but do not distinguish
between mnemonic passwords and others. Especially inter-
esting is the analysis by Bonneau, who found differences in
password strength between different user groups (determined
by account settings) [3]. Our current data does not provide this
kind of meta information.

An overview of the cracking methods used in these anal-
yses is presented by Dell’Amico et al. [9]. Language models,
which we use for our analysis, are also used in password
cracking [9], [27], [30], [34]. Presumably, these password
crackers would also benefit from our contribution of position-
dependent language models.

1For example in a 2011 survey of 195 university people, about 40% had
already used a mnemonic password [25].

Table I. NUMBER OF MNEMONICS AND PASSWORDS IN THE CORPORA
OF THIS AND OTHER STUDIES. FOR THE CORPORA OF THIS STUDY, THE

NUMBER OF PASSWORDS IS AVERAGED OVER GENERATION RULES.

Corpus #Mnemonics #Passwords

Webis-Sentences-17 3 369 618 811 1 381 862 722
Webis-Simple-Sentences-17 471 085 690 234 106 405
Webis-Mnemonics-17 1 048 1 035

Obfuscated Yahoo! passwords [3] - 70 000 000
Leaked from RockYou (e.g., [39]) - 32 000 000
University passwords [28] - 44 000
Phished from MySpace (e.g., [9]) - 34 000
Survey by Kelley et al. [21] - 12 000
Survey by Yang et al. [42] 5 334 6 236
Survey by Kuo et al. [26] 140 290
Creation advised by Yan et al. [41] 97 290
Received from Passware [30] - 140
Survey by Vu et al. [38] 40 40

Extending the usual mnemonic password advice, Top-
kara et al. [37] suggest complex generation rules to create
passwords very different to the mnemonic. This allows to
produce from the same mnemonic somewhat independent pass-
words with different generation rules, which aims at reducing
password-reuse between services. Our estimates could also be
calculated for such rules.

The good memorability of human-chosen mnemonics has
been shown by previous studies. For example, Yan et al.
found that mnemonic passwords are about as memorable as
passwords selected freely but with at least one non-letter [41].
As memorability measure, they used the time needed until the
passwords—which the 290 participants had to use frequently—
are memorized. Random passwords, on the other hand, took
about 8 times as long to remember.

A different approach to mnemonic passwords is to generate
the mnemonics for the users using either sentence templates
and dictionaries [1], [20], linguistic transformations [19], or
language models [13]. While this removes the problem of hu-
mans choosing weak mnemonics, it is unclear how this changes
the memorability compared to human-chosen mnemonics.

III. SENTENCE CORPORA ACQUISITION

The analysis of a password advice requires a huge sam-
ple of the random element of that advice. In the case
of the mnemonic password advice, the random element is
the mnemonic. Section III-A introduces the new Webis-
Mnemonics-17 corpus, which now is the largest corpus of
human-chosen password mnemonics, but which is still far
too small for a well-founded statistical analysis. Hence this
section introduces also two new corpora of web sentences: the
Webis-Sentences-17 corpus (Section III-B), as well as a subset
called the Webis-Simple-Sentences-17 corpus whose overall
sentence complexity better fits that of password mnemonics
(Section III-C). Section III-D demonstrates that mnemonics
and web sentences, though different, are very similar in the
distributions of character probabilities which are relevant for
estimating the password strength. With this knowledge, we can
then estimate the strength of mnemonic passwords using the
web sentence corpora.
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Figure 1. The HTML interface used to collect the Webis-Mnemonics-17 corpus (Section III-A). (a) Complete interface at the survey start. Participants have to
read a security guidance. After that, the steps (b-e) are shown one at a time. (b) Participants have to enter a sentence that fulfills our requirements (automatically
checked, Section III-A). (c) Participants see their sentence and the corresponding password and are told to memorize both. They have to type in the password.
Should they try to paste the password, the pasting fails and they are told not to do so. They can go back to step 1 to choose another sentence. (d) Participants
have to select one option for each question. (e) Participants are asked to recall sentence and password.
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Figure 2. Distribution of sentence lengths in the Mnemonics Survey corpus
and fitted geometric model.

A. The Webis-Mnemonics-17 Corpus

With the aid of the crowd-sourcing platform Amazon
Mechanical Turk, 1 117 mnemonics were collected in a short
survey, each from a different worker. Figure 1 shows the study
interface. The workers are told to chose a mnemonic and
remember it (without writing or copying) while answering
password-related multiple-choice questions. The study has
been designed to fulfill best practices for Mechanical Turk
user studies [23]. For example, encouraging a participation in
good faith by disabling copy-and-paste. The workers took on
average 3 minutes and 35 seconds to complete the study.2

2The corpus with detailed interaction logs of the workers is available at
www.uni-weimar.de/en/media/chairs/webis/corpora/webis-mnemonics-17

Instead of trying to reproduce the memorability results of
previous research (cf. Section II), we opted for a shorter study
with more participants.

In detail, the workers were asked to “create a new, mean-
ingful, and easily memorable English sentence that no one
can guess.” To resemble the advice of choosing the mnemonic
related to the web page for which it is used (e.g., [14]), we
randomly showed one topic suggestion (money, shopping, mail,
talking with friends, or no suggestion) to the workers. The
survey interface automatically enforced certain constraints to
mirror plausible password requirements: The mnemonic must
contain (1) only 7-bit ASCII characters; (2) at least 12 words;
(3) at least 9 different words from an English dictionary (to
ensure English mnemonics); and (4) no sequence of 6 or more
words that also occurs in the Webis-Sentences-17 (detailed
below, like a blacklist of known phrases).

After manual cleaning, 1 048 mnemonics remain. In detail,
we rejected 17 workers that submitted grammatically incor-
rect mnemonics, and filtered mnemonics that were inherently
meaningless (10), contained several phrases (40) or a known
phrase missed by our filter (1 mnemonic), and where the
interface did not record correctly (1 mnemonic). As Figure 2
shows, the length of the remaining mnemonics follows a
geometric distribution, which is similar to password length
distributions in general [27]. Table III gives a few examples
from the corpus for each suggested topic.
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Despite being one of the largest available corpora of
human-chosen mnemonics for password generation, the Webis-
Mnemonics-17 corpus is still too small for the calculation of
theoretical password strength estimates. Such strength esti-
mates rely on the probability distribution of the passwords,
which can not be estimated for corpora of such a small size:
Every sentence from the Webis-Mnemonics-17 corpus leads to
a different password, which makes it impossible to infer the
probability distribution from the data. Because of this, most
previous work on strength estimates for mnemonic password
strengths [26], [41] were restricted to reporting the percentage
of cracked passwords when using cracking software, with
the usual drawbacks [3]: results are hard to compare, hard
to repeat, and rely on the specific cracking method. For
example, because they use different cracking methods, Yan
et al. and Kuo et al. come to different conclusions regarding
the password strengths. In order to resolve these problems,
we use a web crawl to collect a huge amount of sentences
that are sufficiently similar to human-chosen mnemonics like
those in the Webis-Mnemonics-17 corpus. We then use these
web sentences in place of the mnemonics (see below).

B. The Webis-Sentences-17 Corpus

To analyze natural language sentences at huge scale we
specifically designed the new Webis-Sentences-17 corpus,3
which is based on the ClueWeb12 web page crawl (ver-
sion 1.1) [36]. The ClueWeb12 is a 27.3 TB collection of
733 million English web pages crawled in 2012. It covers
authors from a wide range of age, education, and English-
speaking countries. The ClueWeb12 is distributed as HTML,
making an automatic sentence extraction method necessary.

Since we are interested in content sentences only, we
design an automatic extraction algorithm and test it by com-
paring it to human extraction capabilities. For this purpose,
924 sentences were manually extracted by copy-and-pasting
all fitting sentences from 100 random ClueWeb12 web pages.
Out of the passwords from automatic sentence extraction, 81%
match those from the human extraction.4 As Section III-D
shows, this quality is sufficient for the purposes of this paper.

We use an own open source extraction method with opti-
mized parameters:5 The method renders the web page text6
and removes non-English paragraphs [15], paragraphs with
less than 400 characters, sentences with less than 50% letter-
only tokens,7 and sentences without English function word.
We found that some domains use the same sentence frequently
and filtered such sentences by removing re-occurrences within
1 000 extracted sentences. Further excluding spam pages [8]
could not improve the method. We also tried the standard
Boilerpipe ArticleSentenceExtractor [24], but found that it
performed worse in our tests.

The final Webis-Sentences-17 corpus contains 3.4 billion
sentences. From these, we generate on average 1.4 billion
passwords of length 8 to 20 per generation rule. We chose
this range based on length limits in popular web pages [18].
Table IV gives a few examples from this corpus.

3www.uni-weimar.de/en/media/chairs/webis/corpora/webis-sentences-17
4Tested for the lowercase letter word initials password generation rule
5Source: github.com/webis-de/aitools4-aq-web-page-content-extraction
6Rendering by Jericho HTML: jericho.htmlparser.net v. 3.2
7Tokenization by ICU4J: site.icu-project.org/home v. 53.1
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Figure 3. Distribution and fitted model of syllable counts per word for
the Webis-Mnemonics-17 corpus (top) and per sentence of length 12 in the
Webis-Sentences-17 corpus (bottom)

C. The Webis-Simple-Sentences-17 Corpus

As the Webis-Sentences-17 corpus intuitively contains
more complex sentences than can be expected for mnemonics,
we created the Webis-Simple-Sentences-17 sub-corpus with a
sentence complexity like in the Webis-Mnemonics-17 corpus.3
For measuring sentence complexity, we use the standard Flesch
reading ease test [11] (higher F means more readable):

F = 206.835− 84.6 · #syllables
#words

− 1.015 · #words
#sentences

. (1)

For the Webis-Simple-Sentences-17 corpus, we sample
sentences from the Webis-Sentences-17 corpus such that, for
each sentence length, the syllable distribution of the sampled
sentences matches the syllable distribution in the Webis-
Mnemonics-17 corpus. Since this requires only to compare
Flesch values for single sentences of the same length, Equa-
tion 1 essentially reduces to the number of syllables, where less
syllables correspond to simpler sentences. For the sampling
probabilities, we fit negative binomial models—which are
usual for syllable counts of English sentences [17]—to the ob-
served syllable counts of the Webis-Mnemonics-17 and Webis-
Sentences-17 corpora.8 Figure 3 shows these models. When
sampling sentences, the appropriate sampling probability for
each sentence length and syllable count follows directly from
these models. Also, the Figure shows that the web sentences
are indeed significantly more complex than human-chosen
mnemonics. Hence, the Webis-Simple-Sentences-17 corpus
is more similar to mnemonics than the Webis-Sentences-17
corpus. The final corpus consists of 0.5 billion sentences. From
these sentences, we generate on average 0.23 billion passwords
of length 8 to 20 per generation rule. Table V gives a few
examples from this corpus.

8As the negative binomial distribution is a discrete distribution, the model
for the Webis-Mnemonics-17 syllable counts is first fit to a transformed value
of (syllables-per-word− 1) · 100 and then transformed inversely
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Table II. CHARACTER-WISE CROSS ENTROPY ESTIMATES FOR
PASSWORDS FROM THE WEBIS-MNEMONICS-17 CORPUS OF LENGTH 12.

MODEL CORPORA: WEBIS-MNEMONICS-17 (WM),
WEBIS-SENTENCES-17 (WS), WEBIS-SIMPLE-SENTENCES-17 (WSS).

Character set Model corpus Model order
0 1 2 3 4 5

ASCII
WS 4.95 4.64 4.58 4.56 4.62 4.75
WSS 4.94 4.63 4.56 4.55 4.62 4.76
WM 4.59 4.51 4.54 4.55 4.55 4.55

Lowercase
letters

WS 4.17 4.11 4.08 4.06 4.07 4.14
WSS 4.16 4.09 4.06 4.04 4.06 4.14
WM 4.14 4.10 4.18 4.20 4.20 4.20

D. Web Sentence and Mnemonic Similarity

We will now argue why password strength estimates will
be approximately the same for passwords from mnemonics
and from web sentences. (a) Strength estimates for password
distributions depend on the distribution of password proba-
bilities and not on the literal passwords (cf. Section IV-C).
(b) Password probabilities can be estimated well from a sample
using language models, as successfully exploited for password
cracking [9], [27], [30], [34]. (c) Language models estimate
password probabilities using only the conditional probabilities
of the characters given their preceding characters [7].
Hence, given passwords from two different password sources
in which these conditional character probabilities follow ap-
proximately the same distributions, the password probabilities
of these two sources will also follow approximately the same
distribution (from b+c), and the strength estimates will there-
fore be approximately the same for both password sources
(from a). It is important to note that the above reasoning does
not require that both sources contain the same passwords.
Moreover, algorithmic successes suggest that these conditional
character probabilities from mnemonics and web sentences
follow approximately the same distributions: (1) Automatic
language identification based on related conditional charac-
ter probabilities works robustly on short texts from various
sources [15]; (2) Human-chosen password phrases—a similar
setting to that of mnemonics—can be cracked using language
models from a few million web sentences [34].

In order to provide further evidence for the similarity,
we show that, while complete passwords from mnemonics
and web sentences are likely different, they are composed
from a very similar set of common substrings. This suggests
that the difference between mnemonics and web sentences is
more of a topical than a linguistic kind, and has therefore
not much impact on the strength estimates. To show that
both kind of sentences are composed from a very similar
set of common substrings, we compare the cross-entropy—
a standard similarity measure of distributions—of different
sentence corpora to the Webis-Mnemonics-17 corpus using
language models with specific model orders (cf. Section IV-A
for details). A model of order o only considers substrings up
to o+1 characters. As Table II shows, the cross entropy from
the web sentences corpora to the mnemonic corpus gets about
as low as the cross entropy between different subsets of the
mnemonic corpus. Therefore, the substrings up to length 4 or 5
in passwords from the web sentences corpora are very similar
to those in human-chosen mnemonics.

Table III. EXAMPLE SENTENCES DRAWN RANDOMLY FROM THE
WEBIS-MNEMONICS-17 CORPUS FOR EACH OF THE TOPIC SUGGESTIONS

FROM THE USER STUDY (CF. SECTION III-C).

No suggestion
• What was the color of your car when you were twenty years old?
• The order of my favorite colors followed by my cousin’s pets is

the password that I use.
• The five green ships docked at the west yellow arrow pointing

south.
• i have an upside down kayak that floats on air without wings
• Three birds are sitting on a hibiscus tree driving their cars fast
• my very eager mother just served us pickles, never eat shredded

wheat
• My parents are driving here from Michigan to visit for a week.

Your sentence should be related to mail
• beautiful mails require a touch of golden heart and brave minds

that also pray
• Savings under the floorboards are safer than inside a big bank

vault.
• Boy, you must be Fedex because you look like a hot mail.
• Is it all junk today, or is there anything worthwhile for a change?
• I like talking with my friends about current events and things that

will happen in the near time coming.
• i can remember very well what i try to keep as a secret
• I pick up the mail at noon from the mailbox in the lobby of the

building
• I want to become a successful teacher as well as a lovable mother

Your sentence should be related to shopping
• While shopping i usually purchase meaningless items that i wrap

up in shinny paper.
• when I don’t have money I want it, if I have money I want more.
• the cat liked to shop for cookies and bananas at the store in france
• I go shopping in the spring only when it’s raining in Paris.
• There is a little girl shopping for a blue dress for her sister.
• When I go shopping, I always buy at least two bunches of bananas.
• Warehouse savings can multiply with money deposited into my

account every day.
• My three sons bought the faith of the king with a robe.

Your sentence should be related to money
• Cash is king of the hill and worth every penny and cent.
• The crisp green bill did not leave the frugal boy’s pocket until the

day he died.
• The community i was born and raised in until I turned legal age.
• I like to bathe in a vat of crisp tens and twenties.
• Just like my inventory in Dragon Age Origins I am hella loaded
• My wife and I are often worried we will have enough money.
• She will get a new apron on her 3rd birthday next year.
• i have huge amount of money and have kept all of my money in

savings banks

Your sentence should be related to talking with friends
• How do you know that carrots are good for the eye sight?
• I told my friend a secret and told her not to tell anyone
• Hey tell me what friends usually talk when they meet or call?
• it is important to wash your hands through out the day to keep

proper hygine.
• I like chat with friends because they are so funny and I am happy

I have them.
• My dear friend how are you and do you know the secret about

our teacher mallika
• Talking to friends can be fun and sometimes we learn new things.
• My friends make me feel confident about myself and my work

skills
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Table IV. EXAMPLE SENTENCES DRAWN RANDOMLY FROM THE
WEBIS-SENTENCES-17 CORPUS (CF. SECTION III-B).

• There are also other retail outparcel developments on the other
side of the interchange as well as some industrial development
in the immediate area, so the center promises to have a strong
regional draw.

• The ADA recommends that the costs associated with postexposure
prophylaxis and exposure sequelae be a benefit of Workers’
Compensation insurance coverage.

• Your agents will come away with the knowledge of how service
level and quality go hand-in-hand and how that affects the entire
contact center.

• This distance, the ’local loop’, helps determine which of the
providers in Manhattan will be the best options to provide service
to your location.

• The arena act was the product of gate keeping & was only ever
important from a commercial standpoint.

• And when it comes to painting, throw out your color charts
because rural Pennsylvanians use an array of hues not found in
nature or in any hardware stores looking to remain on the right
side of the Better Business Bureau.

• Nominations are called for Vice-president and two Director posi-
tions on the Board of Directors of ALIA, as incorporated under
Corporations Law.

• The lack of initiative in this case seemed puzzling due to nearly
all Americans’ faith at the time in the strength and reliability of
the constitutional machinery of due process.

• It will be better for you if you renounce meat & masalas.

IV. PASSWORD STRENGTH ESTIMATION

Password strength is measured on the password distribu-
tion, which is unknown for mnemonic passwords but which
can be estimated from huge password samples using lan-
guage models. Language models are detailed in general in
Section IV-A and optimized for mnemonic passwords in Sec-
tion IV-B. After this, Section IV-C details the common strength
measures we use in our analysis.

For a formal discussion, this section uses the following
notations. X is a random variable distributed over a set of
n passwords {x1, . . . , xn} according to the password distribu-
tion X . We use pi = Pr[X = xi] to denote the probability that
a password X drawn from X is equal to xi. We enumerate
passwords in descending order of their associated probability
in X , that means p1 ≥ . . . ≥ pn. Furthermore, x1i · · ·x

`i
i

denotes the `i characters of password xi and Xj denotes the
random variable of the j-th character of a password. Finally,
L denotes a random variable distributed according to the
password lengths in X .

A. Language Models

Even password corpora several orders of magnitude larger
than the Webis-Sentences-17 corpus would not suffice to cal-
culate reliable maximum-likelihood estimates for the probabil-
ities of very rare passwords. The maximum-likelihood estimate
of a password probability is the number of its occurrences di-
vided by the size of the entire password sample. However, even
in the Webis-Sentences-17 corpus, the often-used Good-Turing
method9 [12] estimates that about 75% of the probability mass

9The estimate is calculated as the number of passwords occurring only once
divided by the number of different passwords in the corpus

Table V. EXAMPLE SENTENCES DRAWN RANDOMLY FROM THE
WEBIS-SIMPLE-SENTENCES-17 CORPUS (CF. SECTION III-C).

• Please do not ask to return an item after 7 days of when you
received the item.

• This guide has a lot of nuggets, and I could only stop when I was
finished with it.

• She acted as a student leader during her primary school, high
school, college and graduate studies.

• As mentioned, some gyms also have a daycare program so that
you can drop the kids off there while you work out.

• How much you lose depends on the compression level, but it
happens with all saves.

• So far it looks to top the current king of the hill (Radeon 4870X2)
in most but not all benchmarks.

• Your dog will be well behaved and all your friends will want to
know how you did it.

• And if that is what we want, then talking about "attraction" and
"bonding" is a good place to begin.

• The ramps vary in size and height and you will want to look
around to find the best one for your ATV needs.

• That’s blatant right there, you should have seen how wroth Bela
Karolyi was about that.

• Some of the more commonly known herbs to avoid during
pregnancy include:

• Additional cost and energy savings are realized by reducing or
eliminating the need for hot water, detergent, labor costs, and
capital costs.

• You can structure it and then restructure it as per your needs.

corresponds to passwords that occur not a single time in the
corpus. Therefore, using the maximum-likelihood estimate for
each password is unsuitable.

The most widespread language models for passwords, often
referred to as Markov chains or n-gram models, employ the
chain-rule of probability to describe a password probability by
its length and character probabilities.10 Let the probability of
password xi be

pi = Pr[L = `i] ·
`i∏
j=1

pi,j , where

pi,j = Pr
[
Xj=xji

∣∣∣X1 · · ·Xj−1=x1 · · ·xj−1i , L=`i

]
. (2)

Instead of the exact probabilities in Equation 2, language
models approximate the character probabilities by conditioning
on only the o preceding characters [7], and thus require much
less passwords. Therefore, they reduce the model complexity
by assuming that

xj−oi · · ·xji = xt−ok · · ·xtk → pi,j = pk,t , (3)

which leads to robust models used successfully in various
natural language tasks [7]. Applying Equation 3 to Equation 2,

pi,j≈Pr
[
Xj=xji

∣∣∣Xj−o· · ·Xj−1=xj−oi · · ·xj−1i , L=`i

]
,

where a special start-of-password symbol is used to cope with
characters preceding x1i :

Pr
[
Xj = start-of-password symbol

]
=

{
1 if j ≤ 0
0 if j > 0

10An alternative method introduces an end-of-password symbol that is
treated like a normal character by the language model [7]. However, the effect
of this choice is usually negligible [27].
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Figure 4. Effect of the sample size and model order in model training on estimated cross entropy for passwords of length 12 using the ASCII (triangles) and
lowercase letters (circles) character sets. The left and center plots show the effect of the sample size for different model settings and optimal order. The right
plot shows the effect of the model order for the selected sample size.

B. Empirical Language Model Optimization

Language models have several parameter, which are com-
monly optimized for a given task using the cross entropy on
an independent password sample [7]. The cross entropy is

H1(X ,X ′) = −
n∑
i=1

pi · log p′i ,

where pi and p′i are the probabilities of xi under X and X ′
respectively. In our case, X is the correct password distribution
(approximated by the independent password sample) and X ′
is the distribution as estimated by the language model. Note
that, when the language model is perfect, that means X = X ′,
the cross entropy is minimal and equal to H1(X ). Conversely,
because a lower cross entropy corresponds to a better language
model, it is safe to optimize language models for cross entropy.

Model Order. The model order o governs the strength of the
assumption in Equation 3. For example, o = `i gives the unre-
liable maximum-likelihood estimate of password probabilities.
On the other hand, o = 0 assumes that character probabilities
are independent of preceding characters, which leads to robust
but heavily biased estimates.11 In general, the best value for o
depends on the amount of passwords in the sample.

Smoothing. Smoothing methods use prior-assumptions to im-
prove the unreliable probability estimates for rarely occurring
sequences [7]. We use the interpolated Witten-Bell smoothing
method [7], [40] for our experiments, which is suggested for
character-based models [35]. This method blends unreliable
higher-order estimates with more-reliable lower-order ones.

Position-dependency. For the special case of password distri-
butions, we propose to use position-dependent language model.
Position-dependent models account for the different character
distributions the start, middle, and end of sentences.12 This is
done by estimating the conditional character probabilities for
each character position in a password separately. Formally, this
corresponds to adding the requirement j = t to Equation 3.
To the best of our knowledge, we are the first to apply
position-dependent models to passwords. As the results below
show, position-dependent models are superior for estimating
mnemonic password distributions.

11This and similar choices between too complex (o = `i) and too
simple (o = 0) are known as bias-variance trade-off in machine learning [2].

12For example, in web sentences of length 8, a total of 21% of the first
words start with “t”, but only 8% of the last words do so, too.

Since the different sentence corpora and generation rules
lead to password corpora of different sizes, we optimize lan-
guage models for two scenarios: using all available passwords
(for the best strength estimates) and using only a sample of a
specific size that is reached by most password corpora (for a
fair strength comparison). In order to ensure a safe optimiza-
tion without overfitting to the data, we create the language
models13 from passwords from 19 of the 20 ClueWeb12 parts
and evaluate them on the last part that contains mostly web
pages from different domains. Therefore, a smaller entropy
estimate directly corresponds to a better model. Figure 4
(left, center) shows how the entropy estimates decrease with
increasing sample size. In to ensure a fair comparison between
generation rules for which we have different sample sizes, we
use only 2.8 · 107 passwords per password length and rule
when comparing rules (Sections V-A,V-B). We chose this size
so that it is reached for most generation rules.

Furthermore, Figure 4 shows that smoothed position-
dependent models of the highest order perform best, and we
therefore use these models in our experiments in Section V.
As the Figure demonstrates, position-dependent models are
especially advantageous for ASCII passwords, probably due to
the included punctuation that occurs mostly as last characters.

C. Password Distribution Strength Measures

A password-generation rule is stronger when the passwords
it generates are more difficult to guess. However, this difficulty
depends largely on the knowledge of the guesser. We employ
the common Kerckhoffs’ principle [22]: since we cannot
estimate the knowledge of the adversary, we use the worst-
case scenario that she knows the full distribution. Even if the
adversary would not know the generation rule, related results
suggest that users employ only very few different rules [42].
The adversary tries to guess by choosing one password,
verifying it, and repeating to choose and verify until the correct
one is found. Since she knows the full password distribution,
she guesses passwords ordered by their probability.

We follow related work on password security and distin-
guish two scenarios: online, where adversaries have a small
number of guesses until the authentication system blocks them,
and offline, where they are limited only by their time [3].

13We use SRILM v. 1.7.1 (www.speech.sri.com/projects/srilm/) to generate
language models and a custom implementation based on KenLM (kheafield.
com/code/kenlm/) to get probabilities.
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For all the measures detailed below, a higher value corre-
sponds to a stronger password distribution.

Min-entropy. The min-entropy models the very extreme case
where the adversary guesses only a single password [3]. The
min-entropy H∞ is a widespread measure to assess distribu-
tions, not only of passwords. It is defined by

H∞(X ) = − log p1

Failure Probability. The failure probability is a measure for
the online scenario. The failure probability λβ reflects the aver-
age probability of not guessing a password with β guesses [5].

λβ(X ) = 1−
β∑
i=1

pi

We report on β = 10 and β = 100 (like [3], [6]).

Work-factor. The α-work-factor is a measure for the offline
scenario. It models the case where adversaries guess until they
have guessed a fraction α of passwords. The α-work-factor µα
gives the expected number of guesses [32].

µα(X ) = min {β |1− λβ(X ) ≥ α}

We report on α = 0.5 (like [3], [5]).

Shannon Entropy. The Shannon entropy H1 measures the bits
needed to encode events from a distribution. Unlike the other
strength measures, H1 considers the full distribution. For a
uniform distribution, H1 = H∞, and H1 > H∞ otherwise.

H1(X ) = −
n∑
i=1

pi · log pi (4)

Shannon entropy is usually approximated by the cross entropy
on a held-out password sample (cf. Section IV-B).

The computational cost of the work-factor µ0.5 makes it
infeasible already for passwords of length 9 or 10, but we find
that it strongly correlates with the Shannon entropy H1 in our
case (Figure 5, Pearson’s r = 0.71). H1 has been criticized as
a strength measure for password distributions as it does not
clearly model the offline scenario [5], [32]. However, due the
observed strong correlation, we see it as a meaningful strength
measure in the case of mnemonic passwords.
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Figure 5. Scatter plot of strength estimates for different password generation
rules and sentence corpora by work-factor (logarithmic scale) and Shannon
entropy for passwords of length 8. All language models are trained on
2.8 · 107 passwords. The dotted line shows an estimated µ0.5 for real-world
passwords [3] and the corresponding H1 according to the model.

V. EXPERIMENTS

This section analyzes the strength of mnemonic password
distributions. It addresses the following research questions:

• Which of the password generation rules generates the
strongest password distribution? (Section V-A)

• What effect does sentence complexity have on pass-
word distribution strength? (Section V-B)

• Does password distribution strength increase linearly
with password length? (Section V-C)

• Security-wise, how far are mnemonic passwords from
uniformly sampled character strings? (Section V-D).

• How strong are mnemonic passwords compared to
other password approaches? (Section V-E, V-F)

A. Estimates by Generation Rules

This experiment compares the strength of password distri-
butions from 18 generation rules in terms of common strength
measures (Section IV-C). A password generation rule is an
algorithm which a human can apply to transform a short text
into a password. For this evaluation, we selected rules that
vary by the employed character set, replacement rules, and the
chosen words from the sentence and characters from the words.
The selected rules follow the standard rule of word initials (no
replacement, every word, first character) [14], [26], [31], [41]
with some variations to test the effect of such variations on the
reached security level. If not said otherwise, other experiments
use this standard rule. Our implementation of the generation
rules is available open source.14

Character set. The generated passwords consist of either low-
ercase letters (26 characters) or 7-bit visible ASCII characters
(94 characters). Each sentence is processed by a Unicode
compatibility and canonical decomposition and stripped of
diacritical marks. For lowercase passwords, all letters are con-
verted to lowercase. Then, remaining unfitting characters are
removed. Punctuation is treated as an own “word” for ASCII
passwords.15 While a larger character set theoretically leads to
stronger passwords, especially users of on-screen keyboards
are tempted to use only lowercase letters as switching to
uppercase or special characters is an extra effort.

Replacement. Sometimes the mnemonic password advice in-
cludes to replace words by similar-sounding characters. To
analyze this advice, we include deterministically replacing
word prefixes (like “towards” → “2wards”) as a variant.16

Word. We use either every word or every second word in the
sentence for generating the password. Theoretically, omitting
words increases the difficulty of guessing the next character.

Character position. Besides concatenating the first characters,
we analyze using the last or both characters as variants. For
one-character words, all three variants use this character once.

14https://github.com/webis-de/password-generation-rules
15We use the ICU4J BreakIterator: site.icu-project.org v. 53.1
16The employed replacements are based on a list of “pronunciation rules”

with the two additional rules of “to” → “2” and “for” → “4”:
blog.codinghorror.com/ascii-pronunciation-rules-for-programmers
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Table VI. MIN-ENTROPY (H∞), FAILURE PROBABILITY (λβ ), AND SHANNON ENTROPY (H1) FOR DIFFERENT PASSWORD-GENERATION RULES,
SORTED BY H1 . THE VALUES ARE FOR PASSWORDS OF LENGTH 12 FROM THE WEBIS-SENTENCES-17 (WS) AND WEBIS-SIMPLE-SENTENCES-17 (WSS)

CORPORA WITH MODELS FROM AT MOST 2.8 · 107 PASSWORDS. VALUES FROM FEWER THAN 2.8 · 107 PASSWORDS ARE SHOWN GRAY.

Password generation rule H∞ λ10 λ100 H1

Character set Replacement Word Char. pos. WS WSS WS WSS WS WSS WS WSS

ASCII X every 2nd 1st 13.8 13.2 0.99958 0.99940 0.99827 0.99753 56.7 55.8
ASCII - every 2nd 1st 13.8 13.2 0.99959 0.99940 0.99827 0.99752 53.6 52.9
ASCII X every 1st 13.8 12.5 0.99949 0.99925 0.99760 0.99689 49.9 48.0
ASCII X every 2nd last 13.8 13.3 0.99960 0.99939 0.99825 0.99745 49.8 50.0

Lowercase letters - every 2nd 1st 13.1 12.8 0.99956 0.99938 0.99840 0.99739 48.5 48.1
ASCII - every 1st 13.8 12.4 0.99948 0.99925 0.99759 0.99688 47.8 46.2
ASCII - every 2nd last 13.9 13.3 0.99960 0.99939 0.99824 0.99744 47.6 47.8

Lowercase letters - every 1st 11.4 12.8 0.99912 0.99928 0.99738 0.99739 47.3 45.7
ASCII X every 2nd 1st+last 12.4 12.8 0.99940 0.99925 0.99775 0.99724 46.5 44.9

Lowercase letters - every 2nd last 13.1 12.8 0.99955 0.99938 0.99833 0.99735 44.6 44.7
ASCII - every 2nd 1st+last 13.1 12.5 0.99948 0.99929 0.99767 0.99725 44.6 43.0
ASCII X every last 14.0 12.4 0.99951 0.99925 0.99759 0.99690 43.4 42.6

Lowercase letters - every last 11.4 12.8 0.99912 0.99928 0.99734 0.99738 42.7 41.8
Lowercase letters - every 2nd 1st+last 12.0 13.3 0.99933 0.99941 0.99803 0.99785 42.6 41.2

ASCII - every last 14.0 12.5 0.99950 0.99925 0.99757 0.99689 42.0 41.3
Lowercase letters - every 1st+last 10.3 9.6 0.99708 0.99650 0.99225 0.99098 36.8 35.3

ASCII X every 1st+last 10.8 9.7 0.99772 0.99715 0.99108 0.98826 35.8 36.1
ASCII - every 1st+last 8.5 11.5 0.99400 0.99775 0.98634 0.98936 34.8 35.2

Table VI shows the estimated strength measures for pass-
words of length 12 from the 18 employed generation rules.
The discussion below focuses on the results for the Webis-
Sentences-17 corpus. While mnemonic password distributions
in the real world contain passwords from different lengths, we
restrict the analysis here to passwords from one length in order
to make the comparison easier to understand, as it removes the
influence of the length distribution. Especially generation rules
that use two characters per word have very different length
distributions. Strength estimates based on a natural distribution
of password lengths are discussed from Section V-C onwards.
For a fair comparison, we use the same number of passwords
for all estimates, and mark estimates for rules for which our
data has less passwords in gray. These estimates in gray are
less reliable and biased to higher values for H1.

For the online scenario measures min-entropy H∞ and
failure probability λβ , comparable strengths are achieved by
all generation rules but those that use multiple characters
and every word, which are considerably weaker. For H∞, a
further factor is the character set where ASCII has about 1 bit
advantage. For λ100, generation rules that use every second
word are stronger than other rules.

For the offline scenario measure H1, passwords from
ASCII achieve a similar strength to passwords with only
lowercase letters when every word is used, but better strength
when every second word is used. In total, using every second
word and only the first character with the ASCII character set
leads to the strongest of the tested password distributions. Also,
word prefix replacements can increase the entropy by 2–3 bit.
Moreover, using the first character of a word is preferable.

The strongest distribution is arguably using the ASCII
character set, every second word, and only the first characters,
which achieves best or nearly-best values for all measures.
Word prefix replacement considerably increase the strength for
H1, but not for the online scenario. However, both using only

every second word and word prefix replacements come with
additional memorization and processing costs, a discussion of
which lies outside the scope of this publication.

B. Estimates by Sentence Complexity

Table VI also shows that strength estimates for the Webis-
Simple-Sentences-17 corpus are most times a bit weaker,
but still very similar, to those from the Webis-Sentences-17
corpus for all distributions with sufficient training passwords.
The maximum difference for one generation rule between the
corpora are 1.6 bit for H∞, 0.00026 for λ10, 0.00071 for λ100,
and 1.9 bit for H1. This corresponds to a large difference for
H∞ and a still noticeable difference for H1, but smaller than
one could expect.

Therefore, mnemonics with lower complexity do indeed
lead to passwords that are easier to guess. This is likely due
to the reduced vocabulary of the mnemonics, which is biased
towards words with less syllables.

The effect of mnemonic complexity is especially strong
for the min-entropy H∞, which considers the most probable
password only. A possible explanation for this is that the
most probable password stems from simple sentences, even for
the Webis-Sentences-17 corpus. Then, the probability of this
password increases naturally when more complex sentences
are filtered out.

On the other hand, the effect of mnemonic complexity
is still noticeable for the Shannon entropy H1, which con-
siders the entire password distribution. Therefore, reducing
the complexity skews the entire password distribution farther
away from the uniform distribution. However, the effect is
much weaker than for min-entropy. An estimate of the effect
can be the maximum difference in Table VI between Webis-
Sentences-17 and Webis-Simple-Sentences-17 for generation
rules with sufficient training passwords, divided by the pass-
word size. This estimates the effect to 0.16 bit per character.

9



● ● ● ● ● ● ● ● ● ● ● ● ●

8 10 12 14 16 18 20

0

20

40

60

80

100

● ● ● ● ● ● ● ● ● ● ● ● ●

Password length

B
it

●

●

Uniform distribution (H1=H∞)
Estimated Shannon entropy, H1

Estimated min−entropy, H∞

Figure 6. Shannon entropy and min-entropy estimates compared to the
optimal uniform password distribution by password length. Passwords are from
the Webis-Sentences-17 corpus using lowercase letters and the first character.

C. Estimates by Password Length

This section analyzes how the strength of password dis-
tributions increases with password length. The number of
possible passwords increases exponentially with the password
length, theoretically leading to stronger password distributions.
Using the Webis-Sentences-17 corpus, we analyzed all rules to
very similar results. As an example, Figure 6 shows the result
for the standard generation rule using lowercase letters only.

Figure 6 shows that the resistance against offline at-
tacks (H1) increases as expected with password length, but
that the resistance against online attacks (H∞) stays rather
constant.17 We also found λ10 and λ100 to be rather constant.

The approximately constant resistance against online at-
tacks shown in Figure 6 suggests that, for each length, there
are a few sentences with a high probability irrespective the
length. Only after these high-probability sentences, a spreading
of the probability mass over the possible sentences occurs.
This spreading is shown by the steady increase of the Shannon
entropy. Unfortunately, the Webis-Mnemonics-17 corpus is far
too small to reproduce this effect on human-chosen mnemon-
ics. It thus remains unclear to which extent this effect also
appears for human-chosen mnemonics. However, based on our
analysis it is reasonable to assume that the resistance against
online attacks of mnemonic passwords grows way less with
password length than one would expect.

The linear increase of the Shannon entropy with password
length leads to a simple model for estimating the entropy of
password distributions with several lengths. In detail, one can
rewrite Equation 4 (Shannon entropy) as

H1(X ) =
`max∑
`=`min

Pr[L = `] · (H1(X`)− log Pr[L = `]) , (5)

where H1(X`) is the entropy estimate for length `. Moreover,
for the probability of a password-length, Pr[L = `], one
can use the geometric model of lengths from the Mnemonic
Survey corpus (Figure 2).18 Due to the geometric model and
only a linear increase of the entropy by length, Equation 5
converges as `max increases. We report the converged values

17H∞ varies between 11.3 and 14.2 bit without a clear direction.
18When only every second word is used, the length distribution can be

adjusted accordingly. However, an adjustment is not as straight-forward when
two characters per word are used, due to one-character words. As this variant
gave very weak distributions, we do not consider it here.

Table VII. ESTIMATED ENTROPY BY GENERATION RULE AND
MINIMUM PASSWORD LENGTH FOR PASSWORDS FROM THE

WEBIS-SENTENCES-17 CORPUS.

Char. set L. letters ASCII L. letters ASCII ASCII
Replacement - - - - X

Word every every every 2nd every 2nd every 2nd
Char. pos. 1st 1st 1st 1st 1st

`min Shannon entropy H1

8 38.0 37.9 34.8 37.2 39.0
9 41.2 41.3 38.0 40.9 42.9

10 44.4 44.8 41.2 44.6 46.7
11 47.6 48.3 44.4 48.3 50.6
12 50.8 51.8 47.6 52.0 54.5
13 54.0 55.2 50.8 55.7 58.4
14 57.2 58.7 54.0 59.4 62.3
15 60.4 62.2 57.2 63.1 66.2
16 63.6 65.7 60.4 66.8 70.1
17 66.8 69.1 63.6 70.5 74.0
18 70.1 72.6 66.8 74.2 77.9
19 73.3 76.1 70.0 77.9 81.8
20 76.5 79.6 73.2 81.6 85.7
21 79.7 83.0 76.4 85.3 89.5
22 82.9 86.5 79.6 89.0 93.4
23 86.1 90.0 82.8 92.7 97.3
24 89.3 93.5 86.0 96.4 101.2
25 92.5 97.0 89.2 100.1 105.1
26 95.7 100.4 92.4 103.8 109.0
27 98.9 103.9 95.6 107.5 112.9
28 102.1 107.4 98.8 111.2 116.8
29 105.3 110.9 102.0 114.9 120.7
30 108.5 114.3 105.2 118.6 124.6

in the following. The remaining parameter is the minimum
password length `min, which one can increase to increase
the password distribution strength, as it is best practice for
password-based authentication in general [10]. Using the mean
from the fitted geometric distribution, the average password
length is `min + 1.4 for passwords that take every word and
`min + 0.7 for passwords that take every second word, while
the mode is `min in both cases. Note that this consideration
makes the simplifying assumption that the parameter of the
geometric distribution does not depend on `min.

Table VII shows the minimum-length based entropy esti-
mates for a selection of the strongest generation rules. This
table aims at replacing for mnemonic passwords the “rules of
thumb” that exist for the entropy of generic passwords (e.g.,
[6]). Unlike these rules of thumb, which were shown to not
correlate with the password distribution strength against offline
attacks [39], we have shown that our entropy estimates do
correlate with it (cf. Figure 5). As the Table shows, when
considering that rules using only every second word lead to
shorter passwords on average, these rules lose much of their
advantage, and are even weaker for lowercase letter passwords.
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Table VIII. CHARACTER-WISE ENTROPY (H1) AND PERPLEXITY (PPL.)
ESTIMATES FOR PASSWORDS BY MODEL (CF. SECTION IV-B). PASSWORDS
ARE OF LENGTH 12 FROM THE WEBIS-SENTENCES-17 CORPUS USING THE
FIRST CHARACTER OF EVERY WORD. THE UNIFORM MODEL REPRESENTS

THE OPTIMAL DISTRIBUTION OVER 26/94 CHARACTERS.

Lowercase
letters

ASCII

Model H1 Ppl. H1 Ppl.

Uniform 4.70 26.0 6.55 94.0
Order 0 4.15 17.8 5.09 34.1
Order 8 3.71 13.1 3.98 15.8
Order 8, position-dependent 3.65 12.6 3.70 13.0

D. Comparison to Uniform Distribution

The uniform password distribution is the strongest among
all distributions with the same number of elements, but
mnemonic password distributions fall short of it for three
reasons: (1) some characters occur more frequently than others,
(2) characters in a password are not independent of each other,
and (3) the character distributions depend on the position in
the password. Table VIII illustrates exploiting these 3 effects
step by step for the standard mnemonic passwords. In addition
to the Shannon entropy H1, the table also shows the perplexity
Ppl. = log(H1) which gives the number of elements in a
uniform distribution with the same entropy.

According to the results shown in Table VIII, both pass-
word distributions provide in an offline scenario about the
same level of security as a uniform distribution over 12
to 13 characters. The biggest effect is in both cases that
the characters are not uniformly distributed. On the other
hand, exploiting the differences in the character distributions
by position (using position-dependent models, Section IV-B)
is especially valuable for ASCII passwords, where it can
nearly reduce their strength to the strength of lowercase letter
passwords. Like discussed in Section V-A, ASCII passwords
are only stronger than lowercase letter passwords for specific
generation rules.

E. Comparison to Dictionary Passwords

While the discussion in the following paragraphs exem-
plifies how our strength estimates can be used to compare
the strength of different password generation methods, it does
not incorporate other important factors for password usage
like memorability, typing convenience, or susceptibility to
typing errors. Unfortunately, we are not aware of any such
comparison.

A second prominent suggestion for password generation
is to pick several words uniformly at random from a large
dictionary [29], [33]. We use the 7776 words Diceware dictio-
nary [33] as an example.

A computation of the strength of such dictionary-based
passwords is straight-forward. The min-entropy and Shannon
entropy are both equal to

H∞ = H1 = n · log 7776 ,
whereas the failure probability is calculated by

λβ = 1− β

7776n
.

The maximum length of a word in the dictionary is 6 char-
acters. On average, the created passwords have a length of
n · 4.24 + (n − 1), where (n − 1) is then number of space
characters as illustrated on the Diceware homepage.

The comparison with Diceware highlights the relative
weakness of mnemonic passwords against online attacks: al-
ready the 2-word Diceware password distribution achieves a
failure probability λ100 of 0.999998 and is thus considerably
stronger in this scenario than every rule we considered and
requires on average only 9.5 characters.

However, mnemonic passwords provide a better security in
the offline scenario for the same password length. For example,
3 Diceware words (average password length of 14.7) achieve
38.8 bit of Shannon entropy, which is already reached by
lowercase letter mnemonic passwords of minimum length 9
(Table VII, average length of 10.4).

F. Comparison to Real-world Password Distributions

This section compares the strength estimates for mnemonic
passwords with estimates for real-world password distributions
from the literature.

The currently largest-scale password strength analysis of
real-world passwords is the analysis of 70 million anonymized
Yahoo! passwords by Bonneau [3], which results in the
following estimates: Min-entropy H∞ ≈ 6.5, failure prob-
ability with 10 guesses λ10 ≈ 0.98178, and work fac-
tor µ0.5 ≈ 2,111,739.19 While no estimate for the Shannon
Entropy H1 is provided, we can apply the log-linear rela-
tionship of µ0.5 and H1 that we observed for mnemonic
passwords, which suggests an H1 of ~27 Bit (cf. Figure 5).
Bonneau also compares the Yahoo! estimates to estimates from
the password lists leaked from the RockYou and Battlefield
Heroes websites. He finds that the corresponding two password
distributions are even weaker against offline attacks. Also, only
the Battlefield Heroes passwords are stronger against online
attacks (H∞ ≈ 7.7, λ10 ≈ 0.98878).

Comparing these estimates for real-world password distri-
bution with our estimates for mnemonic password, we see that
mnemonic passwords are considerably stronger attacks both
online and offline attacks. For online attacks, our estimates
for the standard lowercase letters word initial rule are for
H∞ between 11.4 and 12.8, and for λ10 between 0.99912
and 0.99928 (Table VI)—reducing the corresponding success
probability (1 − λ10) compared to the Battlefield Heroes
passwords by 92–94%.20 For offline attacks, we can extend
Table VII for smaller `min, suggesting that a higher H1 as for
real-world passwords is reached by mnemonic passwords from
the standard rule with a minimum length `min of 5. While the
length distribution of the Yahoo! passwords is unknown, the
current minimum password length for new Yahoo! accounts
is 8 and thus considerably larger. Therefore, we can conclude
that mnemonic passwords are stronger against both online and
offline attacks compared to the passwords in use today.

19The paper provides normalized estimates, which all use a common scale.
The estimates we report are un-normalized.

20When known phrases are allowed as mnemonics, related results suggest
a similar strength against online attacks as the Battlefield Heroes passwords
have [42], which highlights the importance of developing password-blacklists
to keep users from choosing such easy-to-guess phrases.
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VI. CONCLUSION AND OUTLOOK

This paper analyzes the strength of passwords generated
according to the mnemonic password advice on a huge corpus
of 3 billion human-written sentences. The detailed analysis
of this paper considers sentence complexity and 18 different
password generation rules. To this end, the paper shows that
the necessary similarity of human-chosen mnemonics and web
sentences exists. Furthermore, the paper contributes one of
the currently biggest corpora of human-chosen mnemonics.
Additionally, this paper is the first to apply position-dependent
language models to passwords, which improve on regular
language models for modeling mnemonic passwords.

Our analysis addressed several questions regarding the
strength of mnemonic passwords.

Of the 18 tested password generation rules, the strongest
password distribution is generated by using the ASCII charac-
ter set, concatenating the first character of every second word,
where common word prefix replacements are used to add more
special characters to the passwords. Both using only every
second word and word prefix replacements have only an effect
in offline attack scenarios, where adversaries are not limited
by a number of guesses but by the time they want to invest.

The sentence complexity of the used mnemonics has a
major effect when the adversary can perform only a few
guesses, and a relatively weak effect for offline attacks.

We showed that an attacker can use knowledge on the
generation process of mnemonic passwords to drastically in-
crease his success chances, reducing the strength of mnemonic
passwords against offline attacks to that of passwords from a
uniform distribution over only 12 to 13 characters.

We analyzed the effect of password length on the strength
estimates, and found that—as one would expect—the strength
of mnemonic passwords against offline attacks grows linearly
with the password length. On the other hand, if the adversary
can only perform a few guesses, our results suggest that longer
passwords provide no further advantage.

Using statistical modeling, this paper provides with Ta-
ble VII detailed estimates of the strength of mnemonic pass-
words against offline attacks for different minimum pass-
word lengths and password generation rules. This table aims
to replace for mnemonic passwords the inaccurate “rule of
thumb” for strength calculation that was used previously. With
this table, we compare mnemonic passwords to a password
generation approach that performs repeated uniform sampling
from a dictionary and found that mnemonic passwords are
weaker against online, but stronger against offline attacks.

The analysis of the password generation rules is limited to
the strength of the corresponding password distributions and
ignores that the different rules are associated with different
costs for the human. For example, the best generation rule
requires the human to memorize a twice as long sentence.
Furthermore, already having a certain generation rule in mind
will likely have an influence on mnemonic choice. For in-
stance, if the human wants to use a rule that incorporates word
prefix replacements, he may limit the considered mnemonics to
such where he can actually perform a replacement operation.

A more detailed study on memorability and mnemonic choice
would be needed to improve this discussion.

Furthermore, this analysis is restricted to English mnemon-
ics only. The question if our results also apply to mnemonics
of other languages is open for further research.

An interesting avenue for further research could be to use
search algorithms to find the best password generation rule for
a given sentence distribution. The 18 rules that we analyzed
cover only a very small part of the parameter space for such
rules. Investigations in this direction would require to lower the
computational cost of evaluating a rule, which is a problem in
its own right. Moreover, an analysis of the costs of generation
rule parameters like suggested above could also be integrated
into the cost function of the search algorithm.
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