
Indiscreet Logs: Diffie-Hellman Backdoors in TLS

Kristen Dorey
Western University, Canada

kdorey@uwo.ca

Nicholas Chang-Fong
Western University, Canada

nchangfo@uwo.ca

Aleksander Essex
Western University, Canada

aessex@uwo.ca

Abstract—Software implementations of discrete logarithm
based cryptosystems over finite fields typically make the assump-
tion that any domain parameters they encounter define cyclic
groups for which the discrete logarithm problem is assumed to be
hard. In this paper we explore this trust assumption and examine
situations where it may not be justified. In particular we focus on
groups for which the order is unknown and not easily determined,
and explore the scenario in which the modulus is trapdoored to
make computing discrete logarithms efficient for an entity with
knowledge of the trapdoor, while simultaneously leaving its very
existence as matter of speculation to everyone else.

We conducted an investigation of discrete logarithm domain
parameters in use across the Internet and discovered a multitude
of instances of groups of unknown order in use in TLS and
STARTTLS spanning numerous countries, organizations, and
implementations. Although our disclosures resulted in a number
of organizations taking down their suspicious parameters, none
were able or willing to rule out the possibility that their
parameters were trapdoors, and obtaining conclusive evidence
in each case could be as hard as factoring an RSA modulus,
highlighting a key feature of this attack method—deniability.

I. INTRODUCTION

Finite fields underlie a number of cryptographic primitives
and protocols such as DH/DHE key exchange, DSA signatures,
ElGamal encryption, and others. DHE in particular, though in
steady decline over recent years, is still widely supported. In
contrast to elliptic curve variants of these cryptosystems, it is
common for finite field crypto implementations not only to
support custom groups, but to accept almost any group pa-
rameters they are presented with. The potential consequences
of working in weak groups are well known: the discrete
logarithm problem is efficient when groups are of sufficiently
low or smooth order. Being able to ascertain the size and
primality of a group’s order, therefore, would seem to be a
critical functionality. It is not. All implementations of finite
field cryptography we examined perform little or no validation
whatsoever.

What this means is software implementations implicitly
trust that the given parameters form a cyclic group of suf-
ficiently large, non-smooth order. At first glance this seems
a reasonable assumption, since the party with the private key

typically chooses these parameters and communicates them
to the other party via an authenticated channel. However, we
examine a number of possible scenarios in which weakened
parameters could be maliciously injected for the purposes of
creating a persistent backdoor.

Significance. We argue backdoored parameters are interesting
for a number of reasons:

• Efficient. Optimally weak parameters can be chosen
to allow near instantaneous recovery of DH shared
secrets;

• Pervasive. Attacks work on the examined implemen-
tations with no modification to existing source code—
at either end point;

• Surreptitious. Implementations provide little or no
means of validating parameters following their initial
creation, and therefore detecting weak parameters is
potentially difficult.

• Deniable. The very existence of a backdoor can be
deniable. We uncovered a number of composite mod-
uli online and organizations we contacted declined to
comment on how the parameters came to be used.

Summary of Results. We found major implementations of
finite field based discrete logarithms have a systematic vulner-
ability to weak groups and use bad parameter hygiene, and we
examine the resulting security ramifications:

• We conducted an Internet wide survey of DHE sup-
port uncovering hundreds of TLS- and STARTTLS-
enabled web and mail servers using composite moduli
with no smooth factors. These potentially backdoored
parameters were found across a range of protocols, in-
cluding HTTPS, SMTP, SMTPS, IMAPS, and POP3S,
and spanned over 30 countries and a diverse set of
organizations. Some of these servers used generators
of partially smooth order, which allowed us to recover
large portions of the private key. We additionally
found 1.6M servers offering non-safe prime groups
of unknown order.

• We discuss how TLS 1.2 and earlier is vulnerable to
DHE “downgrade” style attacks, in which an adver-
sary that can exploit trapdoored parameters can force
a DHE ciphersuite to be negotiated as long as both
parties support it. We present several possible attack
vectors to deliver these malicious parameters: directly
attacking the server or TLS endpoint, or by attacking
the software upstream.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23006

• We disclosed the vulnerability to 17 companies, re-
sulting in a security advisory (CVE-2016-5774). In-
terestingly, the organizations we spoke to declined to
explain how composite moduli came to be used in
their DHE configurations.

We cannot be certain that backdoored DHE parameters are
in use on the Internet today. A backdoored modulus is deniable,
therefore its existence cannot be known absolutely without
external confirmation or complete factorization. However, our
survey and subsequent analysis show that backdoor use cannot
be ruled out.

The remainder of this paper is organized as follows. In § II
we discuss related work. In § III we discuss the mechanics of
creating TLS backdoors, and present a survey of composite
DHE parameters in TLS and STARTTLS identifying potential
backdoors. In § IV we demonstrate how weak parameters can
be accepted by web clients and show how to exploit this
scenario. In § V we discuss possible vectors of attack for
injecting weakened parameters. In § VI we report on vul-
nerability disclosures we conducted with organizations found
using composite moduli. Finally in § VII we discuss potential
mitigation strategies.

II. RELATED WORK

A. Inadequate DH Parameter Validation

The insecurity of working in small or smooth order sub-
groups has been known for decades [31], [7], [39]. Despite this
many popular implementations of discrete logarithms do little
or no parameter validation. Concurrent but independent work
by Valenta et al. [38] presents a number of complementary
findings regarding the prevalence of weak parameters on the
Internet. Whereas our paper focuses on the possibility of
trapdoors stemming from small subgroups of hidden order,
their work focuses on how the lack of parameter checking can
be exploited in the context of DSA style groups.

In other recent work exploiting improper parameter check-
ing in this setting, Bhargavan et al. [13] demonstrated triple
handshake attacks on TLS-DHE that relied on the use of non-
prime groups which went unchecked on the client end. In
a follow-up paper [12] the authors conduct small subgroup
attacks on TLS, SSH, and IKEv2 that exploit the lack of
public key validation. Mavrogiannopoulos et al. [32] defined
a TLS attack used when a server supports explicit elliptic
Diffie-Hellman (ECDH) curves. The attack is made possible
through incorrect DH parameter validation, as the client views
the ECDH parameters as DH parameters. Although recovery of
the DH pre-master secret is possible, this attack is very limited
as explicit ECDH curves are not supported in the majority of
TLS implementations due to their open-source nature.

B. Trapdoors Based on Subgroups of Hidden Order

Henry and Goldberg [27] used trapdoor discrete logarithm
groups as a component of privacy preserving reputation sys-
tems in anonymizing networks. Recent concurrent but inde-
pendent work by Wong [41] found examples of composite
DHE moduli over HTTPS in the wild. Our study, however,
reports on considerably more specimens across a wider range
of protocols. In addition, the exploitation by Wong required

both the client and server to prefer a DHE ciphersuite, which
limits the attack potential since current telemetry data indicates
DHE key exchanges account for 1% of TLS handshakes.1
In § IV-C we describe how an attacker can exploit backdoored
parameters to force a DHE ciphersuite to be selected if both
parties support it. Additionally we explain how one of the
trapdoor constructions presented could be reversed in O(2

`
2)

operations instead of the expected O(2`). We also conducted
a number of vulnerability disclosures and discuss vendor
responses in § VI.

C. Trapdoors Based on Number Field Sieves

Lenstra [29] and Gordon [24] observed that even if it was
established that a particular group had a sufficiently large prime
order and that all relevant values were members of the group,
it is not necessarily sufficient to ensure the hardness of the
discrete logarithm problem if p was maliciously chosen to be
“nice” in the context of the generalized number field sieve.
Here, a trapdoored prime modulus could be constructed using
a polynomial of low-degree and constrained coefficients for
the purposes of greatly accelerating the generalized number
field sieve (GNFS) sieving and descent steps. Given only
p, a verifier would need to deduce this polynomial in order
to establish the existence of a backdoor. This approach to
building trapdoored DH parameters was previously considered
too computationally intensive to perform in practice. Fried
et al. [21], however, recently demonstrated the creation of a
1024-bit trapdoored prime modulus using the special number
field sieve. Number field sieving can even be applied in some
situations where the group was not attacker controlled. Adrian
et al. [6] demonstrated a modified version of the GNFS in
which an attacker could recover DH private keys from export
strength groups.

III. COMPOSITE DH MODULI

In this section we discuss how trapdoored DH parameters
could be used as a result of poor parameter validation, and
outline the potentially trapdoored composite DH parameters
found in TLS.

A. Preliminaries

We briefly review some important properties of finite-field
based discrete logarithms. Let Gq be a cyclic group of order q.
An element 1 < x < p has order q if q is the smallest number
such that xq mod p = 1. Let p = qr + 1 for p, q prime, and
let g = hr mod p 6= 1 for some 1 < g, h ≤ p−1. We say g
generates Gq . By safe prime group we denote the case where p
is a safe prime, i.e., r = 2. Typically implementations choose
g ∈ Z∗

p, i.e., as having order p−1 as opposed to (p − 1)/2.
By non-safe prime group (also known as a Schnorr group,
or DSA group) we denote the case where r > 2, i.e. the
cyclic subgroup Gq of Z∗

p. Typically q � p allowing for more
efficient operations.

Applications of the discrete logarithm problem (DLP) over
finite fields, such as Diffie-Hellman, are defined by a set of
domain parameters 〈p, q, g〉, where p is the prime modulus,
q is the group order, and g is a generator of Gq . Let Gq

1https://telemetry.mozilla.org

2

https://telemetry.mozilla.org

be a cyclic group of large, prime order. Given two elements
g, y ∈ Gq the DLP is the problem of finding the unique value
0 ≤ x < q such that gx = y mod p, and is believed to
be computationally infeasible when q is sufficiently large and
contains no small factors. The computational Diffie-Hellman
assumption states that given the values g, ga, gb ∈ Gq , it
should be computationally infeasible to compute gab. Finally,
the decisional Diffie-Hellman assumption states that given
g, ga, gb ∈ Gq , it is believed to be computationally infeasible
to distinguish between gab and a random element in Gq .

B. Validating Domain Parameters

Verifying the validity of the domain parameters is sufficient
to detect the kinds of weakened or backdoored parameters
considered by this paper. Most of the software implementations
we examined, however, skip one or more of the following
checks:

• Length: Check that |p| and |q| are sufficiently large
(i.e. |p|≥ 2048-bits, |q|≥ 224-bits as per current NIST
guidelines [9]);

• Primality: Check p and q are both prime;2

• Group Order: Check q|(p − 1). No mechanism is
provided in TLS to communicate group order [19],
[34];

• Group Membership: Check any asserted group ele-
ment i.e. generator g, public key, etc. is a member of
the group (i.e. m ∈ Gq). Specifically, check 1 < m <
p−1 and mq mod p = 1. Note m = p−1 is explicitly
excluded by the associated NIST standard [8], since it
always only has an order of 2, regardless of the choice
of p. Safe prime groups working in Z∗

p can omit the
exponentiation by the group size, since all elements
1 < m < p− 1 are part of this group.

C. Successful Connections with Valid-looking Moduli

A backdoored modulus may possibly remain undetected for
longer if the weak modulus at least looks valid, e.g., does not
end with an even digit. To demonstrate this, we investigated
the visual similarity between a safe prime modulus and a
deliberately weak modulus, and showed that lack of proper
validation allows software implementations to connect with
both moduli. As a demonstration, we modified the OpenSSH
\etc\moduli file to use a deliberately weak modulus. The
default OpenSSH moduli file consists of safe primes with short
generators like 2 or 5. Although the software does not check
group validity, an attack in the context of a version update
should allow the parameters to pass casual inspection. The
attacker’s goal is then to create parameters that also have short
generators (and thus are valid looking), but are still efficient
to solve. Schnorr groups are unlikely to have short generators
of small subgroups, and large generators (i.e. the same length
as the modulus) would be overtly suspicious. Since OpenSSH
does not verify the primality of the modulus, we can instead
work with smooth composite moduli. Here discrete logarithms
can be made to be efficiently solvable for any generator of any
subgroup.

2Technically q only must contain a sufficiently large factor.

As an example, we set p as the product of all primes up
to 1471, excluding 2 and 5 (so it is not obviously prime from
inspection in base 2 or 10). This number is 2043 bits and has
231 factors. Multiplying it by 19 will bring the length to a
standard 2048 bits. In this case, one of the factors will be 192.
Table I shows an example of a safe prime modulus and our
smooth composite modulus. The lack of proper validation de-
scribed in § III-B means OpenSSH connects with both the safe
prime modulus and our composite modulus designed to allow
efficient DLs. The discrete logarithm of a number relative to
an arbitrary base (e.g., 2) can be computed individually across
each of the factors of p and reassembled using the Chinese
remainder theorem (CRT). The discrete log in each of the
subgroups can be pre-computed. Computing a discrete log,
therefore, can be reduced to 231 look-ups in this dictionary,
followed by a single CRT of 231 congruences. Implementing
this in Sage we were able to compute discrete logarithms in
4ms on a laptop.

D. Constructing Trapdoors in Groups of Hidden Order

Working in small subgroups is efficient from the attacker’s
perspective, but comes with two downsides: (1) others can
also exploit the weak group, and perhaps more importantly (2)
strong evidence exists that the parameters are compromised. A
more interesting scenario is to trapdoor the modulus such that
only the attacker can exploit it while making its very existence
a matter of speculation. In this setting the attacker can use a
composite (e.g., RSA) modulus to construct a trapdoor instance
of the discrete logarithm problem. Let n = pq for large primes
p, q with φ = (p−1)(q−1). The idea is to work in small
subgroups of hidden and smooth order, i.e., such that (p−1) and
(q−1) contain smooth factors. A generator is then selected so
as to have reasonably low order modulo p and q respectively,
allowing the person knowing the factorization of n to solve
several independent and efficient discrete logarithms.

Related Constructions. Concurrent and independent to us,
Wong [41] also proposes using a hidden subgroup of a com-
posite modulus in the context of trapdoored Diffie-Hellman
key agreement. Let p = 2p1p2 + 1 and q = 2q1q2 + 1 where
p1, q1 are sized small enough to allow efficient computation
of the discrete log in subgroups of order p1 and q1, but large
enough to prevent brute forcing the discrete logarithm in a
subgroup of hidden order p1q1, while p2, q2 are large so as to
prevent factorization attacks, such as Pollard’s p-1 attack. Let
|p1|= |q1|= `. A generator g is chosen of the unique subgroup
G < Z∗

n of order p1q1.

The order of g has length 2`. The orders of g modulo p and
q respectively are `-bits in length each. Computing a discrete
logarithm separately modulo p and q takes 2

`
2 operations each

using general discrete logarithm algorithms (e.g., Pollard’s rho,
etc.). With knowledge of the trapdoor, therefore, the attacker
can compute a discrete logarithm in 2

`
2+1 operations. Without

knowledge of the group order, Wong argues an attacker would
require 2` operations to compute a discrete logarithm. As an
example, Wong suggests that if g had an order of 200 bits
in length (i.e., where ` = |p1|= |q1|= 100), then an observer
would require 2200 operations to compute a discrete logarithm,
while an attacker could solve the discrete logarithms separately
modulo p and q, requiring 2 · 2 100

2 = 251 operations.

3

Time Type Tests Tries Size Generator Modulus

20160522030737 2 6 100 2047 2 DB36277B45EA5615C782C08BF6A290A3D61E6B9690E4A147042113FC1BFC0AE
EC5FB0FF82FC1FEA86E273F667EC387FEF3421FFFC617A70C34B1987986C6B35C715713914AB75932A3D1942ECC0F
324D81BF00D59916B3BFDC7BA432AF5C5DFCF30BF4A2C80B8CA52A9B80E989D3A852BD81A8BD3ADC97497F43C6F0A
90882D9CFA165CF1F735C96428BF9BC32A58B71CF1D4FD48A6D2C616E91BB6E07C5CB0DF0C59DAF79D659C6E53007
843497BBEE5B341D27DE2E2543B8DFEB4DDAE6328EAD441C3F36509C1FA689FE494B0426ADCAF9E567A1C5A330168
9C5CCC55EC4002FAA5D254C2F3C0F8636BEA7019D1CD212B74EE4F273E0B9997720E8AEC5D76B

20160522030739 2 6 100 2047 2 8A4F17035FD10C065879FCC6C6632C15F18E15B6F88CAE2BA8C40D23E3DC2FD
68E8897E12F9FD6C3447B72C1595B2EF56C103162BB6C15AA64761C4258E56D47FE156832F6BB4273A106D2E6310A
9D5E54C497517A928A988A359FB0032BED2FEF690487F6AC6F0B3659A43643A316F601DE73E563F7BC2C37A67E751
DE1916B08FBE92FB9E32E35DC5FD051E9EBC4B2256BC4021DACD2CA816F46C7A5C5D1B298A259C925AB0DC404BCF7
2FDAF04C849DCA4C2F6576FCC586A5B942188312787D971D9BE6D70896A8E8458F3D75D6C8F97CE289688A175F699
B938DBFFC7A349D4130558794936E67C349EF96B83517CB647BADBF012E9BF1B4890E72B70849

TABLE I. OPENSSH MODULI FILE. ONE MODULUS IS A VALID SAFE PRIME (OSTENSIBLY) GENERATED BY DEVELOPERS. THE OTHER IS A SMOOTH
COMPOSITE ALLOWING EFFICIENT DISCRETE LOGARITHMS. OPENSSH WILL SUCCESSFULLY CONNECT WITH EITHER.

This expectation, as it turns out, is false as shown by Coron
et al. [17] in the context of the cryptosystem due to Groth [25],
which works in small RSA subgroups of hidden order. Groth’s
construction is effectively identical to Wong’s trapdoor discrete
logarithm construction, except is being applied in the context
of an encryption scheme. Once again let n = pq for p =
2p1p2 +1 and q = 2q1q2 +1 for p, q, p1, p2, q1, q2 prime, and
let g generate the unique subgroup G < Z∗

n of order p1q1. Let
h generate a subgroup of order p1p2q1q2. The values (n, g, h)
form the public key. The values (p1, q1) form the private key.
A message m is encrypted as follows:

Enc(m) = grhm mod n.

for random r. Decryption is accomplished as follows:

Dec(c) = cp1q1 = (gr)p1q1(hm)p1q1 = (hp1q1)m mod n.

The discrete log of (hp1q1)m is computed to recover m. This
can be efficient if m is small, although Groth also proposed
a variant in which p2 and q2 are smooth, allowing for the
discrete logarithm to be efficiently computed using Pohlig-
Hellman. The best attack proposed by Groth [25] factorizes
n in time O(2`), and works as follows. Recall g has order
p1q1 and that gp1 ≡ 1 mod p and that gq1 ≡ 1 mod q. This
gives

gcd(gp1 − 1, n) = q

and
gcd(gq1 − 1, n) = p.

Thus n can be factorized by computing gcd(gi−1, n) starting
at i = 2` and incrementing until a factor is found, requiring
at total of min(p1, q1) − 2` operations. Note this approach is
independent of the size of factors p2 and q2,

Similar to Wong, Groth proposed ` = |p1|= |q1|= 100
as a trade-off between security and efficiency. Coron et al.,
however, demonstrated an attack on Groth’s scheme recovering
the factors of n in time O(2

`
2) instead of the expected O(2`).

Notice here that g in Groth’s scheme has the same order as g
in Wong’s scheme, and thus any attack on Groth’s scheme that
can recover the factors of n based on g can be directly applied
to Wong’s scheme revealing the trapdoor. Coron et al. proposes
Groth’s scheme use ` ≥ 160. This is problematic if applied
to our trapdoor setting, since it would require the trapdoor
owner to compute two discrete logarithms on the order of 280
operations.

Our Trapdoor Construction. Like Groth’s attack, Coron et
al.’s attack exploits the overall order of g, but cannot directly
exploit the order’s factorization (since it is unknown). Our
strategy, therefore, makes the overall order of g large enough to
make factorization attacks infeasible, while smooth enough to
still allow efficient computation of DLs by the trapdoor owner.

Let p = 2p1 . . . pkrp + 1 and q = 2q1 . . . qkrq + 1
for prime p, q. Let each pi, qi be distinct, randomly chosen
primes of length `. Let rp, rq be distinct randomly chosen
primes. We choose g to generate a group G < Z∗

n of order
p1 . . . pkq1 . . . qk, which gives g an overall order of 2k` bits.

We size ` to be large enough to preclude factorization of n
using Pollard’s p−1, while small enough that solving discrete
logarithm instances in subgroups of order approximately 2`

is efficiently computable. Using Pollard’s p−1 factorization
method, n can be factored as follows. Choose some a ∈ Z∗

n.
Let ρi be the i-th prime. For each ρi < 2` :

1) Set a← aρi mod n
2) If gcd(a−1, n) 6= 1 and 6= n, output factor, otherwise

continue.

Factorization is guaranteed after all primes ρi < `b have
been exponentiated in, corresponding to approximately li(2`b)
modular exponentiations, where li(·) is the logarithmic integral.
Henry and Goldberg [27] studied solving discrete logarithms in
smooth-order groups using optimized GPU implementations,
and suggest `b = 55 as sufficient, requiring 1500 years of (non-
parallelizable) wall-clock time to factor n, while requiring
less than two minutes to compute the discrete logarithm with
knowledge of the trapdoor.

We size k to be large enough to preclude factorization of n
based on the order of g (as in Coron et al.’s attack), i.e., 2

k`
2 op-

erations is computationally infeasible. Following Coron et al.’s
suggestion we have k` ≥ 160. As a concrete parameter choice,
let p, q each be 1024-bit primes where p = 2p1p2p3rp + 1
and q = 2q1q2q3rq + 1 where p1, p2, p3, q1, q2 and q3, are
distinct, random 55-bit primes and rp, rq are distinct, random
primes of a length sufficient for p, q respectively to be 1024
bits. A generator g is chosen of order p1p2p3q1q2q3. Given a
DH public value gx mod n, recovering private key x requires
6 separate discrete logarithms to be computed in subgroups of
order 255, for a total of approximately 6·2 55

2 ≈ 230 operations.

Plausible Deniability. One of the most desirable aspects of
this attack paradigm is the ability for an attacker to construct

4

a discrete-log trapdoor while maintaining plausible deniability.
It is easy to tell that a modulus is composite (when you’re
looking), but determining group structure without knowledge
of the factorization, and hence the likelihood of the existence
of a trapdoor, can be made to be computationally infeasible.
As we explain in § IV, none of the vendors we contacted about
the composite moduli we discovered were able or willing to
either confirm or deny the existence of a trapdoor—precisely
as an attacker might hope!

One possible explanation for the origin of a composite
modulus is that it was simply a random number chosen by
accident, or perhaps began as a prime and had a digit or two
flipped in an editor. In this case we would expect the resulting
value to have a distribution of factors similar to that of a ran-
dom composite number. We discussed setting n = pq for large
primes p, q, but this might arouse suspicion, beyond simply
being composite, because it would contain no small factors.
Small factors up to some bound b may be recoverable using
elliptic curve factorization, and the probability that a random
composite number is b-rough (i.e., contains no factors smaller
than b) could be used as evidence toward the determination
of the existence of a backdoor. One option would be for an
attacker to use an RSA modulus as before but multiply in a
sequence of naturally increasing factors up to bound b. We
leave a heuristic for creating convincing random-looking but
trapdoored moduli for future work.

E. Overview of Affected Protocols and Countries

Methodology. In order to find potential backdoors in discrete
logarithm implementations, we collected Diffie-Hellman data
from two sources. For HTTPS, we downloaded Censys IPv4
scans [20] where only DHE ciphersuites were offered by the
client. For DHE-only scans in SMTP/S, POP3/S, and IMAP/S,
we ran our own zgrab3 scans. We investigated both non-
safe and composite DH moduli in HTTPS, and focused on
composite moduli only in SMTP/S, POP3/S, and IMAP/S. This
section focuses on composite moduli; non-safe prime moduli
are discussed in § IV-E.

Affected Protocols. Overall, there were over 500 IP ad-
dresses in 31 countries using potentially backdoored composite
moduli. A summary of moduli properties and the affected
protocols are seen in Table II. Out of the seven protocols
investigated, composite moduli were found in five: HTTPS,
IMAPS, POP3S, SMTP, and SMTPS. Almost all of the moduli
were one of two numbers: a 512-bit modulus used in SMTP
or a 2048-bit modulus used in HTTPS. This recycling of
parameters is common practice; while it does not directly
suggest backdoor use, having the same backdoor in hundreds
of IP addresses is advantageous for an attacker. At the very
least, this moduli reuse proves that weak DH parameters are
used in the wild due to lack of DH parameter validation.
Table II also shows three moduli with nonstandard lengths of
4255-, 1102-, and 904-bits, indicating further carelessness in
parameter choice.

Affected Countries. To see the impact of these compos-
ite moduli, we determined each IP address’ location using
WHOIS queries. The results are seen in Table III. Nearly
all the composite moduli were used in HTTPS or SMTP, but

3https://github.com/zmap/zgrab

Number Number
of IPs

Modulus
Size
(Bits)

Affected
Protocols

Modulus

1 265 512 SMTP da583c16...4774e833

2 242 2048 HTTPS c28992c5...d4681697

3 28 4255 HTTPS 4d494942...41674543

4 5 1102 POP3S 30818702...47020105

5 2 1024 HTTPS a7790db6...288a9773

6 2 1024 HTTPS cc17f2dc...8e073c6d

7 2 2048 HTTPS 8dd38f77...a8fdca8f

8 1 904 HTTPS 9ce85640...2220dc53

9 1 1024 IMAPS,
SMTP

98ea99db...ab2b1b33

10 1 1024 HTTPS d67de440...24218eb3

11 1 2048 HTTPS f5a3da75...f564c113

12 1 2048 SMTP,
SMTPS

ad85473c...3b2d764b

13 1 4096 HTTPS 9152ba0b...85fab358

TABLE II. THE FREQUENCY, AFFECTED PROTOCOLS, AND OTHER
PROPERTIES OF THE COMPOSITE DH MODULI USED IN THE WILD.

Affected Protocol Number of IPs Nationality

HTTPS 280

Austria, Bahrain, Bolivia, Canada,
Chile, Czech Republic, France,
Germany, India, Iraq, Israel, Italy,
Japan, Lebanon, Malaysia, Mex-
ico, Netherlands, Nicaragua, Pak-
istan, Poland, Romania, Saudi Ara-
bia, Singapore, South Korea, Spain,
Sweden, Taiwan, United States

IMAPS 1 Japan

POP3S 5 Ukraine

SMTP 267 China

SMTPS 1 Russia

TABLE III. COMPOSITE DHE MODULI BY PROTOCOL AND COUNTRY.

the HTTPS moduli were spread around the world while the
SMTP moduli were only located in China. In HTTPS, North
American and European countries were most heavily seen. The
location spread in HTTPS and the relative moduli abundance in
SMTP increases the likelihood that these moduli are backdoors
rather than random composites.

F. Composite Moduli Used By Web Servers

We first downloaded a Censys IPv4 scan to investigate DH
moduli in HTTPS. In April 2016, there were approximately
43M IP addresses in the HTTPS space, of which approximately
11M supported DH. Over 300,000 distinct DH moduli were
observed across these 11M. We observed 5,783 unique non-
safe prime moduli across 1.6M IPs, which will be further
discussed in § IV-E. We observed 9 unique composite moduli
across 280 IPs. We did a comparison to ECDHE and found
that of 32 million IPs, all used a standard SECP curve, and that
the server public key was a valid point on the curve. This, of
course, is consistent with expectation. Discovering composite
DHE moduli, on the other hand, was not.

None of the composite moduli observed in HTTPS were
export-grade; all were at least 904-bits in length. In May 2016,
46% of these IP addresses chose a Diffie-Hellman ciphersuite

5

https://github.com/zmap/zgrab

Server Number of Uses

Apache 95

Apache-Coyote/1.1 3

Apache/2.2.9 (Debian) 3

Apache/2.2.12 (Linux/SUSE) 1

Apache/2.2.15 (CentOS) 3

Apache/2.2.15 (Red Hat) 3

Apache/2.2.16 (Debian) 1

Apache/2.2.22 (Debian) 1

Apache/2.2.22 (Red Hat) 2

Apache/2.2.22 (Ubuntu) 2

Apache/2.4.3 (Unix) 3

httpd/1.00 8

Microsoft-IIS/7.5 2

Microsoft-IIS/8.0 1

Microsoft-IIS/8.5 6

Oracle Application Server 10g 1

Lighttpd 1

Nginx 24

Nginx/1.6.3 1

Nginx/1.9.10 1

Others 16

Not Specified 103

TABLE IV. TYPES OF WEB SERVERS USING COMPOSITE DHE MODULI.

by default, meaning forcing DHE (as described in § IV-C) is
not needed in those cases.

To determine if these composite moduli were the result of a
specific server implementation, we looked at the types of web
servers using these moduli. The breakdown of these servers
can be seen in Table IV. Apache servers were used by 125 IP
addresses, which accounted for 45% of the IP addresses using
composite moduli in HTTPS. Almost the same percentage of
IP addresses (37%) did not specify a server. The remaining
21% of servers were spread over Microsoft, Oracle, Lighttpd,
Nginx, and other servers specified by their company name.
Although Apache accounted for almost half the servers, the
version numbers varied or did not exist. This trend was also
seen in the other servers specified. Therefore the variety of
servers and versions indicate that no one server implementation
was responsible for the composite moduli.

The existence of composite moduli cannot be explained
by poor entropy during generation, although poor entropy
could potentially explain a systematic prime modulus. While
it is possible that these composite moduli are pseudoprimes,
enabling them to erroneously pass a probabilistic primality test,
pseudoprimes occur so infrequently that they would not be a
result of poor entropy. This fact coupled with the variety of
server implementations means these moduli were potentially
generated on purpose.

We then examined the public ownership information of the
affected IPs in public databases and in the content of any public
web pages. When the IP address owners and webpage content
differed, both companies were considered identifiers for the
IP address. For example, if one organization was supplied
software by another, the second organization could have a logo

displayed on the webpage. We decided to focus on companies
associated with multiple IP addresses or with at least one
active webpage. This left us with 21 companies: A1 Telekom
Austria (A1), Amazon Web Services (AWS), Banco de Crédito
(BCP), Bloomberg, Blue Coat Systems, Centre national de
la recherche scientifique (CNRS), Deutsche Reisebüro (DER)
Touristik, ELITE, Expedia, Eyou.net, FTSE Russell, JAMF
Software, KDS, KPN, Nederlandse Spoorwegen (NS), NH
Hotel Group, Nordea Bank, Santa Clara University (SCU),
TravelTainment Germany, United Parcel Service (UPS), Uni-
versal Sompo General Insurance, and Universidad Nacional de
Educación a Distancia (UNED).

We completed vulnerability disclosures to companies with
at least one active webpage in HTTPS and which provided ap-
propriate contact information; these disclosures are discussed
in § VI. We also contacted the company with multiple affected
IP addresses in SMTP. Companies in the tourism industry, such
as TravelTainment and DER Touristik, accounted for about
50% of the IP addresses. The remaining companies were in
various industries like education and finance. Most companies,
noticeably those with more affected IP addresses, had an active
webpage.

To determine the longevity of composite moduli, we tested
the 280 IP addresses three times during the course of writing
to see if composite moduli were still used. In May 2016, 88%
of the IP addresses still used the same composite modulus
as before. Of the remaining 12% of IP addresses, about half
switched to a prime modulus and half no longer connected
under Diffie-Hellman. In June 2016, these statistics remained
approximately constant. However, by August 2016, only 39%
still used the same composite modulus and 53% used a prime
modulus. The remaining 8% no longer connected under Diffie-
Hellman, almost the same amount from May and June 2016.
The decrease in composite moduli used could be attributed to
our vulnerability disclosures and, independently, Wong’s [41].
This assumption seemed to coincide with company responses,
as many companies changed from composite moduli to prime
as their primary response. Despite this, many composite mod-
uli remained in use over months, indicating backdoored DH
parameters could go unnoticed for long periods of time.

G. Composite Moduli Used By Mail Servers

Since Censys did not have DH scans for mail servers, we
ran zgrab scans in July 2016 on SMTP/S, POP3/S, and IMAP/S
in TLS and STARTTLS looking for composite DH moduli.
We found 272 IP addresses with composite DH moduli spread
throughout IMAPS, POP3S, SMTPS, and SMTP. These results
doubled the total number of composite moduli found, showing
the problem extends beyond HTTPS.

IMAPS. Although there was only one IP address in IMAPS
with a composite modulus, this IP address used the same
modulus in SMTP. This modulus is number 9 in Table II. The
address is linked to a transportation company in Japan, which
supports the trend of HTTPS companies that are not related to
security and thus provide an advantageous attack target.

POP3S. There were five IP addresses in POP3S that all used
the same composite modulus. This modulus is number 4 in
Table II. Although the company could not be determined

6

accurately, the range of IP addresses suggested that only one
Ukrainian company was involved.

SMTPS. Although there was only one IP address in SMTPS
with a composite modulus, this IP address used the same
modulus in SMTP. This modulus is number 13 in Table II. This
address is linked to a real estate company in Russia, which is
also an industry that provides an advantageous attack target.

SMTP. Almost all the composite moduli in mail protocols
were seen in SMTP. Out of 267 IP addresses with composite
moduli, 265 used the same composite modulus (number 1
in Table II). The remaining two were the IP addresses seen
already in IMAPS and SMTPS. The 265 IP addresses were
spread out across China, but all connected to an email service
provider called Eyou.net [1]. This company was also contacted
in the vulnerability disclosures described in § VI.

H. DH Moduli Factorization

While a well-implemented DHE trapdoor would not be
exploitable, we set about conducting what partial factorizations
of composite moduli we could. We used CADO-NFS and our
own custom implementation of Pohlig-Hellman/Pollard’s P-1
to recover, in many cases, numerous bits of a private key. We
factored the 512-bit composite SMTP modulus (number 1 in
Table II) revealing 5 factors:

114356381100738840153121389513746326020580788713898181372 \\
757840692493482634612304277048270052450717458185043187444 \\
98415461673127855611205755830392736507955

= 5 * 11 * 3130497666273667404271 * 132398438917079824212 \\
370893794766672908033 * 501650748974370233413468006002745 \\
013076943662195591458981539797641214671553476408791132267

We then factored (f −1) of each factor f revealing the
overall underlying group structure. The largest factor has
a 280-bit subgroup, which prevented us from performing a
complete discrete logarithm as the generator had order close to
p−1. We were, however, able to recover 129 bits of the private
key using Pohlig-Hellman. The servers we examined appeared
not to be using short exponents. If, however, a server did use a
short exponent such as 160-bits, this SMTP prime would make
an efficient trapdoor: the first 129-bits could be recovered as
described, and the remaining bits could be recovered from
the 280-bit subgroup using Pollard’s P-1 method in time
approximately 2

160−129
2 ≈ 216.

We conducted a partial factorization of the 904-bit com-
posite modulus (number 8 in Table II) and found a number of
suspiciously smooth factors:

5 * 23 * 474289 * 726101 * 72240863 * 48794510505931

* 70980749229449041 * 5093965413985867 * 2763354329179

* 1711955530550801 * 71015949150893819 * ...

This site used an improper generator of 4, which allowed
us similarly to recover 372 bits of the private key. With
either short exponents or knowledge of complete factorization,
greater and more efficient recovery is possible.

IV. DH PARAMETER TESTING

In this section, we discuss the poor parameter validation of
web clients, describe a man-in-the-middle attack in TLS that
allows an attacker to take advantage of this, and outline the
non-safe prime DH parameters found in TLS.

A. Parameter Hygiene in Discrete Logarithm Implementations

Most finite-field based implementations of the discrete
logarithm cryptosystems we examined inherently treat domain
parameters as trusted. Many of the necessary checks (e.g.,
primality, group membership, etc.) are done when the parame-
ters are generated, but at no point thereafter. For example, the
OpenSSL implementation of DSA does not check parameters
during key generation, signing, or verification and we were
able to construct accepting universal forgeries with maliciously
constructed parameters. This wouldn’t pose a problem in most
cases since usually the expectation is that the signer would
generate their own parameters, but this strategy does not
always work out. One related example arose in OpenSSL
when using non safe-prime groups (i.e., X9.42 groups) in
Diffie-Hellman key exchanges where the server’s private key
was reused e.g., in static DH modes, or simply when, for
efficiency sake, exponents were reused across more than one
connection. By not checking the received client public value
was in the intended group (i.e., Gq), a malicious client could
partially or fully recover the server’s private key. This resulted
in CVE-2016-0701, and now OpenSSL performs a group
membership test of client public keys on the server side—
but only when an X9.42 group is ostensibly in use. In the
case of maliciously injected parameters, OpenSSL will still
successfully proceed with DH key agreements using composite
moduli, small groups, etc.

Many of the finite-field discrete logarithm implementations
we examined work in Z∗

p, as opposed to a prime order
subgroup. The trend seems to have begun with the Handbook
of Applied Cryptography (cf. Section 4.6.1 of [33]), and
many implementations explicitly cite it. OpenSSL’s default DH
parameters and parameters generation utilities, for example,
intentionally work in Z∗

p, noting in a code comment that
“actually there is no reason to insist that ‘generator’ be a
generator.4 It’s just as OK (and in some sense better) to use a
generator of the order-q subgroup.” One reason that working
in Gq is better than working in Z∗

p with a generator of order
2q is that the latter needlessly leaks a bit of the private key: it
is easy for anyone to check if the private key was even or odd
by checking respectively whether the public key is a quadratic
residue or not.

Nominally there is little risk to the CDH assumption
if p− 1 contains a sufficiently large factor and full length
exponents are used, i.e., the private exponent is also sampled
from Z∗

p, although Boneh et al. suggest related attacks in this
setting [14]. A major risk comes about when developers, in
the interest of performance, use short exponents (e.g., 160,
224, or 256 bits), and the Pohlig-Hellman attack may become
applicable depending on the subgroup structure.

But we argue working in Z∗
p with a generator of order

2q is simply bad parameter hygiene (why leak anything when
you don’t have to?), and it sets a bad precedent for developers
who might be tempted to apply this thinking to seemingly
similar but subtly different situations. For example, we found
the libgcrypt, pycrypto and bouncycastle implementations of
ElGamal all by default work in Z∗

p with a generator of order
2q, which is conspicuous since it breaks the DDH assumption
and hence semantic security.

4i.e., a generator of Z∗
p

7

GPG, for example, uses libgcrypt and the authors con-
firmed their GPG public ElGamal encryption keys all leak
one bit of their respective private keys. Although this does not
lead directly to an attack because the plaintext in this setting is
(largely) a random value, it is both unnecessary and potentially
a sign of additional crypto issues. For example, GPG makes
curious parameter choices and an ElGamal keypair at the 2048-
bit level consists of a prime in which p−1 consists of a 340-bit
private key in a 235-bit subgroup. Although many of the appli-
cations using these libraries seem not to require DDH, focusing
instead on things like encrypting random nonces, neither do
the libraries come with the caveat that the implementations
are not semantically secure as one might nominally expect
of an ElGamal implementation. This is probably fine when
encrypting a session key, but is not as fine if the library were to
be used as part of an implementation of a cryptographic voting
system encrypting ballot choices. For example, Chang-Fong
and Essex recently exploited small subgroups in Helios [16], an
Internet voting system that provides end-to-end cryptographic
verification. Finally we note the use of Z∗

p with a generator
of order 2q is not universal. In contrast to the more ad hoc
approach to parameter generation of many implementations,
standardized parameters such as the MODP and Oakley safe-
prime groups use generators that do not leak a bit. We consider
working with safe prime groups with short exponents to be a
good balance between security and efficiency.

B. DHE Support by Browsers

We determined DHE support by browsers, then tested their
parameter validation by serving them weak DHE parameters.
Many major web clients still support DHE, although Safari has
removed DHE support. Chrome is in the process of removing
support [10], but in the interest of interoperability connects
with DHE if it is the only key exchange mode offered by
the server. First it sends the ClientHello without DHE
ciphersuites, and if that fails it will re-attempt with DHE
ciphersuites added back in. This is largely in response to the
difficulty in guaranteeing large moduli bit lengths following
the results of Logjam, which we discuss further in § VI.
Additional factors include the slower performance relative to
ECDHE, although this gap is exacerbated by the predominance
of safe-prime implementations using full-length exponents.
Based on the current market share DHE is still supported in
approximately 87% of browsers,5 though this will drop steeply
to about 22% once Chrome removes support. Based on our
own survey approximately 26% of servers support DHE over
HTTPS (see § IV for more).

We tested major web browsers to see to what extent
they would accept weak DHE parameters. We configured
OpenSSL’s s_server to accept only DHE ciphersuites and
serve custom generated Diffie-Hellman parameters. We wrote
a program to generate malicious DH parameters and encode
them in OpenSSL’s ASN.1 / pem format. We tested a number
of different composite moduli as well as non-safe prime groups
of low order.

Tested browsers include Chrome, Safari, Firefox, Internet
Explorer, and Microsoft Edge. At the time of testing all
browsers still supported DHE ciphersuites. In each of the

5https://www.w3counter.com/trends

browser cases, the connection was successfully established
with weak parameters or composite moduli, and no warnings
were shown except in certain special cases. For example,
Chrome generated an error when served moduli below 512-
bits, even prior to the Logjam disclosure.

Interestingly browsers do perform a kind of limited pri-
mality test on the modulus and will reject even numbers.
When presented with an even modulus, most browsers would
generate an error, then switch to RSA for key exchange and
proceed with the connection. In all cases the browsers would
not accept obviously trivial values such as public keys or
generators equaling 1 or p−1, meaning they do defend against
working in the trivial group G2. The next smallest possible
subgroup is one of order 3, in which the server public key can
be either 1, g or g2. Working in this group will generate a
browser error approximately one third of the time (i.e., when
g = 1), but in the interest of reliability many browsers would
attempt the connection several more times and would succeed
with high probability, and no errors would be displayed to
the user. A 2-bit key is obviously an extreme example, and a
real attacker can make failure extremely unlikely by selecting a
slightly larger subgroup while still keeping discrete logarithms
computable in real-time.

As a concrete example we used the following parameters in
our browser test:

p = 22048 − 1557

g3 = 2(p−1)/3 mod p

Here p represents the largest 2048-bit prime and g3 is a gener-
ator of a subgroup of order 3, i.e., the smallest possible non-
trivial subgroup a browser would need to perform validation.
As an illustration in Figure 1 we show a successful con-
nection in Chrome with the server presenting the parameters
(p, g3, y = g3). In the developer tools Chrome warns that DHE
is deprecated, but does not notice the weak group. This result is
expected, as TLS contains no explicit field for communicating
a group’s order.

In summary, the browsers we tested were unable to defend
against a variety of weak parameters (small or smooth order),
as well as trapdoored groups involving composite moduli. The
limited forms of checking that are performed are interesting
from our perspective, as they constitute a kind of tacit ac-
knowledgment that parameter validation is important—just so
long as it is efficient.

C. Forcing DHE in TLS

Based on current telemetry data, ciphersuites using DHE
for key exchanges currently account for approximately 1% of
TLS handshakes6, limiting the potential for the attacker to
exploit weak groups passively. Fortunately for the attacker,
the message sequence of TLS makes it possible for someone
knowing the master secret to actively modify the handshake
to force DHE to be chosen if both parties support it. This is
in contrast to SSH, which is not vulnerable to an active attack
of this kind due to a differing message order (see § IV-D).

The client initiates a TLS handshake providing a list of
supported ciphersuites. The man-in-the-middle modifies the

6https://telemetry.mozilla.org

8

https://www.w3counter.com/trends
https://telemetry.mozilla.org

Fig. 1. Two-bit Security in TLS. A successful DHE connection in Chrome using a generator of order 3. During this run the generator happened to equal the
public key, indicating the private key was congruent to 1 mod 3.

client hello removing all but DHE ciphersuites. The client
and server exchange keys as normal, except the attacker is
able to exploit the weak or trapdoored parameters to compute
the discrete logarithm of the client or server public values
and compute the pre-master secret gab, from which they can
compute the master secret. With a careful choice of parameters
the attacker can compute the discrete log in real-time. Finally
using the master secret, the attacker forges fake client- and
server-finished messages tricking the respective parties into
believing the other party only supported DHE ciphersuites,
and thus there was no other choice but to connect under DHE.
Furthermore, because the master secret is only a function of
the pre-master secret and the client- and server-random values,
both endpoints will derive the same master secrets, allowing
the attacker to continue passively eavesdropping the connection
from this point forward. This attack is illustrated in Figure 2.

D. Attack Limitations in SSH

The SSH protocol [43] specifies two fixed groups for
Diffie-Hellman exchange: the 1024-bit Oakley group 2 [26]
and the 2048-bit Oakley group 14 [28]. In major implemen-
tations of SSH, such as OpenSSH, these groups are included
directly in the source code, although an extension of SSH does
provide the option for a server to maintain its own list of group
parameters [22]. Although the SSH standard calls specifically
for the use of safe prime groups [22], older OpenSSH versions
explicitly name Schnorr primes as an option7.

However in addition to SSH version restriction, an at-
tacker would also have to force DHE during the connection.
OpenSSH now prefers ECDHE for key exchange, so an
attacker wishing for the parties to use DHE instead would need
to man-in-the-middle the handshake. Owing to the message
sequence in SSH, being able to recover a DHE shared secret
is not sufficient for this attack.

In SSH, the client chooses its preferred key-exchange
method based on the server’s indicated support [43]. An
attacker could attempt to modify this initial server message, but
then the attack would fail at the end of the handshake when the
server provides a signed hash of the protocol messages. At this
stage the client would detect that it saw a different sequence of

7http://man.openbsd.org/OpenBSD-4.3/cat5/moduli.0

Popularity Modulus (bits) Subgroup (bits) Source

76.9% 1024 160 MODP (RFC5114) [30]

11.3% 1024 160 Amazon Web Services

7.5% 768 160 sun.security.provider

3.2% 1024 160 sun.security.provider

0.3% 2048 224 MODP (RFC5114) [30]

0.1% 2048 224 sun.security.provider

~1% – – (others)

TABLE V. THE DISTRIBUTION AND SOURCES OF NON-SAFE DHE
MODULI.

messages than the server and would abort the connection, and
the attacker could not forge this message without the server’s
signing key. This is outside our threat model. If either party
does not support ECDHE, but both parties support Diffie-
Hellman group-exchange, then they will connect under DH.

E. Non-Safe Prime Moduli Used By Web Servers

In addition to the composite moduli found in the HTTPS
scan, we also found non-safe prime moduli used by 1.6M
IPs. Of the 5,783 distinct non-safe primes we found, 5,409
were unique to a single IP. Six primes accounted for ap-
proximately 99% of sites. The distribution of non-safe primes
is seen in Table V. MODP groups were seen in 77% of
IP addresses using non-safe primes. Parameters used in the
sun.security.provider package by Java were seen in
11% of IPs using non-safe primes. This package has had
previous instances of misconfigured DH groups [6]. At the
time of writing AWS load balancers no longer offer DHE
ciphersuites following a security policy update.

Safe-prime groups have the property that all values in the
range 1 < g < p−1 are generators of groups of large order
(either q or 2q), and that an arbitrary value in this range
is an element of Z∗

p with probability approaching P = 1
2 ,

meaning implementors are free to pick just about any generator
they wish, and often opt for the smallest possible value
(e.g., 2, 3, etc). Non safe-prime groups, on the other hand,
generally should be more select in their choice of generator,
especially when the order of Z∗

p contains smooth factors. If a
group element has an order containing smooth factors, partial

9

http://man.openbsd.org/OpenBSD-4.3/cat5/moduli.0

ServerMitMClient
cr, [. . . ,DHE, . . .] cr, [DHE]

sr, DHE

certS , sign(cr | sr | p | g | ys = gb)

yc = ga

(ms, kc, ks) = kdf
(
(ys)a, cr | sr

)
(ms, kc, ks) = kdf

(
(yc)b, cr | sr

)
b = logg(ys), (ms, kc, ks) = kdf

(
(yc)b, cr | sr

)
finished(ms, viewC−M) finished(ms, viewM−S)

finished(ms, viewM−S′)finished(ms, viewC−M′)

authenckc (data)

authencks (data)

Fig. 2. Forcing DHE in TLS. A man-in-the-middle with the ability to exploit weak or trapdoored parameters can force the parties to select a DHE cipher
suite against their natural preferences.

recovery of the private key is possible. For a random non safe-
prime group with an n-bit modulus and m-bit prime order
subgroup Gq , the probability an arbitrary value is a generator
of Gq is approximately 2n−m. Thus we shouldn’t generally
expect to see generators like 2 or 3 used in non safe-prime
groups. We can expect such groups to leak more information
about the exponent than the one bit of some safe prime groups.

Of the 1.6M IPs offering non safe-prime groups, we found
1,270 IPs using small generators. Generator values of 2 and
5 were most common but we also found cases of all prime
numbers up to 31, as well as even values like 4 and 6. This
doesn’t directly break DHE so long as (a) the order of the
generator contains a large prime factor and (b) full-length
exponents are used. This is a precarious situation, since the
typical reason for using non safe-prime groups is precisely
for the purpose of using short exponents (e.g., X9.42 groups).
It also speaks to the notion of parameter hygiene in which
choices appropriate for one setting i.e., small generators of
safe prime groups, is misapplied to another setting.

Like with composite moduli, we also were able to conduct
partial key recoveries in non safe-prime groups with improper
generators. In one improper export-grade non safe-prime group
we were able to recover a full half of the private key (assuming
a full-length exponent), though obviously for export moduli,
Logjam would be a more efficient general attack strategy.

F. Survey of Open-source Projects

To determine if open-source projects use any weak moduli,
we surveyed the default moduli of over a hundred open-source
projects on GitHub. We used search terms based on common
DH byte array names (e.g., dh1024_p, etc.). Out of the 95
projects supporting export grade 512-bit moduli, we found 16
distinct moduli, of which one was found in 44 projects. The
most common modulus observed in Logjam was found in 9
projects. All were safe primes. Across 120 projects supporting
1024-bit moduli, there were 32 unique moduli. All the moduli
were safe primes except for two: one reused from OpenSSL,8
and a MODP group with 160-bit subgroup [30]. For 2048-bit

8https://github.com/openssl/openssl/blob/master/test/ssltest_old.c

moduli, there were 43 projects with 23 unique moduli. Similar
to 1024-bit moduli, the only 2048-bit modulus that was not a
safe prime was a MODP group with 256-bit subgroup [30].
For 3072-bit moduli, there were 3 unique safe primes spread
over 4 projects. For 4096-bit moduli, there were 8 unique safe
primes spread over 28 projects. Overall no weak moduli were
found to be used, but parameter injection through an open-
source project remains a possible attack vector for backdoors
(see § V).

V. ATTACK VECTORS

The previous sections provided examples of potentially
backdoored DH moduli in the wild and discussed the subse-
quent implications. We now propose three scenarios that enable
an attacker to position weak parameters for use as a backdoor.
If the target uses these parameters to perform cryptographic
operations (i.e. key generations, signatures, key agreements,
encryptions, etc.), the associated security guarantees no longer
hold. Since Diffie-Hellman group parameters are infrequently
modified, attacking them can lead to persistent backdoors,
even if the keys themselves are ephemeral. The proposed
threat vectors include dropping the parameters onto a server,
incorporating the parameters in an open-source project, and
installing the parameters on a network appliance that ships to
customers.

A. Attacking the Server

The most intuitive way to get backdoored parameters
in use is to install them at the source. First, the attacker
creates the weak parameters and chooses a target that supports
Diffie-Hellman ciphersuites. Second, the attacker injects these
parameters as a backdoor payload onto the desired server. This
step does require root access to the server, presumably in the
context of a broader exploit. Having root access enables other
attacks, such as stealing the server’s private RSA signing key.
This RSA attack would produce a similar outcome as the
backdoored moduli, as efficient man-in-the-middle attacks are
also possible for an attacker with the server’s RSA signing
key. However, obtaining and using the private RSA key has
two disadvantages. In many enterprise situations, the private

10

https://github.com/openssl/openssl/blob/master/test/ssltest_old.c

RSA key is stored on a hardware security module (HSM) [2]
attached to the server [15]. Since HSMs are designed to
provide additional security to cryptographic keys, it would be
difficult for an attacker to steal a key stored on an HSM even
with root access to the server. The second disadvantage to
using the private RSA key is that it requires an active man-in-
the-middle attack. An active attack is also necessary to force
DHE ciphersuites when not preferred, but only during the
handshake. However, as seen in § III-F, half the IP addresses
that use composite moduli in HTTPS prefer DHE ciphersuites.
Therefore an attacker could choose attack targets that prefer
DHE ciphersuites, allowing for passive eavesdropping. This
type of passive attack is only possible with backdoored moduli;
using the RSA signing key always requires an active attack.

Dropping the weak parameters onto the server requires no
source code modification and creates a persistent backdoor;
because of this, the backdoor may persist source code updates.
The lack of parameter validation explained in § III-B and
the examples of persistent composite moduli in § III-F mean
that backdoored DH moduli could remain undetected for some
time.

B. Attacking the Application

The second threat scenario involves submitting the back-
doored parameters to an open-source project rather than at-
tacking the server directly. First, the attacker creates the weak
parameters and finds an open-source project that supports
Diffie-Hellman. Second, the parameters are submitted as a
patch to that repository. Once the repository accepts the
change, the persistent backdoor would then be installed for
users of that project. Conversely, the attacker could create a
new project that already contains the backdoored parameters.
Since the Logjam disclosure, many GitHub projects have been
updating their Diffie-Hellman parameters to remove 512-bit
moduli and modify 1024-bit moduli. This widespread change
could ironically provide a reason for an attacker to submit a
patch.

Socat, an open-source data transfer relay, recently pub-
lished a security advisory [36] that outlines a similar scenario,
and was one of the motivations behind Wong’s recent pa-
per [41]. Here a hard-coded 1024-bit composite DH modulus
was discovered in the OpenSSL implementation. The Socat
commit logs show that the composite modulus was introduced
in January 2015 [35], and the security advisory was published
more than a year later in February 2016, and the origin
of the modulus remains unclear. Interestingly we also found
this modulus twice in the HTTPS space (see modulus 6 in
Table II). This gap between implementation and detection
indicates backdoored moduli could remain undetected for a
long time. The individual associated with the commit deleted
much of his Internet presence on the day the advisory was
published [42]. Attempts to factor the modulus suggest that
there are large factors, which could indicate a backdoor
configuration like those suggested in § III-D. Although we
didn’t find any suspicious parameters in the GitHub projects
mentioned in § IV-F, the Socat example suggests that starting a
malicious open-source project is one potential delivery vector,
and that the ad hoc nature of parameter checking would hinder
detection.

C. Attacking the Network

The final threat scenario involves installing backdoored pa-
rameters onto a network appliance that is shipped to customers.
Network appliances such as load balancers and traffic shapers
are often used by companies to optimize application or network
performance. Load balancers optimize application performance
by distributing traffic across many servers, which decreases the
load on individual servers. This traffic can be application or
network traffic. Balancers also provide SSL termination so that
servers do not have to perform encryption and decryption [5].
Although this invites man-in-the-middle attacks, the servers
and balancer are often located on the same internal network
which decreases this possibility. Another network appliance is
traffic or packet shapers, which optimize network performance
by delaying less important network packets. Various applica-
tions can be shaped differently, a process called application-
based traffic shaping or deep packet inspection (DPI). Since
DPI allows users to look at layers 2 through 7 of the OSI
model, it is possible to view the ServerKeyExchange mes-
sage [37]. DPI also provides the possibility of packet payload
tampering [40].

This threat scenario requires the attacker to be a company
employee who creates the weak parameters. The employee
then installs the backdoored parameters onto the load balancing
network appliance sold by his company. Blue Coat’s Packet-
Shaper S-Series, a traffic shaping network appliance, can be
connected with another PacketShaper to provide load balancing
capability [3]. The load balancer equipped with backdoored
parameters is then sold to a customer. The balancer sends
decrypted traffic to the chosen server, then encrypts the server’s
response and sends it to the client as usual. Therefore the
success of this scenario depends mostly on the trust placed
in the load balancer to securely encrypt and decrypt traffic.

VI. VULNERABILITY DISCLOSURES

As mentioned in § III-F, we issued vulnerability disclosures
to companies that were using composite moduli in HTTPS.
Security contact information for each company was searched
for in the HackerOne directory,9 although only one company
had such information. Only companies with at least one
active webpage were contacted, since webpage identifiers were
important in determining the company associated with the IP
address. Out of the 21 companies listed in § III-F, only 17 were
contacted. Only 47% of the contacted companies responded to
our disclosure.

Blue Coat Systems was the first company contacted, and
we communicated on several occasions with a number of
high-ranking employees within the company on the matter.
A patch for the affected product, PacketShaper S-Series 11.5,
was released in June 2016. A few weeks later on July 12,
2016, a CVE was released for this vulnerability under the
label CVE-2016-5774 [4]. This CVE has a high severity score
in CVSS v3 but only a medium score in CVSS v2, as v2
emphasizes percentage of impacted systems rather than level
of impact like v3. Therefore although composite DH moduli
are not abundant in the wild, these moduli have a high degree
of impact on affected systems. An interesting side effect of our
disclosure was that it inadvertently uncovered a number of

9https://hackerone.com/directory

11

https://hackerone.com/directory

improperly configured web-facing administrator login pages,
which allowed Blue Coat to follow up with affected customers.

After disclosure, the other 16 companies were split into
three groups depending on the status of the vulnerability fix:
completed, partially completed, or not started. The vulnera-
bility was fixed by 56% of these companies, although not
all responded to us and three had implemented fixes prior to
our disclosure. These independent solutions could have been
a result of Wong’s disclosures [41]. The solution implemented
by most companies involved changing the composite moduli
to prime, although one company simply removed its DHE
ciphersuites altogether. Of the 19% of companies who partially
completed the vulnerability fix, all are progressively changing
composite moduli to prime. The remaining 25% of companies
did not respond to our disclosure and have not modified their
Diffie-Hellman parameters. One of these companies had the
highest number of affected IP addresses by far. A language
barrier existed for some companies, which could have con-
tributed to this result.

We spoke to senior management at Blue Coat and technical
staff at many other companies. Despite this, all companies we
had discussions with declined to provide us with information
on the source of the potentially backdoored parameters. Blue
Coat more specifically stated that the information could not
be provided due to security reasons. Another company ex-
plained that its composite modulus was attributed to cipher
modifications made by the company, but no specifics were
given. Two others provided broad information on their load
balancing, but not in the context of the specific vulnerability.
As we were unable to receive external confirmation that these
moduli were backdoored and could not completely factor
the moduli to prove it, we cannot say unequivocally that
these moduli are backdoored. We have discovered everything
possible about each company’s vulnerability using publicly
available information. Without additional information from the
companies themselves, we cannot speculate further on topics
such as the cause of the vulnerability.

VII. DISCUSSION

There is a growing consensus that Diffie-Hellman nego-
tiations are less secure than previously thought. Safari has
removed DHE ciphersuites altogether, and Chrome plans to
remove them in upcoming versions [10]. However, during
the time of writing Chrome continued to offer DHE cipher-
suites if all other ciphersuites offered were not accepted by
the server. The current TLS 1.3 draft [34] proposes using
named DHE groups [23], similar to the named ECDHE
groups currently used. These named DHE groups are used in
the supported_groups and key_share extensions, and
would not be susceptible to the kinds of attacks described in
this paper.

Information on using Diffie-Hellman properly has been
extensively discussed by Adrian et al. [6], who suggest using
at least 2048-bit DH groups with safe prime moduli. Therefore
we restrict our discussion to mitigation strategies for the
outlined vulnerability.

A. Mitigation Strategies

We propose four strategies for mitigating regrouping
attacks: deprecating Diffie-Hellman ciphersuites, verifying

Diffie-Hellman parameters correctly, using named DH groups,
or modifying the ServerKeyExchange message to sign all
previously seen messages.

Deprecate DHE. One option is to follow the example of
Safari and Chrome and deprecate finite field Diffie-Hellman
altogether. In our opinion, this option makes sense in certain
situations, but not as a general solution. As we saw with
Dual_EC_DRGB, there is a trade-off between trust and conve-
nience through standardization. With that in mind, Bernstein
et al. [18] added a new name to the standards of Alice and
Bob: Jerry, an authority who generates curve parameters such
that his attack cost is decreased. With the deprecation of RSA
key exchange coming in TLS 1.3, DHE ciphersuites represent
the only alternative key exchange method.

Verify parameters properly. Our preferred option would be to
simply implement the necessary domain parameter validation
to begin with. The first issue, however, is computational cost.
In order to verify that a generator or DHE public key has the
intended order, modular exponentiation must be performed at
runtime for each connection. Similarly p must be tested for
primality, and, importantly, if general Schnorr groups are to
be permitted, the TLS and SSH protocols must provide an
explicit means to communicate group order q. As we discussed
in § II-A, basic checking is not sufficient to prevent all attacks.

Use named parameters. A third solution is to develop stan-
dardized, named parameters like those in an ECC setting. The
RFC proposed by Gillmor [23] and supported in the TLS 1.3
draft [34] involves standardizing parameters in the FFC setting
to augment the MODP groups. As we see in ECC, named
parameters are a feasible mitigation strategy used in the real
world. One issue of restricting moduli to only safe primes
is performance: private key lengths are 10 times larger than
NIST recommended minimum standards. One performance
optimization Gillmor suggests is to compromise by using safe
prime groups with short, DSA-like exponents.

Change TLS. The last solution is to modify the ServerKeyEx-
change message so that all previously exchanged messages are
also signed. The MitM attack from § IV-C works because the
ServerKeyExchange message only signs the DH parameters,
ServerHello.random, and ClientHello.random. If the list of ci-
phersuites suggested in ClientHello and the chosen ciphersuite
in ServerHello were also signed, then the ciphersuite tampering
would be discovered upon receiving the ServerKeyExchange
message. This solution was also proposed by Mavrogiannopou-
los et al. [32] to prevent their cross-protocol attack.

Finally, a recent proposal by Bhargavan et al. [11] proposes
an elegant method for downgrade resilience in TLS 1.3, and
was incorporated into the draft as of Version 11. In their
strategy, the server puts the highest version of TLS supported
by the client into the ServerHello.Random, which will be
incorporated into the signed ServerKeyExchange message. If
a client supports TLS 1.3, but is being man-in-the-middled in
the context of a downgrade attack such the one described in
§ V, the man in the middle will be unable to modify the signed
ServerKeyExchange message, and the client will see that the
server believes the client does not support TLS 1.3, which is
false so the handshake is aborted. This method, combined with
the use of named safe-prime DHE groups in TLS 1.3, would
solve the issue of trapdoored groups.

12

VIII. CONCLUSION

In this paper we demonstrated a serious, systematic prob-
lem with real-world discrete logarithm implementations. A
lack of parameter validation allows attackers to use weak
or trapdoored groups to create persistent DHE backdoors in
TLS. Hundreds of IP addresses in the wild were found to use
potentially backdoored moduli, and both web and mail servers
were equally affected, leading us in some cases to recover
significant portions of the private key even without knowledge
of the trapdoor. We proposed several threat scenarios that
would enable an attacker to inject backdoored parameters.
Vulnerability disclosures were completed to over 15 companies
worldwide resulting in CVE-2016-5774. This study found
evidence to suggest trapdoored DHE parameters are in use
on the Internet today. Minding our Ps and Qs, it would seem,
has proven more elusive that previously thought.

ACKNOWLEDGEMENTS

The authors wish to thank Jeremy Clark, Jakub Dalek,
Matt Green, Ian Goldberg, Adam Senft, and Greg Zaverucha
for their helpful input. This work was supported by the
National Science and Engineering Research Council of Canada
(NSERC) Discovery Grant and Canada Graduate Scholarship
programs.

REFERENCES

[1] “Company Overview of Eyou.net,” 2016. [Online]. Avail-
able: http://www.bloomberg.com/research/stocks/private/snapshot.asp?
privcapId=113374953

[2] “Hardware security module,” 2016, https://www.ibm.com/support/
knowledgecenter/SS9H2Y_7.5.0/com.ibm.dp.doc/hsm2.html.

[3] “Standby Feature with High Availability Clusters,” 2016.
[Online]. Available: https://bto.bluecoat.com/packetguide/11.6/Content/
PDFs/standby.pdf

[4] “Vulnerability Summary for CVE-2016-5774,” 2016. [Online]. Avail-
able: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-5774

[5] “What is an SSL Load Balancer?” 2016. [Online]. Available:
https://www.nginx.com/resources/glossary/ssl-load-balancer/

[6] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van-
derSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann, “Im-
perfect forward secrecy: How Diffie-Hellman fails in practice,” in 22nd
ACM Conference on Computer and Communications Security, Oct.
2015.

[7] R. Anderson and S. Vaudenay, “Minding Your P’s and Q’s,” in ASI-
ACRYPT, 1996, pp. 26–35.

[8] E. Barker, L. Chen, A. Roginsky, and M. Smid, “Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography,” Tech. Rep., 2013.

[9] E. Barker and A. Roginsky, “Transitions: Recommendation for Transi-
tioning the Use of Cryptographic Algorithms and Key Lengths,” Tech.
Rep., 2015.

[10] D. Benjamin, “Intent to Remove: DHE-based ciphers,” 2016,
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/
sVq6r0i-CZM.

[11] K. Bhargavan, C. Brzuska, C. Fournet, M. Green, , M. Kohlweiss, and
S. Zanella-Béguelin, “Downgrade resilience in key-exchange protocols,”
in IEEE Symposium on Security and Privacy, 2016.

[12] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-
Y. Strub, “Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS,” in IEEE Symposium on Security and Privacy,
2014.

[13] K. Bhargavan, A. Delignat-Lavaud, and A. Pironti, “Verified contribu-
tive channel bindings for compound authentication,” in NDSS, 2015.

[14] D. Boneh, A. Joux, and P. Nguyen, “Breaking plain elgamal and plain
rsa encryption,” in Asiacrypt, 2000.

[15] K. Cairns, J. Mattsson, R. Skog, and D. Migault, “Session Key
Interface (SKI) for TLS and DTLS,” 2015. [Online]. Available:
https://tools.ietf.org/html/draft-cairns-tls-session-key-interface-01

[16] N. Chang-Fong and A. Essex, “The cloudier side of cryptographic end-
to-end verifiable voting: A security analysis of helios,” in ACSAC, 2016.

[17] J.-S. Coron, A. Joux, A. Mandal, D. Naccache, and M. Tibouchi,
Cryptanalysis of the RSA Subgroup Assumption from TCC 2005, 2011,
pp. 147–155.

[18] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, , E. Lam-
booij, T. Lange, R. Niederhagen, and C. van Vredendaal, “How to
manipulate curve standards: a white paper for the black hat,” 2014,
http://bada55.cr.yp.to/bada55-20150927.pdf.

[19] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” Jan. 1999.

[20] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A search engine backed by Internet-wide scanning,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security,
Oct. 2015.

[21] J. Fried, P. Gaudry, N. Heninger, and E. Thomé, “A kilobit hidden
snfs discrete logarithm computation,” Cryptology ePrint Archive, Report
2016/961, 2016, http://eprint.iacr.org/2016/961.

[22] M. Friedl, N. Provos, and W. Simpson, “Diffie-Hellman Group
Exchange for the Secure Shell (SSH) Transport Layer Protocol,” 2006.
[Online]. Available: https://tools.ietf.org/html/rfc4419

[23] D. Gillmor, “Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for TLS,” 2015. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-tls-negotiated-ff-dhe-10

[24] D. M. Gordon, “Designing and detecting trapdoors for discrete log cryp-
tosystems,” in ADVANCES IN CRYPTOLOGY– CRYPTO ’92. Springer-
Verlag, 1993, pp. 66–75.

[25] J. Groth, “Cryptography in subgroups of z*n,” in TCC, 2005.

[26] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” 1998.
[Online]. Available: https://tools.ietf.org/html/rfc2409

[27] R. Henry and I. Goldberg, “Solving discrete logarithms in smooth-order
groups with CUDA,” in SHARCS, 2012.

[28] T. Kivinen and M. Kojo, “More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE),” 2003.
[Online]. Available: https://tools.ietf.org/html/rfc3526

[29] A. Lenstra, “Constructing trapdoor primes for the proposed dss,”
École polytechnique fédérale de Lausanne, Tech. Rep. EPFL-REPORT-
164559, 1991.

[30] M. Lepinski and S. Kent, “Additional Diffie-Hellman Groups
for Use with IETF Standards,” 2008. [Online]. Available: https:
//tools.ietf.org/html/rfc5114

[31] C. H. Lim and P. J. Lee, “A Key Recovery Attack on Discrete Log-
based Schemes Using a Prime Order Subgroup,” Crypto, vol. 1294, pp.
249–263, 1997.

[32] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel,
“A cross-protocol attack on the TLS protocol,” ACM Conference on
Computer and Communications Security, pp. 62–72, 2012.

[33] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press.

[34] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-tls-tls13-14

[35] G. Rieger, “FIPS requires 1024 bit DH prime,”
2015. [Online]. Available: http://repo.or.cz/socat.git/commitdiff/
281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0

[36] ——, “Socat security advisory 7 - Created new 2048bit DH modulus,”
2016. [Online]. Available: http://www.openwall.com/lists/oss-security/
2016/02/01/4

[37] W. G. Sanchez, “SLOTH Downgrades TLS 1.2
Encrypted Channels,” 2016. [Online]. Available:
http://blog.trendmicro.com/trendlabs-security-intelligence/
sloth-downgrades-tls-1-2-encrypted-channels/

[38] L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M. Hastings,

13

http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=113374953
http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=113374953
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.5.0/com.ibm.dp.doc/hsm2.html
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.5.0/com.ibm.dp.doc/hsm2.html
https://bto.bluecoat.com/packetguide/11.6/Content/PDFs/standby.pdf
https://bto.bluecoat.com/packetguide/11.6/Content/PDFs/standby.pdf
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-5774
https://www.nginx.com/resources/glossary/ssl-load-balancer/
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/sVq6r0i-CZM
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/sVq6r0i-CZM
https://tools.ietf.org/html/draft-cairns-tls-session-key-interface-01
http://bada55.cr.yp.to/bada55-20150927.pdf
http://eprint.iacr.org/2016/961
https://tools.ietf.org/html/rfc4419
https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/html/rfc2409
https://tools.ietf.org/html/rfc3526
https://tools.ietf.org/html/rfc5114
https://tools.ietf.org/html/rfc5114
https://tools.ietf.org/html/draft-ietf-tls-tls13-14
https://tools.ietf.org/html/draft-ietf-tls-tls13-14
http://repo.or.cz/socat.git/commitdiff/281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0
http://repo.or.cz/socat.git/commitdiff/281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0
http://www.openwall.com/lists/oss-security/2016/02/01/4
http://www.openwall.com/lists/oss-security/2016/02/01/4
http://blog.trendmicro.com/trendlabs-security-intelligence/sloth-downgrades-tls-1-2-encrypted-channels/
http://blog.trendmicro.com/trendlabs-security-intelligence/sloth-downgrades-tls-1-2-encrypted-channels/

J. A. Halderman, and N. Heninger, “Measuring small subgroup attacks
against diffie-hellman,” in NDSS, 2017.

[39] P. C. van Oorschot and M. J. Wiener, “On diffie-hellman key agreement
with short exponents,” in EUROCRYPT, 1996.

[40] N. Vratonjic, J. Freudiger, J.-P. Hubaux, and M. Felegyhazi, “Securing
Online Advertising,” Tech. Rep., 2008.

[41] D. Wong, “How to backdoor diffie-hellman,” Cryptology ePrint Archive,
Report 2016/644, 2016, http://eprint.iacr.org/2016/644.

[42] ——, “Socat? What? (timeline of events),” 2016, https://github.com/
mimoo/Diffie-Hellman_Backdoor/tree/master/socat_reverse.

[43] T. Ylonen, “The Secure Shell (SSH) Transport Layer Protocol,” 2006.
[Online]. Available: https://tools.ietf.org/html/rfc4253

14

http://eprint.iacr.org/2016/644
https://github.com/mimoo/Diffie-Hellman_Backdoor/tree/master/socat_reverse
https://github.com/mimoo/Diffie-Hellman_Backdoor/tree/master/socat_reverse
https://tools.ietf.org/html/rfc4253

	Introduction
	Related Work
	Inadequate DH Parameter Validation
	Trapdoors Based on Subgroups of Hidden Order
	Trapdoors Based on Number Field Sieves

	Composite DH Moduli
	Preliminaries
	Validating Domain Parameters
	Successful Connections with Valid-looking Moduli
	Constructing Trapdoors in Groups of Hidden Order
	Overview of Affected Protocols and Countries
	Composite Moduli Used By Web Servers
	Composite Moduli Used By Mail Servers
	DH Moduli Factorization

	DH Parameter Testing
	Parameter Hygiene in Discrete Logarithm Implementations
	DHE Support by Browsers
	Forcing DHE in TLS
	Attack Limitations in SSH
	Non-Safe Prime Moduli Used By Web Servers
	Survey of Open-source Projects

	Attack Vectors
	Attacking the Server
	Attacking the Application
	Attacking the Network

	Vulnerability Disclosures
	Discussion
	Mitigation Strategies

	Conclusion
	References

