
Catching Worms, Trojan Horses and PUPs:
Unsupervised Detection of Silent Delivery

Campaigns

Bum Jun Kwon
University of Maryland

bkwon@umd.edu

Virinchi Srinivas
University of Maryland

virinchi@cs.umd.edu

Amol Deshpande
University of Maryland

amol@cs.umd.edu

Tudor Dumitras,
University of Maryland

tdumitra@umiacs.umd.edu

Abstract—The growing commoditization of the underground
economy has given rise to malware delivery networks, which
charge fees for quickly delivering malware or unwanted software
to a large number of hosts. A key method to provide this service
is through the orchestration of silent delivery campaigns. These
campaigns involve a group of downloaders that receive remote
commands and then deliver their payloads without any user
interaction. These campaigns can evade detection by relying on
inconspicuous downloaders on the client side and on disposable
domain names on the server side.

We describe Beewolf, a system for detecting silent delivery
campaigns from Internet-wide records of download events. The
key observation behind our system is that the downloaders
involved in these campaigns frequently retrieve payloads in
lockstep. Beewolf identifies such locksteps in an unsupervised
and deterministic manner, and can operate on streaming data.
We utilize Beewolf to study silent delivery campaigns at scale, on a
data set of 33.3 million download events. This investigation yields
novel findings, e.g. malware distributed through compromised
software update channels, a substantial overlap between the
delivery ecosystems for malware and unwanted software, and
several types of business relationships within these ecosystems.
Beewolf achieves over 92% true positives and fewer than 5% false
positives. Moreover, Beewolf can detect suspicious downloaders
a median of 165 days ahead of existing anti-virus products and
payload-hosting domains a median of 196 days ahead of existing
blacklists.

I. INTRODUCTION

The growing commoditization of the underground economy
has given rise to malware delivery networks [8], [28]. These
networks orchestrate campaigns to quickly deliver malware
to a large number of hosts. Understanding these campaigns
can provide new insights into the malware landscape. For
example, the ability to measure the duration of such campaigns
would reveal which malware families remain active and which
are likely to stop propagating. Additionally, by tracking the
downloaders and the domain names associated with each

malware delivery campaign, and the malware payloads dis-
seminated, we could infer the business relationships from
the underground economy. Furthermore, establishing precise
time bounds for the campaigns would also enable correlation
with other concurrent events, such as additional activities and
downloads performed by the malware samples delivered within
each campaign. This new understanding has the potential to
expose fragile dependencies in the underground economy,
leading to effective intervention strategies for disrupting the
malware delivery process [39].

Prior work has generally focused on identifying the mali-
cious domains [1], [3], [5], [28], [29], [33], [36], [42], the
malware families disseminated [13], [19], [23], [26], [40]
and, to a lesser extent, the downloaders utilized on the client
side [26]. Comparatively less attention has been given to the
task of precisely characterizing the relationships among these
entities; for example, a comprehensive ground truth about past
malware delivery campaigns is currently unavailable. As a
step toward understanding campaigns, we focus on a particular
subset called silent delivery campaigns, which involve a group
of downloaders that receive remote commands and then down-
load their payloads with no user interaction. These campaigns
are particularly attractive to the organizations that disseminate
malware or potentially unwanted programs (PUPs), as they
can evade detection by utilizing inconspicuous downloaders, to
retrieve the payloads, and disposable domain names, to host
and serve it temporarily. We propose unsupervised and de-
terministic techniques for detecting silent delivery campaigns.
We also describe the design of a system, called Beewolf,1
which implements these techniques and can operate either on
the entire data set of download events (offline mode) or on a
stream of data (streaming mode). Using Beewolf, we conduct
the first systematic study of silent delivery campaigns.

When downloaders across the Internet are instructed to
conduct a campaign, they will access a common set of DNS
domains to retrieve the payloads. This access typically happens
in a short time window, and forms the key observation behind
Beewolf. After a period of inactivity, the same downloaders
will request additional payloads from a set of fresh domains.
This lockstep behavior exposes the fact that the downloaders
are controlled remotely and reveals the domains involved in
subsequent campaigns. We expect that we can parametrize

1Beewolves are a species of wasp that hunts bees, which are known to
exhibit group behaviors.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23220

lockstep detection to distinguish benign software updates that
are initiated remotely and malicious campaigns. In particular,
software updaters repeatedly access the same server-side in-
frastructure, while malicious campaigns exhibit a high domain
churn as they try to evade blacklists. Additionally, we can
whitelist the known benign updaters to further reduce the
false positive rate. Our approach is complementary to the
machine learning techniques proposed for detecting malicious
domains [13], [19], [40], [42]. However, in contrast to these
techniques, recognizing a lockstep pattern in a stream of
Internet-wide download events yields an intuitive explanation
of the underlying activity, without interpreting clusters of
events defined by multiple features.

We first formulate lockstep detection as a graph mining
problem. We construct a bipartite graph, where a node corre-
sponds to either a downloader or a payload hosting domain,
and an edge indicates that a downloader contacted a domain
to retrieve a payload. A lockstep is a near biclique2 in this
graph—a graph component that is almost fully connected,
except for a few missing edges—with the added constraint
that the edges are created within a short time window ∆t.
Existing algorithms for lockstep detection [4], [9], [20] are
not well suited for finding silent delivery campaigns be-
cause they require seed nodes to bootstrap the algorithm
and because they are not designed to operate on streaming
data. In contrast, downloaders typically remain undetected for
several months [26], making it difficult to identify seeds in a
timely manner, and malicious domains can be discarded within
days [25], [38], at which point the information from lockstep
detection is no longer actionable.

Based on this formulation, we propose a novel lockstep
detection technique, which can operate on streams of download
events. We perform the computationally intensive operations
(e.g., updating the bipartite graph and the adjacency lists)
incrementally, as new events are received, and then we detect
locksteps with an efficient linear algorithm. We use this tech-
nique in both of Beewolf’s modes of operation. In offline mode,
Beewolf analyzes all the download events, to characterize
lockstep behaviors empirically. In streaming mode, Beewolf
receives data incrementally and prunes the locksteps detected
to focus on suspicious downloaders and domains.

Ultimately, we utilize Beewolf to conduct a large empirical
study of silent delivery campaigns conducted over one year.
We analyze a data set of 33.3 million download events,
observed on 1.9 million hosts, and we detect over 130,000
locksteps. These locksteps comprise 1.4 million campaigns.
Building on the observation that many downloaders involved
in lockstep behavior have valid digital signatures, we identify
representative publishers for each lockstep and we analyze
the relationships among publishers. This investigation yields
insights into two types of relationships. We identify both direct
download relationships between publisher pairs, which may
also be observed by milking downloaders from pay-per-install
(PPI) providers [22], [38], and indirect relationships, among
publishers caught in lockstep together. The second relation-
ship type can overcome evasive strategies such as certificate
polymorphism or utilizing unsigned downloaders for malicious
payloads. In consequence, we find a larger overlap between

2We allow a few edges to be missing to account for download events that
are occasionally not recorded by our data collection infrastructure.

the malware and PUP delivery ecosystems than reported in
recent studies [22], [38]. We also show that Beewolf achieves
over 92% true positives and fewer than 5% false positives,
and that it can detect suspicious downloaders a median of 165
days ahead of existing anti-virus products and payload-hosting
domains a median of 196 days ahead of existing blacklists.

In summary, we make the following contributions:

1) We conduct a systematic study of malware delivery
campaigns and we report several new findings about
the malware and PUP delivery ecosystems.

2) We propose techniques for discovering silent delivery
campaigns by detecting lockstep behavior in large
collections of download events. These techniques are
unsupervised and deterministic, as they do not require
seed nodes and are not based on machine learning.

3) We present a system, Beewolf, which implements
these techniques, along with evidence-based opti-
mizations that allow it to detect silent delivery cam-
paigns in a streaming fashion.

We release the inter-publisher relationships detected with
Beewolf at http://www.beewolf.org/.

This paper is organized as follows: In section II, we
characterize the threat of silent delivery campaigns and we
state our goals. We describe our data set and the methods we
use for distinguishing between malware and PUPs in Section
III. We discuss the key components of Beewolf in Section IV.
In Section V, we characterize silent delivery campaigns. In the
following sections, we evaluate the performance of Beewolf.
Section VI presents the detection performance and in Section
VII we evaluate the performance of Beewolf’s streaming mode.
We review related work in section VIII.

II. THREAT MODEL

Downloader trojans (also known as droppers) are at the
heart of malware distribution techniques [26]. A downloader
is an executable program that connects to an Internet domain
and downloads other executables (called payloads), usually
in response to remote commands. We focus on the domains
hosting the payloads, which are often distinct from other
components of the malware delivery networks, e.g. exploit
servers, command & control servers, payment servers [41], and
we take only the second level domain (SLD) under a public
suffix3 (e.g., site1.com, site2.co.uk).

Silent delivery campaigns. Malware delivery networks use a
variety of methods to install their downloaders, e.g. drive-by-
download exploits, social engineering, affiliate programs [8].
When they receive new payloads from their clients, the
malware delivery networks command their downloaders to
retrieve these payloads on the victim hosts. This results in
coordinated waves of payload delivery, which often do not
require any user intervention to avoid attracting attention.
We term these waves silent delivery campaigns, by analogy
with the silent updating mechanisms increasingly adopted
by benign software publishers [14], [32]. A key difference
between the silent delivery campaigns conducted on behalf
of malicious and benign payloads is that benign campaigns

3We use Mozilla’s public suffix list from https://publicsuffix.org/.

2

http://www.beewolf.org/
https://publicsuffix.org/

repeatedly access the same server-side infrastructure, while
malicious campaigns exhibit a high domain churn as they try to
evade blacklists. Depending on the payloads, these campaigns
may be malware delivery campaigns, which drop executables
with unambiguously malicious functionality such as trojan
horses, bots, keystroke loggers, or PUP delivery campaigns,
which drop PUPs such as adware, spyware and even additional
droppers.

The detection of domains involved in malware and PUP
distribution has been widely explored using machine learning
techniques [13], [19], [40], [42]. These techniques typically
output clusters of events, defined by multiple features, which
can be difficult to interpret. We investigate a complementary
approach: deterministic techniques, based on the intuition that
temporal patterns in the downloader-domain interactions can
expose remotely controlled downloaders.

Lockstep behavior. The coordinated downloads from silent
delivery campaigns result in lockstep behavior. Intuitively,
lockstep behavior corresponds to repeated observations of
synchronized activity among a group of downloaders (or do-
mains), which access (are accessed by) the same set of domains
(downloaders) to retrieve payloads, within a bounded time
period. In other words, locksteps capture coordinated down-
loads that do not experience random delays, e.g. from manual
user intervention. This points to silent delivery campaigns. As
lockstep detection requires several repeated observations of
coordinated downloads, a lockstep may correspond to one or
several delivery campaigns that use the same infrastructure.

Formally, consider a bipartite graph G = (U, V,E) where
U and V are disjoint set of nodes corresponding to left hand
nodes and right hand nodes, respectively, and an edge e ∈ E
may link two nodes belonging to different sets but not nodes
from the same set. Let ti,j represent the time at which an edge
is formed between node i ∈ U and node j ∈ V . Further, let
U ′ ⊆ U and V ′ ⊆ V . We define a star [U ′, j,∆t, δt] on U ′

and some central node j ∈ V ′ as follows:

| U ′ |≥ 2 (1)

(max
i
ti,j −min

i
ti,j) ≤ ∆t ∀i ∈ U ′ (2)

The above equations state that a star contains at least 2 left
hand nodes and the time difference between the addition of
the first and the last edge to the star is at most ∆t.

A lockstep [U ′, V ′,∆t, δt] in G(U, V,E) satisfies the fol-
lowing constraints:

| U ′ |> 2 (3)

∃V
′

i ⊆ V ′ ∀i s.t. | V
′

i |> 2 and | V
′

i |≥ α | V ′ | (4)

(i, j) ∈ E ∀i ∈ U ′, j ∈ V
′

i (5)

The above equations specify that a lockstep contains more than
2 nodes each from U and V and that the subgraph induced
by these nodes is nearly complete. If α = 1.0, this subgraph
is a complete biclique, while for any value αmin ≤ α < 1,
the lockstep corresponds to a near-biclique. Such a near or
complete biclique represents a lockstep if it also satisfies the

following temporal constraints, for a predefined ∆t and δt and
for 2 distinct stars defined on j, j′ ∈ Vi′ :

(max
i
ti,j −min

i
ti,j) ≤ ∆t ∀i ∈ U ′ (6)

(max
i
ti,j′ −min

i
ti,j′) ≤ ∆t ∀i ∈ U ′ (7)

| max
i
ti,j′ −max

i
ti,j |≥ δt (8)

The above temporal constraints ensure that a lockstep
contains at least 2 stars that are at least δt apart in time.
Further, if the same star occurs in multiple timestamps, we
consider it only once inside a lockstep. We illustrate the
lockstep behavior in Figure 1. For the problem of detecting
silent delivery campaigns, the nodes of the bipartite graph
correspond to downloaders and domains. There is an edge
between a domain and a downloader in the bipartite graph
if the downloader accessed the domain to drop a payload.
The payload information is captured as an attribute on the
edge. A star can have (i) multiple downloaders accessing the
same domain; or (ii) multiple domains being accessed by a
single downloader. The formal definition of a star (equation 2)
considers a j which could be either a downloader or a domain.
Note that a single edge does not count as a star because of
condition (1). Having these two different star topologies help
us detect behaviors such as (i) campaign changing to a different
domain after a C&C server takedown, (ii) domains within a
same campaign establishing connection with a new version of
downloader.

In Figure 1, at time t = 0, we observe a star with 3
downloaders accessing a domain. At t = 3δt, although we
observe new stars, they do not correspond to a lockstep as a
lockstep must contain more than 2 domains and 2 downloaders
according to our lockstep definition. Then, at t = 6δt, we
observe a near-biclique, with α ≥ 0.8, that we detect as a
lockstep. We can observe that a lockstep corresponds to a
series of campaigns. The lockstep consists of set of stars across
different time windows. We exploit the gap between these time
windows, and define a campaign as follows. The activities
appearing in the time windows with a gap less than nδt will
be considered as a single campaign. If the gap is larger than
nδt, we treat it as a different campaign.

Streaming. We adopt the terminology from [31] and define a
stream processing task as a query that is submitted once by
the user and is executed continuously or periodically by the
system, as updates arrive. The temporal scope of the task may
be either a sliding window or the entire current state of the
graph; lockstep detection falls in both these categories, as star
detection considers new download events that are at most ∆t
apart and a lockstep requires two or more stars that at least δt
apart. The lockstep detection task is a quasi-continuous query
that must produce or update a result when the user requests it
(once per ∆t), rather than keeping the query result up-to-date
whenever the inputs change.

Adversary model. A silent delivery campaign will evade
detection if its nodes from U do not remain active for at
least ∆t + δt or if none of these nodes contacts at least 2
nodes from V . For example, payloads make poor choices for

3

MINIBAR-
MASTER,EXE

BI_RUN
ONCE.EXE

At t = [0, ∆t]

bigspeedpro.com

At t = [3δt, ∆t + 3δt] At t = [6δt,∆t + 6δt]

bispd.com

Lockstep
DetectedBISEHUP

35464.EXE

2013-01-06

2013-01-24

2013-01-13

payloads
Trojan.generic (mal)
Smote Ltd. (ppi)
YellowSoft Inc (pup)
DealPly
Technologies Ltd. (pup)
betwikx (pup)
…16 PUP / 1 Malware

MINIBAR-
MASTER,EXE

BI_RUN
ONCE.EXE

BISEHUP
35464.EXE

MINIBAR-
MASTER,EXE

BI_RUN
ONCE.EXE

BISEHUP
35464.EXE

bigspeedpro.com

cloudfront.net

bispd.com

bigspeedpro.com

Fig. 1: Lockstep Illustration (Red color corresponds to existing nodes and edges. Green color corresponds to new nodes and
edges which we receive in the data stream in an online fashion).

nodes in our bipartite graph, as they are frequently repacked
and some malware families seek to deliver unique samples
to each host [8]. We consider adversaries that have access
to some varied, but limited, resources—e.g. downloaders that
get updated periodically but not daily (which could raise
suspicions), a limited stockpile of domains—so that we can
find some values for ∆t and δt that allow us to detect their
lockstep behavior.

Goals. Lockstep detection is challenging when analyzing large
volumes of data. For example, finding a biclique with the
maximum number of edges is an NP complete problem [35]. It
is also not clear a priori how to parametrize lockstep detection
in order to distinguish benign software dissemination from
malware delivery.

Our first goal is to build an efficient and scalable system
for detecting lockstep behavior. Our system should be unsuper-
vised, i.e., it should not require any prior information or seed
nodes. The system should be able to operate in real time and
to build the locksteps incrementally, as the stream of stars are
collected and fed to our system. While we evaluate our system
using telemetry collected worldwide, similar to data available
to security companies, OS vendors, or ISPs, we also aim to
lower the deployment bar for small enterprises. Specifically,
our system should detect locksteps if at least three victims are
infected by the same campaign.

Our second goal is to conduct a large scale empirical
study of silent delivery campaigns. These campaigns may
deliver benign software, PUPs, malware or a combination of
these payload types. We aim to illuminate the characteristics
and differences among the campaigns conducted by various
organizations, and to expose the business relationships among
these organizations. Finally, our third goal is to incorporate
this domain knowledge into our lockstep detection system
and to assess how well it can identify suspicious activity,
such as malware or PUP dissemination campaigns. Using
external information about the maliciousness of downloaders
and domains caught in locksteps, we aim to assess the true
positive and false positive rates4 of this detection system. We
also aim to measure the lead detection time, compared to the
existing sources.

Non-goals. We do not aim to detect all possible malware
delivery vectors, e.g. download instructions hardcoded into

4We cannot estimate the false negative rate because we lack ground truth
about malware delivery campaigns. An undetected malicious downloader may
be either a false negative or a dropper not controlled remotely.

Lockstep Behaviors 127,495
typedlr:dom 67,094
typedom:dlr 60,401

Total Downloaders 83,088
Domains accessed 60,002
Download events 33.3 million
Total Payloads 0.7 million
Hosts 1.9 million

TABLE I: Summary of our data sets of the year 2013.

the droppers, malware and PUPs distributed through software
bundles, vulnerability exploits, or other mechanisms that do
not involve remotely controlling a group of downloaders. Our
campaigns do not aim to capture the end-to-end attack kill
chain and do not include activities performed by the payloads
on the hosts where they were downloaded. Finally, our system
should detect silent delivery campaigns in a deterministic
manner, without using machine learning.

III. DATA SETS

In this section, we describe our data sets, our ground truth
and our method for distinguishing malware from PUPs.

A. Data Sources

We utilize a large data set of download events, collected
by Kwon et al. [26]. These events were reconstructed from
observations on end hosts. From this data we utilize the SHA2
hash of the downloader and the downloaded file (payload),
the source domain of the download, and the timestamp of the
event. We focus on events from 2013, as the data set has good
coverage for that year.

We exclude the downloads performed by Web browsers,
which typically involve user actions. We identify the top 5
browsers in our data set by searching the digital signatures for
the following <publisher, product> pairs: <Microsoft Corpo-
ration, Internet Explorer>, <Google Inc, Chrome>, <Mozilla
Corporation, Firefox>, <Apple Inc, Safari>, <Opera Soft-
ware, Opera>. Table I summarizes our data after this filtering
step.

B. Ground Truth Data

While ground truth for malware delivery campaigns is cur-
rently unavailable, we collect ground truth about executables
from multiple sources.

4

VirusTotal. VirusTotal5 provides file scan reports for up to
54 anti-virus (AV) products. We query VirusTotal for the hash
of each downloader and payload in our data set to obtain its
first-seen timestamp, the number of AV products that flagged
it as malicious, the AV detection names assigned to it, the
total number of AV products utilized for scanning, and the
corresponding file signatures. We were able to retrieve reports
for about 17% of the binaries from 2013. In line with prior
work [23], [26], we set a threshold rmal ≥30% and we flag
the files that meet the condition.

This process selects both malware and potentially unwanted
programs (PUPs). To further separate them, we search the
AV labels given to these samples for the following key-
words: “adware”, “not-a-virus”, “not malicious”, “potentially”,
“unwanted”, “pup”, “pua”, “riskware”, “toolbar”, “grayware”,
“unwnt”, and “adload” [23]. We define rpup to be the percent-
age of AV labels that include one of these keywords. We con-
sider that a binary is malware if rmal ≥30% and rpup ≤10%.
It is treated as PUP if rpup >10% and rmal ≥30%. We identify
1,228 malware samples and 15,350 PUPs through this process.

National Software Reference Library. NSRL6 provides a
reference data set (RDS) of benign software. We collect the
MD5 signatures of the applications and their list of publishers.
The version of the RDS we use is at 2.52, which was released
in April 2015. We consider benign all the executables where
either (1) the hash matches or (2) the publisher matches and
has a valid signature.

Information about publishers. To identify publishers engaged
in the Pay-Per-Install (PPI) business [8], we utilize two lists of
PPI providers from underground forums.78 For other types of
publishers, we query the Reason Labs knowledge base.9 This
service provides details about the publisher, e.g. whether it is
considered safe or if it uses its certificates to sign PUPs.

IV. DETECTING LOCKSTEP BEHAVIORS IN REAL-TIME

In this section, we describe the design and implementation
of Beewolf, which detects lockstep behavior in real-time.
Beewolf can operate in two modes. In offline mode, our system
analyzes our entire download events, with the aim of charac-
terizing lockstep behaviors empirically. We utilize this mode in
our experiments from Sections V and VI. In streaming mode,
Beewolf receives data incrementally and prunes the locksteps
detected to focus on suspicious downloaders and domains. We
evaluate this mode in Section VII. We implement Beewolf in
Python, using the NetworkX10 package to manipulate graphs.

As illustrated in Figure 2, Beewolf consists of a data
analysis pipeline with four components: star detection, galaxy
graph construction, frequent pattern (FP) tree construction, and
lockstep detection. We also maintain a database with three
tables: download_events, stars, and locksteps. The
first step is to detect new star patterns as new download

5https://www.virustotal.com/
6http://www.nsrl.nist.gov/
7http://ppitalk.com/showthread.php/38-List-of-Pay-Per-Install-Companies
8http://www.blackhatworld.com/seo/list-of-pay-per-install-ppi-networks.

646987/
9https://www.reasoncoresecurity.com/knowledgebase.aspx
10https://networkx.github.io/

events are recorded. In the rest of the paper, we refer to
the bipartite graph as “galaxy graph”. The stars detected are
updated incrementally in the galaxy graph. Further, we traverse
the galaxy graph to build the FP tree which is an in-memory
data structure to detect locksteps. The algorithm pseudocode
of Beewolf is presented in the full version of the paper11.

A. Whitelisting

As discussed in section III-B, we identify benign binaries
using the NSRL data. We maintain a whitelist, which consists
of these benign binaries. Prior to the main data analysis
pipeline, we filter out the download events generated by the
benign downloaders, which are listed in the whitelist. We do
not expect this whitelist to be exhaustive—NSRL may not in-
clude all the legitimate downloaders—but this simple filtering
step helps us focus on the most suspicious campaigns and
improves Beewolf’s performance. Moreover, while it is likely
unfeasible to whitelist all benign software, only a few programs
have a downloader functionality. Our whitelist contains 6,996
downloaders.

B. Star Detection

Each row of the download_events table consists of
a downloader (dlr), corresponding domain accessed (dom),
the downloaded file (payload), and the timestamp when the
download event occurred. We assign a unique identifier to each
download event in the table, and sort them in ascending time
order. Conceptually, each download event corresponds to an
edge in the galaxy graph, linking a node represented by dlr
with a node represented by dom.

Given a moving time window of size ∆t, we query the
events that occurred within this time range. We utilize these
series of download events to identify star patterns. We can
create stars in two ways, by starting from a downloader and
aggregating the adjacent domains, or by starting from a domain
and aggregating the adjacent downloaders. We assign unique
identifiers to each new star, and record the associated events
in the stars table. After generating all the stars within ∆t,
we slide the time window by δt and repeat the star detection
process, until the end of the time window reaches the last
event.

C. Galaxy Graph

Beewolf maintains the galaxy graph, which has two kinds
of nodes: nodes that correspond to downloader programs
and nodes that correspond to domains hosting payloads. We
represent a node in the galaxy graph as nodegg . We explicitly
maintain only 1 edge between a downloader and a domain.
However, there can arise situations where a downloader ac-
cesses a domain at different times; we discuss how we deal
with this situation later in this section.

We update the galaxy graph incrementally, using the star
patterns detected in the previous step. As explained earlier,
there are 2 types of stars. We consider only one type of star
and ignore the other while detecting and updating the stars
to the galaxy graph; galaxy graph at any point contains only
one type of stars. For simpler explanation, we discuss only

11https://arxiv.org/abs/1611.02787

5

https://www.virustotal.com/
http://www.nsrl.nist.gov/
http://ppitalk.com/showthread.php/38-List-of-Pay-Per-Install-Companies
http://www.blackhatworld.com/seo/list-of-pay-per-install-ppi-networks.646987/
http://www.blackhatworld.com/seo/list-of-pay-per-install-ppi-networks.646987/
https://www.reasoncoresecurity.com/knowledgebase.aspx
https://networkx.github.io/
https://arxiv.org/abs/1611.02787

Download	
Events	

Batch Data
Star Detection

Galaxy Graph FP tree
Lockstep
Detection

download_events
stars

locksteps

Database & Analysis 4 Core Components of Beewolf
Sensors Data Collection

White-
lis2ng	

Fig. 2: System architecture.

the star type corresponding to multiple downloaders accessing
the same domain; the same explanation can be extended when
dealing with the other star type. Further, we present results
corresponding to both star types, when dealt separately in
Section V.

When we detect a star, we add the central node (domain)
and its adjacent nodes (downloaders accessing it) to the bipar-
tite graph, and we create the corresponding edges. For each
newly detected star, while adding the central node (domain) we
also specify the star id (e.g. (2) domB), in order to separate
it from the nodes corresponding to domB from different stars.
When the new star is a superset of some existing star in the
galaxy graph, we replace the existing star with it. If it is a
subset of some existing star, Beewolf discards it from further
processing.

D. FP tree

We traverse the galaxy graph, constructed in the previous
step, to build a data structure called a Frequent Pattern (FP)
tree. The FP tree was used successfully in other domains,
for example to design scalable algorithms for frequent pattern
mining [18]. We employ the FP tree algorithm from [30].
Let us represent a node in the FP tree as nodefp. Given the
galaxy graph G = (U, V,E), the algorithm starts by sorting
the adjacency list of V . The adjacency list is a representation
of the galaxy graph and consists of the collection of neighbor
lists for each nodegg ∈ V . The sorting is done in two rounds.
In the first round, we sort each nodegg v ∈ V by their degree
(the number of v’s neighbors in U), in descending order. In
the second round we sort each list of neighbors. Specifically,
we sort the neighbors u of v by their degree (the number of
u’s neighbors in V), also in descending order.

Once the sorting is done, we start building the FP tree by
creating a root nodefp in the tree. For each neighbor u of v,
we traverse the FP tree starting from the root and check if u is
the child of the current nodefp. If this is the case, we set the
current nodefp as u and append v to its visited list. Otherwise,
we first add u as the child of the current nodefp and repeat the
same process. We continue this process until we have checked
all nodegg v′s and their corresponding neighbors. Figure 3
illustrates the FP tree construction procedure given the galaxy
graph as input.

Once the FP tree is constructed, we can traverse it to detect
all the complete bicliques of the galaxy graph. However, FP
tree has some limitations : (a) FP tree does not return near-
bicliques. (b) FP tree misses part of complete bicliques when
overlap exists at the left hand nodes between a larger biclique

root

dlrC

dlrB dlrD

dlrA dlrE dlrE

dlrD

(2)domB,(3)domA,(1)domA,(4)domC

(2)domB,(3)domA,(1)domA

(2)domB,(1)domA

(2)domB

(3)domA

(4)domC

(4)domC

(2)domB dlrC dlrB dlrA dlrD

(3)domA dlrC dlrB dlrE

(1)domA dlrC dlrB dlrA

(4)domC dlrC dlrD dlrE

dlrA
(1)domA

(2)domB

(3)domA

(4)domC

dlrB

dlrC

dlrD

dlrE

Lockstep: [dlrC,dlrB,dlrA] [(2)domB,(1)domA]

Lockstep: [dlrC,dlrB] [(2)domB,(3)domA,(1)domA]

Fig. 3: Example of FP tree construction: (a) Galaxy graph, (b)
Sorted adjacency list, (c) FP tree.

and a smaller biclique. This results in the overlapped region
being missed against the smaller biclique. We address how we
handle these limitations in the next section.

E. Lockstep Detection

After constructing the FP tree, we move to the lockstep
detection phase. Each path downwards from the root to a
nodefp A in the FP tree indicates a lockstep. The set of
nodes along the path corresponds to the downloaders, and the
visited list of A corresponds to the domains in the lockstep.
For example, in Figure 3, dlrC → dlrB → dlrA, the resulting
lockstep will be [(domB , domA), (dlrC , dlrB , dlrA)]. When
identifying a lockstep, we remove the star id from the domain
nodes; however, we store the star ids along with the lockstep,
so that we do not lose the download events that resulted from
the lockstep behavior. We can observe in Figure 3 that some
bicliques are not interesting; for example, when A is a child of
the root (e.g. dlrC), we get a star centered on A, and when A is
a leaf (e.g. dlrE), we get a star centered on the single domain
from the visited list of A (e.g. domA). To avoid generating
locksteps that are too small or that are a subset of a larger
lockstep, we filter out the locksteps that satisfy the following
conditions: (1) the number of downloaders or the domains are
either below 3; or (2) A has a child with same visited list.

Partially missing locksteps. The FP tree captures most of
the locksteps, however it misses the small locksteps that
share part of the left hand elements with the larger lockstep.
In Figure 3, we see that path dlrC → dlrD should have
produced the lockstep of [(domB , domC), (dlrC , dlrD)].
However, because dlrC and dlrD are the part of the longer
path dlrC → dlrB → dlrA → dlrD, (2)domB fails to visit the
corresponding path. We observe that this phenomenon occurs
at the nodes that appear in multiple paths, such as dlrD and
dlrE in our example. We can recover the missing locksteps
by maintaining different node versions, for each path where

6

the node appears, and by constructing a separate FP tree only
on the stars that contain the node with multiple versions. To
cover all the locksteps, we could do this recursively until there
is no node with multiple versions in the FP tree. However,
considering the overhead due to the recursive computation and
the chance that the near-biclique algorithm would help recover
some of the partially missing locksteps as explained in the next
paragraph, we only apply the FP tree construction once on each
nodes with multiple versions without recursion.

Near-bicliques. We aim to detect locksteps even in cases
where some edges are missing from the galaxy graph, e.g. the
corresponding download events may have not been recorded
for some reason. These missing edges could prevent some
potential nodes to be added to the lockstep. Therefore we relax
the lockstep definition, and search for subgraphs that include
a fraction α ≥ αmin of the edges that would form a biclique.
We set αmin to 0.8 to accommodate for at most 1 missing
edge in the smallest lockstep.

There could be many possible missing edges. We reduce
the search space by exploiting the fact that the adjacent nodes
in the FP tree have higher connectivity than the other nodes,
which implies that by introducing it into the lockstep will have
fewer missing edges.

We point to the end node A of the path, which we want to
extract the lockstep. We start by traversing the FP tree upwards,
toward the root, until we reach a node B that has a larger
visited list. We also count the number of hops (missingv)
required to reach B. We define the relative complement list
as the difference between the visited list of B and that of A.
The relative complement list will be added to the candidate list
with missingv as an attribute. Next, we look at the children
A. Each child will be added to the candidate list with the size
of difference between its visited list and A′s visited list as the
attribute missingu.

Once we get the candidate list, we sort it by the attribute in
ascending order. Starting from the first node in the list, we add
the node into the lockstep and calculate α which corresponds
to the edge density within a lockstep. We stop when α drops
below αmin. We observed that, in practice, this heuristic is
good enough, as the adjacent nodes in the FP tree are more
likely to be connected to the lockstep than the other nodes.

F. Streaming Set-up

When using Beewolf in a streaming setting, we ingest the
download event data in real time. Instead of triggering our
system for each single data stream, we run the system by
processing incoming data as a batch within a fixed period
∆t. Except for the difference in how the data comes in the
system, the rest of the process is identical to that of the non-
streaming setup. The star detection will search for new stars
from the batch data; the new stars will be added to the galaxy
graph; the FP tree will be built from the galaxy graph; and the
lockstep detecion will find new locksteps.

V. SILENT DISTRIBUTION CAMPAIGNS

We present a large scale empirical study of silent delivery
campaigns. As discussed in Sections IV-B and IV-C, we
can track two types of stars in the galaxy graph: multiple

downloaders accessing a domain (typedlr:dom) and multiple
domains accessing a downloader (typedom:dlr). These two
star types result in different bicliques, and capture different
download activities. The difference derives from the fact that
the central nodes in the stars may be duplicated in the galaxy
graph, when we add new stars that emerge in later time
windows. The resulting locksteps reflect different distribution
strategies. typedlr:dom account for downloaders that are more
stable than the domains. Conversely, typedom:dlr identify dis-
tribution networks where domains are more stable.

For our empirical analysis, we set a narrow time window,
to detect download events that are remotely triggered and do
not experience delays. More generally, we should choose a
shorter time window than the typical reaction time of domain
blacklists during the observation period. In consequence, we
set the time window ∆t to 3 days, and we use a sliding window
δt of 3 days.12

We identify 67,094 locksteps of type typedlr:dom and
60,401 locksteps of type typedom:dlr in our data. Figure 4
illustrates the distributions for three properties of these lock-
steps: size, life span, and first detection time. The size of a
lockstep corresponds to the number of nodes, considering both
downloaders and domains in the lockstep. We deduplicate the
central star nodes by removing the star IDs. Therefore, the
number is counted on unique set of nodes in the lockstep.
For both types of locksteps, we observe that the number of
nodes within each lockstep follows a long tail distribution
i.e., there are many small locksteps and fewer large locksteps.
In Figure 4(b), we report the life span for each lockstep.
There are long lived locksteps, enduring close to a year. As
our observation period spans only one year, there could be
locksteps that live longer. To evaluate the opportunity for early
discovery of malware delivery campaigns, for each lockstep
we compute the delay until its first subset lockstep is formed,
which is the time difference between the addition of the second
and the first star to the lockstep (Figure 4(c)). We observe
that, while the second star does not usually appear in the next
time window, the locksteps nevertheless emerge quickly: both
typedlr:dom and typedom:dlr take a median of 3 windows to
form a lockstep. However, we also observe some locksteps that
emerge after a long delay.

Lockstep attribution. In general, it is challenging to identify
precisely which organizations were controlling the download
activities reflected in the locksteps we detect, as the domains
may no longer be registered and the downloaders may no
longer be active. However, we aim to make a coarse grained
distinction among the distribution campaigns for malware,
PUP and benign software, to compare their properties and to
assess their overlaps. To do so, we observe that 38.2% (3479
out of 9103) of the downloaders involved in locksteps are
digitally signed, with valid X.509 certificates. We first analyze
these signatures to determine the most frequent publisher in
a lockstep. We consider that a publisher is the representative
publisher (rep-pub) of the lockstep, if it accounts for more
than 50% of the signed downloaders in the lockstep. If we
cannot identify a representative publisher, we set the lockstep’s
rep-pub to mixed. In this manner, we identify 335 rep-pubs.

12During our observation period, domains delivering malware were black-
listed within 17 days on average [25].

7

of

 L
oc

ks
te

ps
 (L

og
 S

ca
le

) Locksteps (dlr:dom)
Locksteps (dom:dlr)

Histogram bucket size = 50

102

103

104

of Nodes in the Lockstep
0 50 100 150 200 250 300 350

of

 L
oc

ks
te

ps

Locksteps (dlr:dom)
Locksteps (dom:dlr)

Histogram bucket size = 10

103

104

Life Cylce (i.e. age) of the Lockstep (# of windows)
0 20 40 60 80 100 120

of

 L
oc

ks
te

ps

Locksteps (dlr:dom)
Locksteps (dom:dlr)

Histogram bucket size = 5

0

10,000

20,000

30,000

Lockstep Emergence (# of windows)
0 20 40 60 80 100 120

Fig. 4: Distribution of lockstep properties: (a) Number of nodes, (b) Life span, (c) Lockstep emergence.

TABLE II: Lockstep group statistics.

typedlr:dom
(MDL/PDL/BDL/UDL)

typedom:dlr

(MDL/PDL/BDL/UDL)

PUP 27,522
(26,764/501/109/148)

13,117
(11,902/1,202/6/7)

PPI 2,639
(2,137/498/4/0)

1,496
(1,164/332/0/0)

BN 3,939
(1,749/888/597/705)

2,021
(1,152/840/7/22)

Other 9,203
(8,041/1,053/58/51)

5,092
(3,479/1,580/8/25)

Mixed 20,766
(14,085/4,069/2,255/357)

36,594
(32,576/2,479/1,449/90)

UK 86
(86/0/0/0)

835
(808/27/0/0)

We investigate the top 50 rep-pubs from each lockstep type
and we manually categorize them into 6 different groups:
potentially unwanted programs (PUP) [23], pay-per-install
(PPI) [8], benign (BN), other, mixed, and unknown (UK). The
first 4 groups inherit the label of the rep-pub, determined as
discussed in Section III-B. We place the mixed rep-pubs in
a separate group. In some cases we cannot identify the real
publisher behind the lockstep, as the downloader is an archive
extractor (Winzip). These correspond to the unknown group.
Table II describes the distribution of these lockstep groups.
While we are able to label some locksteps in this manner,
we observe that most locksteps involve downloaders that are
difficult to place in a specific category, as many locksteps have
mixed rep-pubs.

We therefore perform a second labeling step, based on the
payloads that the locksteps distribute. We distinguish between
malware and PUP payloads with the method described in
Section III-B. The labeling is conducted in two steps. First, the
downloaders are labeled by the payloads they distribute within
the lockstep. We say a downloader is malware downloader
(MD), if it distributes at least one malware.13 In a similar
fashion, we label a downloader as PUP downloader (PD) if
it downloads PUP payloads but no malware. A downloader is
labeled as Benign downloader (BD) if it downloads a benign
payload but no suspicious (malware, PUP) download. The rest
are placed as unknown downloader (UD). As the next step, we
label the locksteps. The locksteps that include at least one MD
are labeled as malware downloader lockstep (MDL). Similarly,
we label a lockstep as PUP downloader lockstep (PDL) if
it contains PDs but no MDs. We label the locksteps with
no suspicious (MD, PD) downloader as unknown downloader
lockstep (UDL). We note that, as malware families sometimes
evade detection for extended periods of time, not every UDLs

13This is an aggressive labeling policy, as even benign downloaders may
be tricked into downloading malware occasionally. However, this labeling
produces a conservative estimate of our false positive rate (as discussed in
Section II, we do not aim to measure false negatives).

TABLE III: Lockstep label statistics

typedlr:dom typedom:dlr

MDL 54,497 (81.22%) 51,831 (85.81%)
PDL 7,800 (11.63%) 6,901 (11.43%)
BDL 3,231 (4.82%) 1,500 (2.48%)
UDL 1,566 (2.33%) 169 (0.28%)

correspond to benign download activities. Therefore, we try
to identify the benign downloader locksteps (BDL) among the
UDLs. Similar to the definition of MDLs and PDLs, the BDL
should contain at least one BD.

We present the result of the labeling in Table III. For
both lockstep types, MDL occupy more than 80% of the total
number of locksteps while benign are 4.82% and 2.48% for
typedlr:dom and typedom:dlr, respectively. Our higher success
rate in labeling with payloads, compared to labeling only with
downloaders, reflects our community’s focus on detecting and
labeling malware, rather than on understanding the client-side
distribution infrastructure.

Identifying campaigns. As discussed in Section II, we sep-
arate the campaigns within the lockstep by nδt. By setting
n = 3, we identify 1,292,141/71,424/27,145/6,233 campaigns
corresponding to MDL/PDL/BDL/UDL. On average there are
12.2/4.9/5.7/3.6 campaigns per lockstep for MDL/PDL/BDL.

A. Relationships among representative publishers

The locksteps allow us to determine the business rela-
tionships between rep-pubs and payloads and among groups
of rep-pubs. We focus on PPI and PUP providers, which
distribute other executables intentionally. We collect PUP
and PPIs from the top 10 rep-pubs with a high percent-
age of MDLs within their locksteps. Each of these rep-
pubs conducted at least 40 campaigns. We also include the
known PPI providers Amonetize Ltd., Conduit Ltd.
and OutBrowse LTD to this list.

We investigate which publishers appear frequently to-
gether in lockstep with these 13 rep-pubs. As the down-
loaders signed by these publishers simultaneously utilize the
same server side infrastructure, this likely reflects a rela-
tionship among the corresponding distribution networks. We
also determine whether one of these downloaders was itself
downloaded by one of the the downloaders in the lockstep,
which suggests a closer business connection. We therefore
term such relationship between the publishers as partner. For
example, we observe such partnership relations among some
PPI providers, e.g. Outbrowse Ltd. that frequently de-
livers downloaders from Somoto Ltd.. Additional frequent
partners of Somoto Ltd. include Mindad media Ltd.,

8

IronInstall, betwlkx, and Multiply ROI, which
suggests a stable business relationship with these organiza-
tions.14 The cases where we cannot establish a downloaded-by
relationship among the downloaders in the lockstep may point
to an organization that uses multiple code signing certificates
to evade attribution or to relationships with a common third
party. We term such relationship as neighbor. We illustrate
some of these business relationships in Figure 5. The nodes
are the publishers and the edge between publishers indicate a
business relationship, either partner or neighbor. The thickness
of the edge indicates the frequency of that relationship.

To further illuminate this ecosystem, we employ a com-
munity detection algorithm [7] to the graph illustrated in
Figure 5(a). This algorithm identifies 7 communities. Within
each community, we determine the rep-pub with the highest
betweenness centrality [15], which is the number of shortest
paths between any two nodes that pass through the rep-pub.
This graph centrality measure singles out a node that likely
acts a bridge between other nodes from each community.

• Community #1: OutBrowse. This community represents the
advertisers or the affiliates of the Outbrowse PPI. The
PUPs Multiply ROI and Mindad media Ltd. are
frequently in lockstep with the rep-pub. The other publish-
ers in this community represent variants of the rep-pub’s
certificate: OutBrowse LTD and OutBrowse.

• Community #2: Somoto. This community belongs to So-
moto, which is also a PPI provider. Beside Somoto’s
certificates (Somoto Ltd. and Somoto Israel), this
community includes 12 other publishers. International
News Network Limited, a known PUP distributor, is
tightly connected with the publishers in this community,
suggesting a close relationship.

• Community #3: raonmedia. 22 publishers belong to this
community. Three PUP publishers including raonmedia,
Pacifics Co., and CIDA showed high centrality in this
community. All three publishers were located in Busan,
Korea and the certificates were issued by Thawte, Inc.,
which suggests these publishers could belong to the same
group.

• Community #4: Sendori. Although we see PPI
Conduit Ltd. within the community, PUP Sendori
has a higher centrality. At 77 publishers, this is the largest
community. Sendori was is tightly connected to most
of the publishers within the group, which reflects an
aggressive distribution strategy of this PUP.

• Community #5: Amonetize. This group represents
Amonetize Ltd. and several PUPs. In particular,
Shetef Solutions & Consulting (1998) Ltd.
is known to be the advertiser15 of Amonetize.

• Communities #6 & #7. These communities are small and
include the InstallX PPI and the Wajam PUP.

These results suggest that the partner and neighbor relation-
ships can expose organizations that utilize distinct code signing
certificates for different activities, e.g. PPI and PUP. Addition-
ally, the graph communities capture close relationships among

14Several of these publishers attended the 2014 Affiliate Summit in Las
Vegas (http://affiliatesummit.com/).

15https://www.reasoncoresecurity.com/signer-shetef-solutions-consulting-
1998-ltd-40812da0f7cb2ecd4955fd76e0a6c493.aspx

the publishers, such as delivery networks that rent the server-
side infrastructure from a third party or publishers that engage
in aggressive distribution campaigns using multiple providers.
The graph also includes instant messengers and file sharing
software, which are likely involved in locksteps resulting from
spam campaigns.

B. Malware and PUP delivery ecosystems

Downloaders that appear in locksteps with different labels
provide the opportunity to analyze the overlap of different
software distribution ecosystems. 36.7% of the downloaders
(3,345 out of 9,103) are present in both MDLs and PDLs.
These downloaders are associated with 7,635 and 6,886 of
typedlr:dom and typedom:dlr PDLs, which account for 97.8%
and 99.8% of all the PDLs. 100 of these downloaders dropped
payloads known to be malicious, while the other ones down-
loaded other files in lockstep with the malware droppers. The
PUP publishers from Figure 5 distributed 13 trojan fami-
lies, including vundo, pasta, symmi, crone, pahador,
pecompact, scar, dapato, renum, jorik, fareit,
llac, and kazy. We also observed generic trojans, induc
(virus), zeroaccess (botnet), onescan (fakeAV), pincav
(keystroke logger), dnschanger, startpage, and several
worms delivered through these publishers.

To further illuminate the connection of the malware and
PUP delivery ecosystems, we compare the publishers from our
locksteps to the ones from the Malsign blacklist of certificates
used to sign PUP and malware payloads [23]. In this way,
we identify 1,926 downloaders signed by 212 publishers from
malsign, which were involved in 70,984 and 5,468 of MDLs
and PDLs respectively. This suggests that many publishers
thought to belong to the PUP category are also involved in
malware delivery. Considering that many of the unknown files
in our data set may be malware samples (83% of our payloads
were never submitted to VirusTotal), the number of MDLs is
likely higher.

These results contradict two recent studies [22], [38],
which did not find a substantial overlap between the mal-
ware and PUP delivery ecosystems. The key distinction is
that these studies analyzed direct download relationships
between publisher pairs, while lockstep detection allows us
to identify indirect relationships, through the neighbor links
discussed in Section V-A. These indirect links can over-
come evasive strategies such as certificate polymorphism
or utilizing unsigned downloaders for malicious payloads.
In particular, in Somoto’s locksteps, 90.6% of the down-
loaders, on average, are either unsigned or have invalid
certificates. We also observe several PUPs with over 50%
ratio, including Strongvault Online Storage LLC,
Save Valet, and LLC Mail.Ru. Variations in experimen-
tal methods may further explain the different results. Thomas
et al. [38] milk PPI downloaders on hosts located in the
US, while our data set includes hosts from 72 countries.
Geographical targeting has been reported previously for PPI
providers [8]. Additionally, their data set covers a different
observation period. In contrast, Kotzias et al. [22] analyze
data from WINE from a time span that largely overlaps with
our observation period. However, they focus on 70 malware
families, excluding for instance trojans that received generic
labels from anti-virus vendors.

9

http://affiliatesummit.com/
https://www.reasoncoresecurity.com/signer-shetef-solutions-consulting-

Wajam
Multiply ROI

OutBrowse LTD OutBrowse

Mindad media Ltd.

International News Network Limited

Somoto Ltd.
Somoto Israel

Conduit Ltd.

Amonetize ltd.
Shetef Solutions & Consulting (1998) Ltd.

Creative Island Media Sendori

Aedge Performance BCN

Softonic International
InstallX

CIDA

raonmedia Pacifics Co.

raonmedia

OutBrowse LTD
Somoto Ltd.

Sendori

InstallX

Amonetize ltd.

Wajam

Amonetize ltd.

Somoto Ltd.

Somoto Israel

OutBrowse LTD

Conduit Ltd.

Wajam

Vitblan telecom sl

Multiply ROI

betwikx

Bandisoft
AB Team d.o.o.

WhiteSmoke Inc
GOLDBAR VENTURES LTD

Aedge Performance BCN

Creative Island Media

OutBrowse

IronInstall

Mindad media Ltd.

InstallX

Sendori

Fig. 5: Business relationship: (a) Both partner and neighbor, (b) partner relationship for PPIs. (node color red/orange/blue/gray
corresponds to PPI/PUP/benign/other).

of

 L
oc

ks
te

ps
 (%

)

MDLs (dlr:dom)
MDLs (dom:dlr)

Histogram bucket size = 5

0

20

40

60

80

Approximate level in FP tree of MDLs
5 10 15 20 25 30 35

Fig. 6: Approximate FP Tree Level of the MDLs.

C. Properties of MDLs

We identify a total of 54,497 and 51,831 locksteps of
typedlr:dom and typedom:dlr, respectively, that download at
least one malware. These MDLs come from 246 and 169
rep-pub each. In addition to the PPI and PUP delivery vec-
tors discussed above, we observed that malware is some-
times distributed through compromised software updates. We
identified a malware distribution campaign involving the
KMP Media Co., which is a legitimate media player. The
campaign distributed trojan dofoil. The version of the media
player involved in the MDL is 3.6.0.87, which is known
to have a stack overflow vulnerability16 that was exploited
in the wild.17 Additionally, while experimenting with larger
values for ∆t, we observed a Hewlett-Packard software updater
deliver the hexzone ransomware.18

16https://www.krcert.or.kr/data/secNoticeView.
do?bulletin writing sequence=2147&queryString=
cGFnZT0xJnNvcnRfY29kZT0mc2VhcmNoX3NvcnQ9a2V5d29y
ZCZzZWFyY2hfd29yZD1pb3M=

17https://www.virustotal.com/en/file/ff49e145515bdecbca61b7d9
7439959be5b04b1c29d77a0e8c42a1c1bed42aa8

18We did not find evidence that HP’s code signing certificate was compro-
mised; it is more likely that the malware was able to infect the server-side
infrastructure involved in software updates. This is consistent with prior reports
of a trojan that was signed by HP after it infected the company’s systems, but
without having compromised any certificates [24].

We observe several features that distinguish MDLs from
other locksteps. Figure 6 illustrates the approximate FP tree
level where the MDLs reside. As each node in the FP tree
corresponds to a lockstep, the typical level of MDLs indicates
the region of the FP tree where we are most likely to find
evidence of malware distribution. This is an approximation, as
we may add or subtract a level when computing near-bicliques,
as described in Section IV-E. The median FP tree level where
locksteps reside is 5, for both typedlr:dom and typedom:dlr. In
other words, the median number of downloaders in a MDL
is 5. This is relatively close to the root of the FP tree, as
malware delivery networks rely on only a few downloaders
within a time window. This observation helps us improve the
performance of Beewolf in streaming mode, as discussed in
Section VII.

We also observe that MDLs tend to have a large number of
nodes, as illustrated in Figure 7(a). In contrast, although we
see a few large PDLs, around 90% PDLs have fewer than
25 nodes and over 90% BDLs have fewer than 75 nodes.
Figure 7(b) illustrates the number of domains per day for each
locksteps. We observed MDLs showing aggressive domain
churn (more than 7 domains per day). Figure 7(c) illustrates
the number of downloaders per day for each lockstep. On
average, a new downloader appears for every 5.8/16.7/11.8
days for MDLs/PDLs/BDLs respectively. We also observed
MDLs showing aggressive downloader repacking (more than
5 downloaders per day).

VI. DETECTION PERFORMANCE

While the previous section provides empirical insights into
silent distribution campaigns, we now evaluate the effective-
ness of Beewolf as a detection system. We aim to detect
suspicious activity, such as malware and PUP dissemination
campaigns. This information can be used in several ways.
The downloaders and domains caught in locksteps can help

10

https://www.krcert.or.kr/data/secNoticeView.do?bulletin_writing_sequence=2147&queryString=cGFnZT0xJnNvcnRfY29kZT0mc2VhcmNoX3NvcnQ9a2V5d29y
https://www.krcert.or.kr/data/secNoticeView.do?bulletin_writing_sequence=2147&queryString=cGFnZT0xJnNvcnRfY29kZT0mc2VhcmNoX3NvcnQ9a2V5d29y
https://www.krcert.or.kr/data/secNoticeView.do?bulletin_writing_sequence=2147&queryString=cGFnZT0xJnNvcnRfY29kZT0mc2VhcmNoX3NvcnQ9a2V5d29y
https://www.virustotal.com/en/file/ff49e145515bdecbca61b7d9

of

 L
oc

ks
te

ps
 (%

, L
og

 S
ca

le
)

MDLs
PDLs
BDLs

Histogram bucket size = 50

0.01

0.1

1

10

100

of Nodes in the Lockstep (dlr:dom)
0 50 100 150 200 250 300

of

 L
oc

ks
te

ps
 (%

, L
og

 S
ca

le
) MDLs

PDLs
BDLs

Histogram bucket size = 1

0.01

0.1

1

10

100

of Domains per Day (dlr:dom)
0 1 2 3 4 5 6 7

of

 L
oc

ks
te

ps
 (%

)

MDLs
PDLs
BDLs

Histogram bucket size = 1

0.01

0.1

1

10

100

of Downloaders per Day (dom:dlr)
0 1 2 3 4 5 6

Fig. 7: MDL properties: (a) Distribution of the number of nodes in lockstep, (b) Distribution of the number of domains per day
(typedlr:dom), (c) Distribution of the number of downloaders per day (typedom:dlr).

Time difference (before VT)
Time difference (after VT)

N
um

be
r o

f D
ow

nl
oa

de
rs

Potential early detection

0

20

40

Detection Leadtime (days)
−300 −200 −100 0 100

Fig. 8: Detection lead time for MD/PDs.

prioritize further analysis, e.g. to attribute the campaigns to
publishers as we demonstrate in Section V. It could be com-
bined with other techniques (e.g. DNS reputation systems [2],
[6]) to detect a specific form of abuse (e.g. botnet activity). An
enterprise may also block all downloads initiated remotely by
unknown organizations; in this case, a few trusted publishers
could be added to our initial whitelist.

We use the locksteps labeled in Section V to validate our
system: an MDL or PDL detection represents a true positive,
while a BDL detection is a false positive. For the true positives,
we compute the detection lead time, compared with the anti-
virus products invoked by VirusTotal (for downloaders) and
with three malware blacklists (for domains). We also analyze
the causes of false positive detections. As we lack ground truth
about malware distribution campaigns, we cannot estimate the
false negative rate.

Experimental settings. We evaluate Beewolf in offline mode,
and we build on our empirical insights to select the appropriate
configuration parameters. We set ∆t = δt = 3 days, to capture
locksteps with a high domain churn.

A. Malware and PUP detection

Detection performance. Table III lists the numbers of lock-
steps from each category. Overall, the benign locksteps (BDLs)
represent 4.82% and 2.48% of typedlr:dom and typedom:dlr

locksteps, respectively. We observe the highest fraction of
BDLs among the mixed locksteps of typedlr:dom, perhaps
because malware and PUP creators utilize dedicated malicious
infrastructures as well as generic downloaders, which may
also distribute benign software. In contrast, PPI rep-pubs do
not generate any BDL of typedom:dlr and only 4 BDLs of
typedlr:dom. Overall, the suspicious locksteps (MDL or PDL)
account for 92.85% and 97.24% of all locksteps of typedlr:dom
and typedom:dlr, respectively.

Detection lead time. As Beewolf is content-agnostic (i.e. it
does not analyze the downloader binaries or the Web content

served by the URLs contacted), we evaluate how early we can
detect suspicious downloaders or domains that are previously
unknown. We consider the downloaders submitted to VirusTo-
tal in 2013 that have at least one detection record. We compare
the time when Beewolf is able to detect these downloaders
to the time of their first submission to VirusTotal. Because
a downloader detected by Beewolf is active in the wild,
and because VirusTotal invokes up to 54 AV products with
updated virus definitions, we consider that a detection lead
time illustrates the opportunity to identify previously unknown
droppers. As explained in Section V, a lockstep emerges at the
time when the second star is formed; we estimate the detection
time of a downloader as the earliest detection timestamp
among the locksteps that contain it. Figure 8 illustrates this
comparison. The negative range represents a detection lead
time, and the positive range corresponds to detection lag. We
observe 1182 downloaders detected early and 213 downloaders
detected late. The median detection lead time is 165 days.
Among the late detections, 69 of the downloaders are detected
<3 days late, which suggests that they may detected early
with a shorter ∆t. In contrast, the detection lead time seems
uniformly distributed, suggesting that Beewolf can detect both
recent distribution campaigns as well as campaigns that have
been operating for a while.

We also collect URLs blacklisted in 2013 from three
publicly available sources 192021. These URLs correspond
to 394 unique domains, of which 29 were present in our
dataset. Among these 29 domains, 14 domains were caught in
locksteps; the other 15 domains may represent false negatives,
or they may correspond to malware dissemination techniques
other than silent delivery campaigns. As for downloaders, we
estimate the detection lead time for these 14 domains by
comparing the lockstep detection dates with the blacklisting
dates. Except for one domain that is detected 36 days later,
13 out of 14 domains are detected early, with an median lead
detection time of 196 days.

False positive analysis. We identified 80 publishers that are
involved in forming the BDLs. The top 50 publishers account
for 50% of the downloaders in BDLs. 22 of these publishers
are benign, but they are absent from NSRL so they were
not included in our whitelist. These were mainly non-US
publishers (ESTsoft Corp., AhnLab, and NHN corp.),
which are not covered by NSRL, and benign publishers with
multiple code-signing certificates (Skype Limited is listed
in NSRL but Skype Software Sarl is not). These BDLs

19https://www.malwaredomainlist.com
20http://www.malwaredomains.com
21https://www.phishtank.com

11

https://www.malwaredomainlist.com
http://www.malwaredomains.com
https://www.phishtank.com

TABLE IV: Community detection and locksteps.

FastGreedy [7] Multilevel [12]
Number of Communities 6919 6439
Average #nodes/community 21 22
Median #nodes/community 2 2
Average #locksteps/community 2042 2387
Median #locksteps/community 7 31
Average Lockstep Coverage 89.7 85.9
Median Lockstep Coverage 91.67 87.5
Average #Unique rep-pubs/community 9 11

could have been avoided with a more comprehensive whitelist.
Additionally, 17 publishers are labeled as Other, 12 as PUP,
and 1 as PPI. We suspect that many of their locksteps deliver
undetected malware or PUPs, as VirusTotal reports existed for
only ≈17% of payloads.

B. Comparison with alternative techniques

We compare our lockstep detection algorithm with two
alternative techniques for detecting malicious campaigns: com-
munity detection algorithms [7], [12], which have been ex-
plored extensively in the context of graph mining, and prior
algorithm for detecting lockstep behavior [4].

Community Detection. To compare lockstep detection and
community detection algorithms, we construct a typedlr:dom
bipartite graph with all the download events. We employ 2
popular community detection algorithms [7], [12] based on
optimizing modularity i.e., maximizing the edges within each
community and minimizing the edges between communities,
and we compare them with the locksteps detected by Beewolf.
We use the Python package igraph22 to run these algorithms.

Table IV shows the comparison of these algorithms with
Beewolf. Most of the communities are very small (< 3 nodes).
We observe that a large portion of the locksteps get mapped to
the larger communities. The number of locksteps/community
and the number of nodes/community reflect long tail distribu-
tions. We define the lockstep coverage as the fraction of lock-
steps that reside within a single community. We predominantly
observe locksteps having large (> 80%) coverage. Further,
the number of unique rep-pubs per community is considerably
large (10). This suggests that most of the communities are
mixed up with locksteps coming from different publishers.
This makes it difficult to logically assign each community to
a particular group. Community detection algorithms do not
account for the timing of downloads, which makes it hard to
pinpoint coordinated behavior between nodes.

Prior Lockstep Detection Algorithm. We compare the lock-
steps detected by our algorithm to locksteps detected by
the serial implementation of the CopyCatch [4] algorithm
over one month (January 2013) of data. We reimplement
CopyCatch, as the code is not available. There are qualitative
differences between our algorithm and CopyCatch. Firstly, our
algorithm is unsupervised. In contrast, CopyCatch requires
seed domains corresponding to malicious domains and also
times for all the domains at which some suspicious activity
has occurred. Secondly, given a batch of data, we detect all
the locksteps within that batch; CopyCatch can detect one
single lockstep, which depends to the seed. Thirdly, CopyCatch

22http://igraph.org/

solves an optimization problem to detect locksteps, which
makes it highly sensitive to the choice of seed domains and
the times provided. Furthermore, this serial implementation of
CopyCatch is not scalable for large lockstep sizes; we consider
only small locksteps for comparison.

To make a fair comparison, we generate 470 locksteps
using our algorithm over the one month data. Of these only
139 locksteps have a size less than 10 which we consider
for comparison. For each lockstep our algorithm detected,
we provide CopyCatch the domains as seed nodes and the
timestamp at which each domain was active in the lockstep
as the seed times. Our algorithm generates 470 locksteps in
7.56 s, taking an average of 0.016 seconds per lockstep. In
contrast, CopyCatch takes 600.9 s to generate 139 locksteps—
an average of 4.32 s per lockstep detection. These results
suggest that Beewolf shows promise for processing streaming
data.

C. Robustness to evasion attempts

An adversary could pursue three strategies for evading
Beewolf; we start by explaining these attacks in the context
of typedlr:dom lockstep detection. First, the adversary could
frequently update or repack the downloaders it controls, so
that no downloader is active in different time windows. This
attack would prevent lockstep detection, and many malware
families already employ aggressive repacking rates to evade
detection [8]. However, this strategy might impose a trade-
off for organizations that conduct silent delivery campaigns,
as they try to render their downloaders inconspicuous, e.g.
by utilizing code signing and by avoiding behaviors that are
not commonly seen in benign downloaders such as software
updaters [26]. The frequent updates and the lower prevalence
of individual hashes that would result from higher repacking
rates would make these downloaders look suspicious to an
AV product. Instead of increasing the number of downloaders,
in the second strategy the adversary could utilize a large
number of domains, e.g. from DynDNS or a similar provider,
so that each downloader accesses a single domain within a
time window. This would be expensive for the adversary, as
generating and registering new DNS domains is more costly
than repacking downloaders and payloads. For example, to
protect 500 droppers from lockstep detection, an adversary
would need 5,000 DynDNS zones each month (Beewolf
considers second-level domains rather than FQDNs), at a
current cost of $4,000/month.23 Additionally, this approach
would make the domains more likely to be detected by DNS
reputation systems, which use domain popularity as feature [6].
In practice, Beewolf detects MDLs that churn through more
than 7 domains per day, as discussed in Section V-C. The
adversary could reduce the cost by instructing each downloader
to randomly select a domain, from a pool of available domains,
and to contact only that domain for ∆t; then, the downloader
would select another domain, and the reuse rate of domains
in the pool would increase. To detect this, we could increase
∆t, to cover the point when the downloader switches domains,
and this would in turn force the adversary to further increase
the time interval when each downloader accesses a single
domain. Ultimately, the adversary cannot increase this time
interval indefinitely, as domains that serve malware eventually

23http://dyn.com/managed-dns/

12

http://igraph.org/
http://dyn.com/managed-dns/

get blacklisted. Additionally, we observe that the first two
attack strategies involve increasing the downloader churn and
reducing the domain churn, for evading the detection of
typedlr:dom locksteps; to evade the detection of typedom:dlr,
these actions should be reversed. This suggests that it is diffi-
cult for an adversary to avoid both types of lockstep detection
simultaneously. Finally, in the third strategy, the attacker could
exploit the filtering step in our lockstep detection algorithm,
for example by ensuring that MDLs appear deeper in our FP
tree. In this case, Beewolf is still able to capture a subset of
these locksteps at lower FP tree levels.

VII. STREAMING PERFORMANCE

Experimental settings. We evaluate Beewolf in streaming
mode by feeding the download data in batches. In the lockstep
detection phase, we filter out the FP tree level over 7, based on
the observation that MDLs reside close to the root of the FP
tree. And, we measure the latency of lockstep detection. Each
batch corresponds to a time window of ∆t = 3 days. As we
employ one year of data, we have 121 data points excluding
the first batch in our experiment. For all 121 data points, we
measure the elapsed time for each of the four phases in our
data analysis (illustrated in Figure 3). We run our experiments
on Amazon’s Elastic Compute Cloud (Amazon EC2).24 We
use one M4.4xlarge instance, which has a 16-core 2.4 GHz
Intel Xeon E5-2676 v3 (Haswell) with 64 GB of memory. For
this evaluation, we focus on typedlr:dom graphs.

Streaming performance. Figure 9(a) illustrates the growth
of the data structures that Beewolf maintains. The plots has
a logarithmic Y-axis, to compare both the number of new
stars per batch and the cumulative number of nodes in the
galaxy and the FP tree. On average, a batch contains 225,939
download events. Both the number of nodes in the galaxy
graph and the FP tree grow linearly. At the end, the graph
has 123,335 nodes and 637,814 edges. As the data grows, the
cost for detecting lockstep also grows incrementally.

Figure 9(b) suggests that Beewolf’s runtime is dominated
by the lockstep detection phase, which accounts for 97.2% of
the total runtime on average. The total runtime shows three
growth patterns: a steep increase for the first 20 batches, a
slower increase for most of the period, and another steep
increase starting around batch 94–96. Each of these growth
patterns is linear and follows a regression line with the
coefficients shown in the figure. To further understand the
latency of the lockstep detection step, recall that this phase
consists of two parts: (1) lockstep detection on the main FP
tree, (2) supplementation for finding partially missing locksteps
(see Section IV-E). The near-biclique detection is done during
lockstep detection, and it results in an overhead of at most 10
seconds. As shown in Figure 9(c), the first part is fast, and
requires at most 12 s. Most of the cost of lockstep detection
comes from the supplementation effort, which induces the
three phases of linear growth. In particular, the number of
nodes that have multiple versions in the FP tree increases
significantly around batch 94–96, which triggers the third
growth pattern in the total runtime.

While Beewolf searches for these nodes sequentially, we
note that this could be done in parallel, as the supplementation

24https://aws.amazon.com/ec2/

sub-processes are independent of each other. To evaluate this
potential optimization, we estimate the lockstep detection time
with optimal parallelism. Assuming that enough computing re-
sources are available for running all missing lockstep searches
in parallel, the cost of this part of the computation will be
determined by the longest running supplementation. We obtain
the total cost of lockstep detection with optimal parallelism
by adding this to the runtime of lockstep detection on the
main FP tree. As shown in Figure 9(c), this cost is at most 19
seconds, and shows a single pattern of slow linear growth. The
supplementation phase is important for detecting malicious
locksteps: at the last batch, this phase contributes to 95% of
the MDL detections and 91% of the PDL detections. These
locksteps include 48.7% of the MDs and 80.6% of the PDs.

Overall, these results suggest that the cost of Beewolf’s first
two analysis steps is amortized over time, as we perform star
detection only on the new batch of data and we maintain the
galaxy graph incrementally. The FP tree construction algorithm
is not incremental and requires traversing the entire graph, but
we optimize this step by pruning the FP tree at level 7, as we
do not typically observe MDLs below this level. Similarly, the
lockstep detection requires traversing the whole FP tree and
constructing version lists for its nodes, but we could optimize
this step by performing the supplementation in parallel. The
resulting runtime of Beewolf increases linearly with the size
of the graph. Our results suggest that maintaining one year of
download events imposes reasonable resource and performance
requirements, even if we execute lockstep detection every day.

VIII. RELATED WORK

Graph-based attack detection. Zhao et al. [43] introduces
BotGraph that detects email accounts involved in spamming.
They exploit the fact that botnet accounts share similar IP
address and build a user-user graph. The aggressive sign-up
behavior forces the botnet accounts to form a large cluster
within the graph. Several works developed a reputation score
system by adopting belief propagation, based on the intuition
of locality. Chau et al. [11] exploit the tendency of hosts with
poor cyber-hygiene having more malware. They construct a bi-
partite graph that represents the hosts and the files that present
on those hosts. Observing that several malware are distributed
together, Tamersoy et al. [37] design a graph with files as
nodes where edge is placed between the nodes that share a
common host. Oprea et al. [34] builds a host vs domain graph
incrementally (day-by-day), and detects malicious domains
within a same campaign. In Beewolf, we maintain a graph
based on the accessed by relationship between downloader
and domain. The lockstep behavior detection returns clusters
of downloaders and domains considering the temporal bounds.

Malware distribution. Cova et al. [13] analyzed the rogue
anti-virus campaigns by investigating the malicious domains
involved in the distribution, introduced an attack attribution
method employing feature-based clustering. Vadrevu et al.
[40] introduced AMICO, which is a system for detecting
malware delivery in the live network traffic. They employed a
supervised technique to classify malware download activities.
Invernizzi et al. [19] conducted the study on how the malware
gets delivered through networks, proposed Nazca, a system that
for detecting malicious download events from the web traffic.

13

https://aws.amazon.com/ec2/

#Batch

C
ou

nt
 (L

og
 S

ca
le

)

FP tree size
Galaxy graph size
New stars

103

104

105

106

20 40 60 80 100 120

Total runtime
Lockstep detection time
FP tree build time

Galaxy graph build time
Star detection time

14.037*x + (-0.75131)

Batch

C
os

t (
se

co
nd

 /
Lo

g
sc

al
e)

140.79*x + (-12770)7.669*x +71.673

10−2

10−1

1

101

102

103

104

10 20 30 40 50 60 70 80 90 100 110 120

Lockstep detection time with optimal parallelism
Longest supplementation time
Lockstep detection from main FPtree

Batch

C
os

t (
se

co
nd

)

0.10496*x + 1.5032

0

5

10

15

10 20 30 40 50 60 70 80 90 100 110 120

Fig. 9: Streaming performance: (a) Data growth, (b) Running time of the streaming system, (c) Estimated lockstep detection
runtime with optimal parallelism.

Zhang et al. [42] employed unsupervised technique to identify
the group of related severs that are likely to be involved in
the same malware campaign. Contrary to these works, we
conduct the study solely focusing on the client side of malware
distribution networks, and employ unsupervised technique not
based on features but on graph patterns. Another difference is
in the way we attribute campaigns. While prior work generally
relied on the properties of the malicious domains, we take
advantage of the code signing behavior of the downloaders.

Spam campaigns. Campaigns have been observed in other
attack domains, for example in the context of spam. Several
studies focused on email spam [21], [27] for example to
measure the conversion rates and to analyze the resources
involved in spam monetization. Spam campaigns have also
been observed on social media sites [16], [17]. Prior work
utilized machine learning techniques to characterize social
media spam campaigns. Some of the the prior techniques
discussed use domain specific features that cannot be applied
on the problem we are focusing on. However, the lockstep
detection algorithm has broad applicability.

Lockstep detection. CopyCatch [4] deals with identifying
locksteps by analyzing the connectivity between users and
pages through the likes relationship. We discuss the limitations
of this algorithm and provide a comparison with Beewolf in
Section VI-B. Most of the work in this space looks at detecting
suspicious nodes [20] or suspicious edges [10] through the
lens of outlier detection. SynchroTrap [9] proposes a malicious
account detection system in the context of social networks to
uncover malicious accounts and campaigns. They cluster users
based on the Jaccard similarity of their actions. Our work
is orthogonal to these techniques. Firstly, Beewolf focusses
on detecting malicious campaigns which correspond to near
bipartite cores. Secondly, our system captures malicious cam-
paigns over a large time interval; the notion of frequent patterns
directly allows us to capture suspicious behavior. Finally, our
algorithm is unsupervised.

IX. CONCLUSIONS

We introduce Beewolf, a system for systematically detect-
ing silent delivery campaigns. Beewolf detects lockstep behav-
ior, which captures a set of downloaders that are controlled
remotely and the domains that they access. Using Beewolf,
we identify and analyze 1.4 million campaigns conducted in
2013. We describe novel findings about malware distribution
campaigns, such as an overlap between the malware and PUP
delivery ecosystems and the tight business relationships among
several PPI providers. We identify several properties of mal-
ware distribution locksteps, including their size, life cycle, and

frequent domain changes, which allow us to implement several
optimizations for detecting malware delivery campaigns in
a streaming fashion. We also evaluate the performance of
Beewolf in streaming mode, and we show that it scales to
large volumes of data.

Acknowledgments

We thank Jonathan Katz, the anonymous reviewers, and
our shepherd, Alina Oprea, for their feedback. We also thank
VirusTotal for access to their service and Symantec for making
data available through the WINE platform. This research was
partially supported by the National Science Foundation (award
CNS-1564143), the Department of Defense, and a grant from
Amazon Web Services.

REFERENCES

[1] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster.
Building a dynamic reputation system for dns. In USENIX security
symposium, 2010.

[2] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster.
Building a dynamic reputation system for dns. In Proceedings of the
19th USENIX Conference on Security, 2010.

[3] M. Antonakakis, R. Perdisci, W. Lee, N. V. II, and D. Dagon. Detecting
malware domains at the upper DNS hierarchy. In 20th USENIX Security
Symposium, 2011.

[4] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. Copy-
catch: stopping group attacks by spotting lockstep behavior in social
networks. In WWW, 2013.

[5] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding
malicious domains using passive dns analysis. In NDSS, 2011.

[6] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel. Exposure:
A passive dns analysis service to detect and report malicious domains.
ACM Trans. Inf. Syst. Secur., 2014.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008.

[8] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-
per-install: The commoditization of malware distribution. In USENIX
Security Symposium, 2011.

[9] Q. Cao, X. Yang, J. Yu, and C. Palow. Uncovering large groups of
active malicious accounts in online social networks. In CCS, 2014.

[10] D. Chakrabarti. Autopart: Parameter-free graph partitioning and outlier
detection. In Knowledge Discovery in Databases: PKDD. 2004.

[11] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos.
Polonium: Tera-scale graph mining for malware detection. In SIGKDD,
2010.

[12] A. Clauset, M. E. Newman, and C. Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[13] M. Cova, C. Leita, O. Thonnard, A. D. Keromytis, and M. Dacier. An
analysis of rogue AV campaigns. In RAID, 2010.

[14] T. Dübendorfer and S. Frei. Web browser security update effectiveness.
In CRITIS Workshop, September 2009.

14

[15] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 1977.

[16] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao. Detecting
and characterizing social spam campaigns. In SIGCOMM, 2010.

[17] C. Grier, K. Thomas, V. Paxson, and C. M. Zhang. @spam: the
underground on 140 characters or less. In CCS, 2010.

[18] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In ACM Sigmod Record, volume 29, pages 1–12. ACM,
2000.

[19] L. Invernizzi, S.-J. Lee, S. Miskovic, M. Mellia, R. Torres, C. Kruegel,
S. Saha, and G. Vigna. Nazca: Detecting malware distribution in large-
scale networks. In NDSS, 2014.

[20] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. Catching
synchronized behaviors in large networks: A graph mining approach.
TKDD, 2015.

[21] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker,
V. Paxson, and S. Savage. Spamalytics: an empirical analysis of spam
marketing conversion. In CCS, 2008.

[22] P. Kotzias, L. Bilge, and J. Caballero. Measuring PUP prevalence and
PUP distribution through Pay-Per-Install services. In USENIX Security
Symposium, 2016.

[23] P. Kotzias, S. Matic, R. Rivera, and J. Caballero. Certified PUP: Abuse
in Authenticode code signing. In CCS, 2015.

[24] B. Krebs. Signed malware = expensive “oops”
for hp. http://krebsonsecurity.com/2014/10/
signed-malware-is-expensive-oops-for-hp/, Oct 2014.

[25] M. Kührer, C. Rossow, and T. Holz. Paint it black: Evaluating the
effectiveness of malware blacklists. In RAID, 2014.

[26] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras, . The
dropper effect: Insights into malware distribution with downloader
graph analytics. In CCS, 2015.

[27] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Félegyházi,
C. Grier, T. Halvorson, C. Kanich, C. Kreibich, H. Liu, D. McCoy,
N. Weaver, V. Paxson, G. M. Voelker, and S. Savage. Click trajectories:
End-to-end analysis of the spam value chain. In S&P, 2011.

[28] Z. Li, S. A. Alrwais, Y. Xie, F. Yu, and X. Wang. Finding the linchpins
of the dark web: a study on topologically dedicated hosts on malicious
web infrastructures. In S&P, 2013.

[29] P. K. Manadhata, S. Yadav, P. Rao, and W. Horne. Detecting malicious
domains via graph inference. In ESORICS, 2014.

[30] J. Mondal and A. Deshpande. Eagr: Supporting continuous ego-centric
aggregate queries over large dynamic graphs. In SIGMOD, 2014.

[31] J. Mondal and A. Deshpande. Stream querying and reasoning on social
data. In Encyclopedia of Social Network Analysis and Mining. 2014.

[32] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, . The at-
tack of the clones: A study of the impact of shared code on vulnerability
patching. In S&P, 2015.

[33] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Webwitness:
Investigating, categorizing, and mitigating malware download paths. In
USENIX Security Symposium, 2015.

[34] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais. Detection of
early-stage enterprise infection by mining large-scale log data. In DSN,
2015.

[35] R. Peeters. The maximum edge biclique problem is np-complete.
Discrete Applied Mathematics, 131(3):651–654, 2003.

[36] B. Rahbarinia, R. Perdisci, and M. Antonakakis. Segugio: Efficient
behavior-based tracking of malware-control domains in large ISP net-
works. In DSN, 2015.

[37] A. Tamersoy, K. Roundy, and D. H. Chau. Guilt by association: large
scale malware detection by mining file-relation graphs. In SIGKDD,
2014.

[38] K. Thomas, J. A. E. Crespo, R. Rasti, J.-M. Picod, C. Phillips, M.-A.
Decoste, C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau, L. Ballard,
R. Shield, N. Jagpal, M. A. Rajab, P. Mavrommatis, N. Provos,
E. Bursztein, and D. McCoy. Investigating commercial pay-per-install
and the distribution of unwanted software. In USENIX Security
Symposium, 2016.

[39] K. Thomas, D. Huang, D. Wang, E. Bursztein, C. Grier, T. J. Holt,
C. Kruegel, D. McCoy, S. Savage, and G. Vigna. Framing dependencies
introduced by underground commoditization. In WEIS, 2015.

[40] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis.
Measuring and detecting malware downloads in live network traffic. In
ESORICS, 2013.

[41] Z. Xu, A. Nappa, R. Baykov, G. Yang, J. Caballero, and G. Gu.
AUTOPROBE: towards automatic active malicious server probing using
dynamic binary analysis. In CCS, 2014.

[42] J. Zhang, S. Saha, G. Gu, S. Lee, and M. Mellia. Systematic mining
of associated server herds for malware campaign discovery. In ICDCS,
2015.

[43] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum. Botgraph:
Large scale spamming botnet detection. In NSDI, 2009.

15

http://krebsonsecurity.com/2014/10/signed-malware-is-expensive-oops-for-hp/
http://krebsonsecurity.com/2014/10/signed-malware-is-expensive-oops-for-hp/

	Introduction
	Threat model
	Data sets
	Data Sources
	Ground Truth Data

	Detecting lockstep behaviors in real-time
	Whitelisting
	Star Detection
	galaxy Graph
	FP tree
	Lockstep Detection
	Streaming Set-up

	Silent distribution campaigns
	Relationships among representative publishers
	Malware and PUP delivery ecosystems
	Properties of MDLs

	Detection performance
	Malware and PUP detection
	Comparison with alternative techniques
	Robustness to evasion attempts

	Streaming performance
	Related work
	Conclusions
	References

