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Abstract—Secure two-party computation (S2PC) allows two
parties to compute a function on their joint inputs while leaking
only the output of the function. At TCC 2009 Orlandi and Nielsen
proposed the LEGO protocol for maliciously secure 2PC based
on cut-and-choose of Yao’s garbled circuits at the gate level and
showed that this is asymptotically more efficient than on the
circuit level. Since then the LEGO approach has been improved
upon in several theoretical works, but never implemented. In
this paper we describe further concrete improvements and
provide the first implementation of a protocol from the LEGO
family. Our protocol has a constant number of rounds and is
optimized for the offline/online setting with function-independent
preprocessing. We have benchmarked our prototype and find
that our protocol can compete with all existing implementations
and that it is often more efficient. As an example, in a LAN
setting we can evaluate an AES-128 circuit with online latency
down to 1.13ms, while if evaluating 128 AES-128 circuits in
parallel the amortized cost is 0.09ms per AES-128. This online
performance does not come at the price of offline inefficiency
as we achieve comparable performance to previous, less general
protocols, and significantly better if we ignore the cost of the
function-independent preprocessing. Also, as our protocol has an
optimal 2-round online phase it is significantly more efficient than
previous protocols when considering a high latency network.

Keywords—Secure Two-party Computation, Implementation,
LEGO, XOR-Homomorphic Commitments, Selective OT-Attack

I. INTRODUCTION

Secure two-party computation is the area of cryptology
dealing with two mutually distrusting parties wishing to com-
pute an arbitrary function f on private inputs. Say A has
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input x and B has input y. The guarantee offered from
securely computing f is that the only thing learned from
the computation is the output z = f(x, y), in particular
nothing is revealed about the other party’s input that cannot be
inferred from the output z. This seemingly simple guarantee
turns out to be extremely powerful and several real-world
applications and companies using secure computation have
arisen in recent years [1]–[3], [15], [16]. The idea of secure
computation was initially conceived in 1982 by Andrew Yao
[70], [71], particularly for the semi-honest setting, in which
all parties are assumed to follow the protocol specification but
can try to extract as much information as possible from the
protocol execution. Yao gave an approach for preventing any
such extraction using a technique referred to as the garbled
circuit technique. At a very high level, using the abstraction
of [12], A starts by garbling or “encrypting” the circuit f using
the garbling algorithm (F, e, d) = Gb(f) obtaining a garbled
circuit F , an input encoding function e and an output decoding
function d. It then encodes its input as X = En(x, e) and sends
(F,X, d) to B. Then, using oblivious transfer (OT), A blindly
transfers a garbled version Y of B’s input which enables B to
compute a garbled output Z = Ev(F,X‖Y ) which it can then
decode to obtain z = De(Z, d). Finally B returns z to A.

As already mentioned, the above sketched approach can be
proven secure in the semi-honest setting [52]. In the stronger
malicious setting however it completely breaks down as in
this model the parties are allowed to deviate arbitrarily from
the protocol specification. One of the most obvious attacks
is for A to garble a different function f ′ 6= f which could
enable A to learn y from the resulting value z′ without B even
noticing this. To combat this type of attack the cut-and-choose
technique can be applied: instead of garbling a single circuit, A
garbles several copies and sends these to B. A random subset
of them is now selected for checking by B and if everything is
correct, some fraction of the remaining circuits must be correct
with overwhelming probability. Leaving out many details these
can now be evaluated to obtain a single final output. While this
approach thwarts the above attack it unfortunately opens up for
several new ones that also need to be dealt with, for instance
ensuring input consistency for all the remaining evaluation
garbled circuits. Another more subtle issue in the malicious
setting is the Selective-OT Attack (also called Selective Failure
Attack) as pointed out in [46], [57]. A corrupt A can cheat
when offering B the garbled inputs in the OT step by using
a bogus value for either the 0 or the 1 input. This will either
result in B aborting as it cannot evaluate the garbled circuit
or it will go through undetected and B will return the output
to A. Either way the input bit of B is revealed to A which is a
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Secret Sharing-based Garbled Circuit-based

Protocol [45]∗ [28]∗ [26]∗ [69] [56] [65] This Work
Constant round 7 7 7 X X X X
Independent preprocessing N/A 7 7 7 7 7 13.84ms
Dependent preprocessing 7 N/A N/A 62 ms 74 ms 5.1 ms 0.74ms
Best online latency 12 ms 6 ms 1.05ms 21 ms 7 ms 1.3 ms 1.13 ms
Best online throughput ∼1 ms 0.4 ms 0.45µs N/A N/A 0.26 ms 0.08 ms
∗Uses dedicated techniques for evaluating AES.

TABLE I. OVERVIEW OF STATE-OF-THE-ART PROTOCOLS AND THE BEST REPORTED TIMINGS FOR SECURELY EVALUATING AES-128 WITH MALICIOUS
SECURITY ON A LAN IN THE OFFLINE/ONLINE SETTING. ALL TIMINGS ARE PER AES-128. N/A STANDS FOR NOT AVAILABLE.

direct breach of security. It is easy to see that using this attack
A can learn any l bits of B’s input with probability 2−l if not
properly dealt with.

Over the last decade several solutions to the above issues
have been proposed, along with dramatic efficiency improve-
ments for secure 2PC protocols based on the cut-and-choose
approach of garbled circuits [4], [18], [32], [36], [39], [40],
[42], [48], [50], [51], [53], [58], [64], [66], [67], [69]. Finally
we note for completeness that secure computation has also
been studied in great detail for many other settings, including
the more general multi-party case (MPC). Several different
adversarial models such as honest majority [14], [22], [37],
dishonest majority [27] and covert security [7] have also been
proposed in the literature. In this work we focus solely on
the special case of two parties with malicious security and in
the next section we discuss the reported concrete efficiency of
state-of-the-art protocols in this setting.

A. Related Work

In the less than 10 years since the first reported implemen-
tation of maliciously secure 2PC based on garbled circuits [54],
the performance advancements have been enormous [4], [32],
[36], [48], [56], [64]–[67], [69]. Furthermore different settings
and hardware configurations have been explored, notably using
commodity grade GPUs in [32], [36] and large-scale CPU
clusters [67] to parallelize the bulk of the computation. In
the single-execution setting based solely on standard hardware
the best reported performance time is that of [69] which
evaluates an AES-128 circuit in total time 65 ms. In addition,
the works of [56] and [65] explore the more restricted setting
of amortizing secure 2PC based on the cut-and-choose and
the dual execution approach, respectively. By amortizing we
mean that the protocols exploit constructing multiple secure
evaluations of the same function f yielding impressive perfor-
mance benefits over the more general single execution setting.
Furthermore these protocols are in the offline/online setting
where the bulk of the computation and communication can
be done before the inputs are determined. We highlight that
for both protocols, the offline computation depends on the
function to be computed and we will refer to this as dependent
preprocessing. However both protocols allow for the inputs to
be chosen sequentially when securely evaluating f . This allows
for a low latency online phase which is desirable for many
applications. For securely computing 1024 AES-128 circuits,
[56] reports 74 ms offline and 7 ms online per evaluation, while
the more recent [65] reports 5.1 ms offline and 1.3 ms online
for the same setting. Furthermore [65] achieves a 0.26 ms
online phase when considering throughput alone, i.e. batched
evaluation.

Another direction in secure computation is the secret
sharing approach where the parties initially secret share their
inputs and then interactively compute the function f in a
secure manner. A particularly nice property of these protocols
is that when considering the offline/online setting the offline
phase can usually be done independently of the circuit f
which we call independent preprocessing. This allows for
naively utilizing parallelism in the preprocessing phase and
also adds more flexibility as the offline material produced
is universal. Another benefit is that in general this secret-
sharing technique works for any number of parties and over
any field, which depending on the desired functionality f can
significantly increase performance. We note however that these
protocols usually employ expensive public-key cryptography
in the preprocessing phase and are therefore much slower
than the offline phases of e.g. [56], [65]. Finally the inherent
interactiveness of the online phase, which has O(depth(f))
rounds of interaction, makes these protocols ill-suited for high
latency networks such as WANs. There are many variations of
the secret sharing approach but they typically enjoy the same
overall pros and cons in terms of independent preprocessing
and required interactivity. Examples of recent protocols fol-
lowing this paradigm are: TinyOT [19], [49], [60], SPDZ [24],
[27], [44], [45], MiniMac [25], [28], [29], and TinyTables [26].
The fastest reported online time for computing an AES-128
circuit in this setting is 1.05 ms by [26] using dependent
preprocessing. The work of [45] reports 12 ms online time
using independent preprocessing, but the evaluation exploits
the algebraic structure of AES-128. Furthermore [26] has an
impressive throughput of 0.45 µs per AES-128 while [45] and
[28] have throughput ∼1 ms and 0.4 ms, respectively.

In Table I we give an overview of the properties of the
mentioned protocols and the reported timings for securely
evaluating AES-128 on LAN in the offline/online setting. As
the secret sharing-based, non-constant round, protocols are ill-
suited for high latency networks we omit this from Table I
since no AES-128 timings are published for these schemes
in a WAN setting (however see Section VI-B for a WAN
comparison of the garbled circuit protocols). The timings
reported for [26], [56], [65] and This Work are all measured
on the same hardware (Amazon Web Services, c4.8xlarge
instances on 10 Gbit LAN), while the timings for [69] are on
a less powerful instance (Amazon Web Services, c4.2xlarge
instances on 2.5 Gbit LAN). Finally the results of [28], [45]
have been obtained on high-end Desktop machines with 1 Gbit
LAN. The timings of [56], [65] and This Work are all for 1024
AES-128 evaluations, while those of [69] are for a single-
execution. We believe the difference in performance between
the offline/online (62 ms + 21 ms) and total latency (65 ms)
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settings for [69] can be explained by the inability to interleave
the sending/checking and evaluation of garbled circuits in the
offline/online setting. In summary, as can be seen in the table
our work is the first implementation of a protocol combining
the advantages of independent (and dependent) preprocessing
using only a constant number of rounds.

B. LEGO

The Large Efficient Garbled-circuit Optimization (LEGO)
was first introduced by Nielsen and Orlandi in [61] which
showed a new approach for maliciously secure 2PC based
on cut-and-choose of garbled gates. This gave an asymp-
totic complexity improvement to O(s/log(|f |)) as opposed to
O(s) for the standard circuit cut-and-choose approach for
statistical security s. However the construction of [61] was
heavily based on expensive public-key cryptography and was
mainly considered an asymptotic advancement. This was later
improved in the two follow-up works of MiniLEGO [35]
and TinyLEGO [33] yielding incrementing asymptotic and
concrete efficiency improvements. In a nutshell, the LEGO
technique works by the generator A first garbling multiple
individual AND gates (as opposed to garbling entire circuits)
and sending these to the evaluator B. Then a cut-and-choose
step on a random subset of these gates is carried out and finally
the remaining unchecked gates are combined (or soldered) into
a garbled fault tolerant circuit computing f . A crucial ingre-
dient for securely soldering the garbled gates into circuits are
XOR-homomorphic commitments which in [61] were realized
using expensive Pedersen commitments [62]. In the follow-up
construction of [35] these were replaced by an asymptotically
more efficient construction, however the concrete communi-
cation overhead of the proposed commitment scheme was
inadequate for the protocol to be competitive for realistic
circuit sizes and parameters. In the recent works of [21], [34]
this overhead has been improved to an optimal rate-1 and the
resulting UC-secure XOR-homomorphic commitment scheme
is both asymptotically and concretely very efficient. Finally
the work of [41] introduced a different primitive for LEGO
soldering called XOR-Homomorphic Interactive Hash, which
has some advantages over the commitment approach. However,
the best instantiation of XOR-Homomorphic Interactive Hash
still induces higher overall overhead than the commitment
approach when using the schemes of [21], [34].

Although the original LEGO protocol, and the above-
mentioned follow-up works, asymptotically are very efficient,
the overall consensus in the secure computation community
has been that the reliance of XOR-homomorphic commitments
for all circuit wires hinders actual practical efficiency. In
this work we thoroughly investigate the practical efficiency
of the LEGO approach and, in contrast to earlier beliefs,
we demonstrate that it is indeed among the most practical
protocols to date for general secure 2PC using garbled circuits.

C. Our Contributions

We implement the TinyLEGO protocol with added support
for both independent and dependent preprocessing. Further-
more, our protocol supports fully reactive computation, mean-
ing that when a function result has been obtained, another
function depending on this result can be evaluated. Also,
the independent preprocessing phase can be rerun at any

Setting Ind. Dep. Online Online
Preprocessing∗ Preprocessing Latency Throughput

Single Execution
1 x AES-128 89.61 ms 13.23 ms 1.46 ms 1.46 ms
1 x SHA-256 478.54 ms 164.40 ms 11.19 ms 11.19 ms

Amortized
128 x AES-128 14.85 ms 0.68 ms 1.15 ms 0.09 ms
128 x SHA-256 173.05 ms 12.13 ms 9.35 ms 1.09 ms
∗Not including the time to compute the initial BaseOTs.

TABLE II. PERFORMANCE SUMMARY OF OUR PROTOCOL ON A HIGH
BANDWIDTH (10GBIT) LAN NETWORK.

time if additional garbling material is necessary. As part
of our prototype we also implement the XOR-homomorphic
commitment scheme of [34] and report on its efficiency
separately as we believe our findings can be of independent
interest. This is to our knowledge the first implementation of
a protocol based directly on the LEGO paradigm and of the
mentioned commitment scheme. The support for independent
preprocessing is achieved from the fact that the bulk of the
computation using the LEGO approach is based on cut-and-
choose of independently garbled gates and hence only depends
on the security parameter and the number of AND gates one
wishes to preprocess. The subsequent soldering phase can then
be seen as a dependent preprocessing phase where knowledge
of the circuit f is required. This multi-level preprocessing is
in contrast to previous non-LEGO protocols based on cut-and-
choose of garbled circuits in the offline/online setting where
the entire offline phase depends on the circuit to be evaluated.
In more detail our main contributions are as follows:

1) We propose a new technique for dealing with the
selective-OT attack on 2PC protocols based on garbled
circuits. Our technique makes use of a globally corre-
lated OT functionality (F∆-ROT) combined with XOR-
homomorphic commitments and a Free-XOR garbling
scheme [47]. Using the well-known fact of Beaver [8] that
OTs can be precomputed, we can mitigate the selective-
OT attack by having the circuit constructor decommit to
a single value per input bit of the evaluator in the online
phase. This ensures that if the constructor tries to cheat,
the evaluator aborts regardless of the value of his input.
The technique is general and we believe that it can be used
in other 2PC protocols based on garbled circuits as well.
We also provide a more efficient instantiation of F∆-ROT
than previously appearing in the literature by tightening
the analysis of the construction presented in [19].

2) As part of our 2PC prototype we also implement the
XOR-homomorphic commitment scheme of [34]. It is
already known that this scheme is asymptotically very ef-
ficient, but this is to our knowledge the first time its practi-
cal efficiency has been thoroughly investigated. The result
is a very efficient scheme achieving an amortized cost of
less than a microsecond for both committing and decom-
mitting to a random value. To maximize performance we
utilize cache efficient matrix-transposition and inspired by
the construction of [21] we use the Intel Streaming SIMD
Extension (SSE) instruction PCLMULQDQ to efficiently
compute the required linear combinations.

3) We build our LEGO prototype on top of the above-
mentioned implementation which results in a very effi-
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cient and flexible protocol for maliciously secure reactive
2PC. As our online phase consists of an optimal two
rounds, we can securely evaluate an AES-128 with latency
down to 1.13 ms. When considering throughput we can
do each AES-128 block in amortized online time 0.08 ms
(considering 1024 blocks). In applications where inde-
pendent preprocessing can be utilized our offline phase
is superior to all previous 2PC protocols, in particular
based on our experiments we see a 6-54x gain over [65]
depending on network and number of circuits considered.
If preprocessing is not applicable, for most settings we
cannot compete with the offline phase of [65], but note
that the difference is within a factor 1.2-3x. See Table II
for an overview of our performance in different settings
and Section VI for a more detailed presentation and
comparison of our results.

II. PRELIMINARIES

In this section we give some of the technical background
for LEGO garbling, adopting the notation and conventions of
the original TinyLEGO protocol [33] for ease of exposition.

A. Notation

We will use as shorthand [n] = {1, 2, . . . , n} and [i; j] =
{i, i + 1, i + 2, . . . , j}. We write e ∈R S to mean: sample
an element e uniformly at random from the finite set S.
We sometimes (when the semantic meaning is clear) use
subscript to denote an index of a vector, i.e., xi denotes the
i’th bit of a vector x. We use k to denote the computational
security parameter and s to represent the statistical security
parameter. Technically, this means that for any fixed s and
any polynomial time bounded adversary, the advantage of the
adversary is 2−s + negl(k) for a negligible function negl. i.e.,
the advantage of any adversary goes to 2−s faster than any
inverse polynomial in the computational security parameter. If
s = Ω(k) then the advantage is negligible. In our experiments
we set k = 128 and s = 40.

B. Circuit Conventions

We assume A is the party constructing the garbled gates
and call it the constructor. Likewise, we assume B is the party
evaluating the garbled gates and call it the evaluator. Further-
more, we say that the functionality they wish to compute is
z = f(x, y), where A gives input x and B gives input y. We
assume that f is described using only NOT, XOR and AND
gates. The XOR gates are allowed to have unlimited fan-in,
while the AND gates are restricted to fan-in 2, and NOT gates
have fan-in 1. All gates are allowed to have unlimited fan-out.
We denote the bit-length of x by |x| = nA, the bit-length of
y by |y| = nB and let n = nA + nB. We will denote the bit-
length of the output z by |z| = m. Furthermore, we assume
that the first nA input wires are for A’s input and the following
nB input wires are for B’s input.

We define the semantic value of a wire-key of a garbled
gate to be the bit it represents. We will use Kb

j to denote
the j’th wire key representing bit b. Sometimes, when the
context allows it, we will let Lblg , Rbrg , and Obog denote the left
input, right input, and output key respectively for garbled gate
g representing the bits bl, br and bo. When the bit represented
by a key is unknown we simply omit the superscript, e.g. Kj .

C. Free-XOR and Soldering

The LEGO protocols [35], [61] and [33] all assume that
the underlying garbling scheme supports the notion of Free-
XOR [47], meaning that the XOR of the 0- and 1-key on
any wire of any garbled gate yields the same value, ∆, which
we call the global difference. In addition to making garbling
and evaluating XOR gates virtually free, this optimization
also allows for easily soldering wires together. A soldering
of two wires is a way of transforming a key representing
bit b on one wire into a key representing bit b on the other
wire. As we will see in more detail below, with Free-XOR, a
soldering is simply the XOR of the 0-keys on the two wires.
Furthermore, in order to avoid any cheating all wires of all
garbled gates are committed to using a XOR-homomorphic
commitment functionality FHCOM and the solderings are then
always decomitted when needed.

As an example, assume we wish to solder the output wire
of gate g onto the left input wire of gate g + 1. In doing so
we decommit the value SLg+1 = O0

g ⊕ L0
g+1 using FHCOM.

When gate g outputs the key representing the bit b one can
now learn the left b-key for gate g + 1. Specifically it can be
computed as Obg ⊕ SLg+1 =

(
O0
g ⊕ (b ·∆)

)
⊕ O0

g ⊕ L0
g+1 =

L0
g+1 ⊕ (b ·∆) = Lbg+1. This obviously generalizes when one

wishes to solder together several wires, e.g. if we wish to solder
the output wire of gate g to the left input wire of gate g + 1,
g + 2 and g + 3, then it is enough to decommit the values
SLg+1 = O0

g ⊕L0
g+1, S

L
g+2 = O0

g ⊕L0
g+2, S

L
g+3 = O0

g ⊕L0
g+3 .

It is also straightforward to evaluate XOR gates as part of
the soldering: To compute the XOR of g and g + 1 and then
use this result as the left input to gate g + 2 we decommit
the value SLg+2 =

(
O0
g ⊕O0

g+1

)
⊕ L0

g+2. We see now that
Oag ⊕Obg+1⊕SLg+2 = a ·∆⊕ b ·∆⊕L0

g+2 = La⊕bg+2 as desired.
In conclusion a soldering is therefore always the XOR of the
0-keys of the wires going into an XOR gate and the 0-key of
the wire we wish to solder the result onto.

III. A NEW APPROACH TO ELIMINATE THE
SELECTIVE-OT ATTACK

As already mentioned in Section I the selective-OT at-
tack enables a corrupt A to learn any input bit of B with
success probability 1/2 for each bit. Prior work has dealt
with this attack in different ways, but the off-the-shelf black-
box solution has typically been the s-probe resistant matrix
approach of [51], [56], [67]. These approaches augment the
evaluation circuit f → f ′ so that learning any s − 1 input
bits of B in f ′ leaks nothing about the actual input used
in the original f . The downside of this approach is that
the input length of B needs to be increased to n′B > nB,
which in turn results in more communication, computation
and OTs. For the approach of [51] and [56] the increase is to
n′B = nB + max(4nB, 20s/3) while for the approach of [67] we
have n′B ≤ nB + lg(nB) + nB + s+ s ·max(lg(4nB), lg(4s)).
In addition to extending the input size, experiments of [56]
show that producing the s-probe resistant version of f can be
a computationally expensive task (up to several seconds for
1000-bit input).
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A. Our New Approach

We propose a new approach that combines the use of 1-
out-of-2 ∆-ROTs (also called globally correlated OTs), XOR-
homomorphic commitments and the Free-XOR technique that
sidesteps the need of expanding the input size of B as described
above. We recall that ∆-ROTs are similar to Random OTs
(ROT), except that all OTs produced are correlated with a
global difference ∆. In other words, for each ∆-ROT i pro-
duced, the following relation holds for a fixed ∆: r1

i = r0
i ⊕∆

where r0
i ,∆ ∈ {0, 1}k are uniformly random strings known to

the sender and bi ∈ {0, 1} is the uniformly random choice-bit
of the receiver who learns rbii as part of the OT protocol. Our
approach is described below and is inspired by the protocol of
Beaver [8] for precomputing OT.

1) The parties precompute (nB + s) ∆-ROTs such that the
sender learns (∆, r0

i ) and the receiver learns (rbii , bi) for
i ∈ [nB+s]. The sender will now commit, using the XOR-
homomorphic commitment scheme, to ∆ and each r0

i . In
order to verify that the sender indeed committed to the
∆ used in the OTs, the parties run a simple check in the
following way: B sends {(rbjj , bj)}j∈[nB;nB+s] to A which
in turn needs to successfully decommit to the received
values. The s OTs used for the check are hereafter
discarded. The reason why B needs to send the values to
A in the first place is that it needs to prove knowledge of
the value rbjj before it is safe for A to open it. For each of
the s tests, if A did not commit to the ∆ used in the OTs,
then it can only pass the test with probability at most 1/2
as the choice-bits of B are uniformly random. Because
these are also chosen independently we see that the
check therefore catches a cheating A with overwhelming
probability 1− 2−s.

2) If the check succeeds, A uses the ∆ learned from the OTs
above as the global difference in the Free-XOR garbling
scheme. Recall that this means that all garbling keys will
be correlated in the same way as the ∆-ROTs, i.e. K1

l =
K0
l ⊕∆ for all l. In particular this is the case for the keys

associated to the input of B which need to be obliviously
transferred in the online phase. In addition, in our 2PC
protocol all 0-keys K0

l have been committed to using the
same XOR-homomorphic commitment scheme as used
for the OT strings r0

i and ∆.
3) Finally when B learns its real input y, it computes

e = y ⊕ b and sends this to A where b are the choice-
bits used in the precomputed ∆-ROTs. A will respond by
decommitting the values {Di = K0

i ⊕ r
ei
i }i∈[nB]. B can

now compute its actual input keys Kyi
i = Di ⊕ rbii =

K0
i ⊕ r

ei
i ⊕ r

bi
i = K0

i ⊕ yi ·∆.

The above approach eliminates the selective-OT attack as the
only way a corrupt A can cheat is by committing to different
values r′0i 6= r0

i where r0
i is the value sent using the ∆-ROTs.

However if this is the case then D′i ⊕ r
bi
i 6∈ {K0

i ,K
1
i } and B

will abort regardless of the value of his input yi. One caveat
of the above approach is that it allows a corrupt A to flip an
input bit i of B without getting caught by committing to r0

i ⊕∆
instead of r0

i . In our 2PC protocol we eliminate this issue by
ensuring that lsb(∆) = 1 and by securely leaking lsb(r0

i ) to B.
This allows B to check that the resulting key Ki = Di ⊕ rbii

indeed carries the correct value yi, by verifying that

yi = lsb(Ki)⊕ lsb(Di)⊕ lsb(r0
i )⊕ ei

= lsb(Ki)⊕ lsb(K0
i )⊕ lsb(reii )⊕ lsb(r0

i )⊕ ei
= lsb(Ki)⊕ lsb(K0

i ) .

This secure leaking is described in the VerLeak step of Fig. 1
and the check is carried out as part of the Eval step of Fig. 2,
both of which are presented in Section IV.

B. On Constructing ∆-ROTs

The above technique requires (nB + s) ∆-ROTs to obliv-
iously transfer the input keys of B. However, current state-
of-the-art protocols for OT extension [6], [19], [43], [60] all
produce ROTs. It can be seen by inspecting the above OT
extension protocols that they all produce a weaker variant
of ∆-ROT called leaky ∆-ROT as an intermediate step. The
leaky ∆-ROT is identical to ∆-ROT in that all OT pairs are
correlated with a global ∆, however a corrupt receiver can
cheat and learn some bits of ∆ with non-negligible probability.
In fact, for each bit learned of ∆, the receiver gets caught
with probability 1/2, which means it can learn up to s− 1 bits
of ∆, while the other bits remain uniformly random in its view.
The work of [19] gives a construction for ∆-ROTs of string
length v from leaky ∆-ROTs of string length 22v/3 ∼ 7.33v
using linear randomness extraction. Concretely, they propose
multiplying all the strings learned from the leaky ∆-ROT
protocol with a random matrix A ∈ {0, 1}22v/3×v . In this work
we observe that the factor 22/3 is not tight and by applying
Theorem 1 below we can reduce the number of rows in A
down to v+s, going from a multiplicative to an additive factor.

Theorem 1 ([73], Theorem 7). Let X = x1, x2, . . . , xu be a
binary sequence generated from a bit fixing source in which
l bits are unbiased and independent, the other u − l bits are
fixed or copies of the l independent random bits. Let A be a
u× v random matrix such that each entry of A is 0 or 1 with
probability 1/2. Given Y = XA, then we have that

Pr
A

[ρ(Y ) 6= 0] ≤ 2v−l

where ρ(Y ) is defined as the statistical distance to the uniform
distribution over {0, 1}v , i.e. ρ(Y ) = 1

2

∑
y∈{0,1}v |Pr[Y =

y]− 2−v|.

Now let u = v + s and let ∆ have length u and let ∆A
have length v. Consider an adversary B who is allowed to try
to learn some of the bits of ∆ to make ∆A non-uniform. In
our setting, if an adversary B tries to learn λ bits of ∆ it is
caught except with probability 2−λ. If B is not caught then it
learns λ bit positions and the remaining bits are independent
and uniform. Since we have u = v + s, the l in the above
theorem equals u − λ = v + (s − λ) when B learns λ bits,
i.e., 2v−l = 2λ−s. This implies that for all 0 ≤ λ < s it holds
that the probability that B is not caught and at the same time
∆A is not uniform is at most 2−λ2λ−s = 2−s. Clearly, for
all λ ≥ s, then the probability that B is not caught and at
the same time ∆A is not uniform is at most the probability
B is not caught, which is at most 2−s. This shows that when
u = v + s then for all B, the probability that B is not caught
and at the same time ∆A is not uniform is at most 2−s, which
is negligible.
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The consequence of our new analysis is that we can choose
the random matrix as A ∈ {0, 1}(v+s)×v and thus we only have
to produce leaky ∆-ROTs of length v + s instead of length
22v/3, a substantial optimization. As we ultimately require
(non-leaky) ∆-ROTs of length k, we can utilize any of the
mentioned OT extension protocols to produce leaky ∆-ROTs
of length k+s and then apply the linear randomness extraction
on the resulting OT-strings. For the parameters s = 40 and
k = 128 considered in this work our refined analysis ultimately
yields an improvement of around a factor 5.6x compared to
the previous best known result of [19].

IV. THE PROTOCOL

As already mentioned in Section I, our protocol is based
on TinyLEGO [33], but modified to support preprocessing
of all garbled components along with our new approach for
dealing with the selective-OT attack of Section III-A. This
includes removing the restriction of B choosing input and
committing to the cut-and-choose challenges before obtaining
the garbling material and solderings. As a consequence, our
modifications allow for multi-leveled preprocessing and a very
efficient online phase. We give a description of our resulting
protocol in Fig. 1 and Fig. 2. See [33] for a more detailed
specification of the original TinyLEGO protocol. At a high
level our protocol can be broken down into four main steps.

1) The Setup phase initializes the commitment scheme. All
public-key operations of our protocol can be carried out
in this initial step, including the BaseOTs required for
bootstrapping OT extension.

2) The Generate step takes as input the number of gates q,
number of inputs n and number of outputs m the par-
ties wish to preprocess. After sending the garbled gates
and wire authenticators and committing to all associated
wires, a cut-and-choose step is run between the parties.
The wire authenticators is a gadget that either accepts or
rejects a given key (without revealing the value of the key)
and it was shown in [33] that constructing AND buckets
from both garbled gates and wire authenticators can sig-
nificantly reduce the overall communication compared to
using garbled gates alone. After the cut-and-choose step,
using the XOR-homomorphic commitments, the parties
solder the remaining garbled gates and wire authenticators
randomly into independent fault tolerant AND buckets.

3) The Build step takes as input the circuit description f and
through the XOR-homomorphic commitments, A sends
the required solderings to glue together a subset of pre-
viously produced AND buckets so that they compute f .

4) Finally, the Eval step depends on the parties’ inputs to f .
It consists of two rounds, first B sends a correction value e
which depends on his input y, and as a response A de-
commits to B’s masked input keys as well as sending it’s
own input keys directly. Finally A also decommitments
to the lsb of all output 0-keys. This allows B to evaluate
the garbled circuit and decode the final output.

We highlight that our modified protocol also naturally
supports the notion of streaming or pipelining of garbled circuit
evaluation [39] which was not the case in [33]. This can be
seen by the fact that one can evaluate the circuit f in a layered
approach and using the XOR-homomorphic commitments to
glue the output of one layer onto the input of the next layer.

The Setup step is only required to be run once, regardless of the
number of future calls to Generate.
Setup(pp):

1) On input (k, s, pg, pa, β, α, β̃, α̃) ← pp, A and B initialize
the functionality FHCOM by sending (init, sid,A,B, κ) to it,
where κ is the key-length of the garbling scheme.

The Generate step produces q garbled AND gates which can be
soldered into circuits that in total can have n inputs and m outputs.
It is possible to do multiple calls to Generate at any point in time
in order to produce more garbling material.
Generate(q, n,m):

1) Let Q and A be chosen such that after running the below cut-
and-choose step, with overwhelming probability (qβ + nβ̃)
garbled gates and (qα+ nα̃) wire authenticators survive.

2) A and B invoke F∆-ROT (n+s) times from which A learns ∆
and random strings r0

i and B learns the choice-bits bi and rbii
for i ∈ [n + s]. Furthermore, A instructs F∆-ROT to ensure
that lsb(∆) = 1.

3) Next, A garbles Q AND gates and constructs A wire
authenticators using ∆ and sends these to B.

4) A then commits to each wire of the garbled AND gates, each
authenticated wire produced, ∆, the 0-strings received from
F∆-ROT, and m+s random values {vj}[m+s]. Thus it sends
3Q+A+ 1 + n+ s+m+ s values to FHCOM.

VerLeak:
5) For i ∈ [n] and j ∈ [m + s], A sends lsb(r0

i ) and lsb(vj)
to B.

6) B challenges A to send, using FHCOM, s random linear
combinations of r0

i , vj and ∆ for i ∈ [n] and j ∈ [m]. Also,
the l’th combination is set to include a one-time blinding
value vm+l for l ∈ [s].

7) B verifies that lsb of the received s values correspond to the
same linear combinations of the initial lsb values sent by A
in step 5. In addition, if ∆ is included in a linear combination
B flips the value. This ensures that indeed lsb(∆) = 1.

Cut-and-Choose:
8) After receiving the garbled gates (wire authenticators), B

chooses to check any gate (wire authenticator) with proba-
bility pg (pa). B then challenges A to send, using FHCOM,
two random inputs and the corresponding AND output of
the selected garbled gates and a random input of the selected
wire authenticators.

9) B evaluates the selected garbled gates and wire authen-
ticators and checks that they output the received output
key and that they verify the values received from FHCOM,
respectively.

10) In addition, for i ∈ [n;n + s] B sends rbii = r0
i ⊕ (bi ·∆)

to A which in turn instructs FHCOM to send back the same
value. This is to ensure that the committed ∆ is the one used
in F∆-ROT.

Bucketing:
11) For the remaining garbled gates (wire authenticators), B

samples and sends a random permutation that fully describes
how these are to be combined into q AND buckets of size
β +α, n input buckets of size β̃ and n input authenticators
of size α̃.

12) A then sends, using FHCOM, all the required solderings such
that for all the specified bucket gadgets, each component is
defined with the same input/output keys.

Fig. 1. The modified TinyLEGO protocol with support for preprocessing in
the (FHCOM, F∆-ROT)-hybrid model (Part 1).
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The Build step uses the garbling material created in Generate to
construct a fault tolerant garbled circuit computing f .
Build(f):

1) A instructs FHCOM to send the required solderings such that
the first |f | unused AND buckets correctly compute f . This
includes the solderings to attach nA input buckets and n
input authenticators onto the final garbled circuit.

In the Eval step the parties transfer to B all input keys in an
oblivious manner which then allows B to evaluate and decode the
garbled circuit previously constructed using the Build step.
Eval(x, y):

1) For input y ∈ {0, 1}nB , B sends e = b⊕ y to A, where b is
the first nB unused choice-bits of F∆-ROT.

2) A then instructs FHCOM to send to the values {Di = r0
i ⊕

K0
i ⊕ ei ·∆}i∈[nB] where K0

i is the 0-key on the i’th input
wire of B and r0

i is the first unused ∆-ROT string. Also,
for the input x ∈ {0, 1}nA , it sends the corresponding input
keys {Kxi

i }i∈[nA] directly to B.
3) Finally, A instructs FHCOM to send the output decoding

values {Dj = v0
j ⊕ K0

j }j∈[m] to B where K0
j is the j’th

output 0-key of the garbled circuit and {vj}j∈[m] are the
first m unused blinding values setup in the VerLeak step.

4) Upon receiving the above, for i ∈ [nB] B computes KnA+i =

rbii ⊕Di and lsb(K0
i ) = lsb(Di)⊕ lsb(r0

i )⊕ei and verifies
that lsb(KnA+i) ⊕ lsb(K0

i ) = yi. Then using the input
authenticators, B also verifies that the keys {Ki}i∈[nA] of A
are valid input keys to the garbled circuit.

5) If everything checks out, B evaluates the previously con-
structed garbled circuit on the input keys (K1,K2, . . . ,Kn)
to obtain the output keys (Z1, Z2, . . . , Zm). For j ∈ [m]
it then computes dj = lsb(vj) ⊕ lsb(Dj) and decodes
zj = lsb(Zj)⊕dj . Finally, B outputs z = (z1, z2, . . . , zm).

Fig. 2. The modified TinyLEGO protocol with support for preprocessing in
the (FHCOM, F∆-ROT)-hybrid model (Part 2).

Each of these layers can be processed on the fly with our
protocol and in this way the circuit never needs to be stored
entirely at any given time. This approach is similar to that
proposed in [59] for reusing garbled values, however in this
setting everything works out-of-the-box due to the XOR-
homormophic commitments on all circuit wires.

The LEGO approach also has the advantage compared to
traditional cut-and-choose protocols that only a single fault tol-
erant garbled circuit is produced and evaluated. This removes
the necessity of ensuring input consistency for all the eval-
uation circuits. It also sidesteps the overhead of transferring
multiple sets of input keys in the online phase, one set for
each evaluation circuit.

A. Bucketing

With the bucketing approach of [33] each AND bucket
consists of β garbled gates and α wire authenticators. For
any garbled gate (wire authenticator) the probability pg (pa)
is used to determine if it is checked in the cut-and-choose
or not. The value of pg and pa therefore induces a certain
sense of “quality” level of the remaining non-checked garbled
components which affects the required bucketing size. In
addition there are also the special cases of input buckets and
input authenticators, which are buckets that consist of garbled
gates only (size β̃) and wire authenticators only (size α̃),

respectively. These are attached to the input wires of the final
garbled circuit and serve to guarantee validity of the input
keys, along with guaranteeing that B can always learn the
final output f(x, y), even if A is cheating. This is so since
the input buckets can be seen as a trapdoor that together with
the global difference ∆ allows B to extract the input x of A. It
is then clear that it can compute f(x, y) directly. These special
buckets are necessary as our regular AND buckets do not rule
out outputting both the 0 and 1-key (say if one of the garbled
gates in the bucket is in fact a NAND gate). However, if a
bucket outputs two distinct keys it is guaranteed that they are
both valid and hence their XOR is ∆ and B can extract x.
If no cheating is detected then the input buckets are simply
ignored by B.

As already established in the original LEGO paper [61],
the number of AND gates q directly affects the required size
of the buckets, meaning that as q grows the required bucket
size can be decreased while still retaining the same level of
security. Theorem 2 below gives a direct way of computing
the success probability of a corrupt A given the parameters
q, n, β, α, β̃, α̃.

Theorem 2 ([33], Lemma 9). Given the bucketing parameters
q, n, β, α, β̃, α̃ for the case where α = β − 1 we can bound
the probability of the bad bucketing events occurring as:

Pr[Any bad bucket] ≤

q ·

(
1∏
i=β

( (1− pg)4i
pg(qβ + nβ̃) + (1− pg)4i

)
+

β∑
l=2

l∏
i=β

( (1− pg)4i
pg(qβ + nβ̃) + (1− pg)4i

)
·

α+2−l∏
j=α

( (1− pa)2j

pa(qα+ nα̃) + (1− pa)2j

))

Pr[Any bad input authenticator] ≤

n ·
d α̃2 e∑
v=1

v∏
l=α̃

( (1− pa)2l

pa(qα+ nα̃) + (1− pa)2l

)

Pr[Any bad input bucket] ≤

n ·
d β̃2 e∑
l=1

l∏
i=β̃

( (1− pg)4i
pg(qβ + nβ̃) + (1− pg)4i

)

Based on Theorem 2, given the number of AND gates q
and the number of inputs n we directly compute the optimal
choices of β, α, β̃, α̃ for minimizing the overall communication
of the protocol while still guaranteeing a negligible upper
bound on the success probability of a corrupt A. This is a
once and for all computation so for our implementation we
have precomputed a table of secure choices using a simple
script which is looked up on runtime when q and n have been
decided. We note that it is also possible to minimize for lowest
possible bucket size if desired. This has the effect of reducing
the computational overhead in the online phase at the price of
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increasing both communication and computational overhead
in the independent preprocessing phase. In our experiments in
Section VI we solely minimize for overall communication.

B. Security

Our protocol is similar to the TinyLEGO protocol in [33]
and the proof follows the same general outline. We will
therefore only give a very brief sketch of the overall proof
strategy and then describe how to deal with the changes we
made relative to TinyLEGO.

Consider first the case where the garbler A is corrupted. As
is typically the case it is easy to see that the communication
of the protocol does not leak any information on the input of
B as long as the protocol does not abort. The garbler A might
however give wrong input to some of the OTs used by B to
choose its input keys, giving rise to selective errors where
the abort probability depends on the input of B. The garbler A
might also create some bad garbled gates which could a priori
result in an abort or a wrong output, which might both leak
information on the input of B. The problem with bad gates
is handled exactly as in [33], by setting the cut-and-choose
parameters and bucket sizes appropriately. We however handle
the case with bad inputs to the OTs differently, as described
below. In the universal composability (UC) framework [20],
when A is corrupt, we also need to be able to extract the
input of the corrupted A from its communication and input
to ideal functionalities (OT and commitment). We handle this
exactly as [33]: the cut-and-choose ensures that most key
authenticators only accept their two corresponding committed
keys. For a good key authenticator the accepted key can then
be compared to the committed values to compute its semantic
value. The bucket size has been set such that there is a majority
of good key authenticators on all input wires. This allows to
compute the semantic of any accepted key by taking majority.

Consider then the case where the evaluator B is corrupted.
As is typically the case, the communication clearly does not
leak information to B about the input of A. All that is left is
therefore to describe how to handle two technical requirements
imposed by the UC framework. First, we have to describe how
to extract the input y of a corrupted B. Second, after learning y
and z = f(x, y) we must enforce that the simulated protocol
constructs a circuit that evaluates to z. This must be done
without knowing x. Extracting y is handled exactly as in [33].
We simply inspect which choice bits B uses in the OTs for
selecting its input. Hitting z in the simulation is also handled
exactly as in [33]. We simply construct the circuit correctly and
run with input 0 for A. This gives a potentially wrong output
z′ = f(0, y). We patch this by giving appropriately chosen
wrong output decoding information by opening a wrong least
significant bit of the output key for the output wires i where
z′i 6= zi. This is possible as the simulator controls the ideal
functionality for commitment in the simulation.

We now focus on the changes we made to [33].

Change 1 In both protocols the output decoding information
consists of the least significant bit of the output
keys, securely leaked via the commitment scheme.
However, the implementation differs. We use a non-
interactive implementation which is slightly heavier

on communication. In [33] they use an interactive
protocol with less communication.

Change 2 In [33] they let B commit to the cut-and-choose
challenges and choose his input via OT before
obtaining the garbled gates, wire authenticators and
solderings. We have removed this step. Now B picks
his input after the circuit is constructed and does not
commit to his challenges.

Change 3 In our protocol we take the global ∆-value output
by the OT extension and reuse it as the global ∆
in the Free-XOR garbling scheme. In [33] they use
two independent values.

Change 4 We protect against selective error on the input of B
by using the same ∆ in OT extension and garbling
and using a ∆-ROT to offer the input keys to B.
We also leak the least significant bit of the ∆-OT 0-
strings to B for all his input wires. In [33] a different
technique was used.

Change 1 does not affect security. It was introduced to give
better execution time for typical circuits.

We now address Change 2. The reason why B commits to
the cut-and-choose challenges and chooses his input via OT
before obtaining the garbled material in [33] is that security is
proven via a reduction to a standard (non-adaptive) selective
garbling scheme (e.g. [12]), where the adversary in the security
game must supply its input before it gets the garbled circuit.
Therefore they need to be able to extract the input and cut-and-
choose challenges of B before assembling the garbled circuit in
the simulation. We have skipped this step as it would prevent
independent preprocessing. Now that we assemble the circuit
before B picks its input, the hope would be that we could
do a reduction to an adaptive garbling scheme. However, due
to the soldering approach of LEGO where the XOR of 0-
keys are sent to the evaluator before the input is determined,
it is unclear how to reduce security to the standard notion of
adaptive garbling, as some of these 0-keys are not known to the
simulator. To overcome this we instead identify the defining
property we need from the underlying garbling function which
is that the outputs of the hash function appear random as long
as the inputs are all unknown and have sufficient entropy, even
if the inputs are related. A non-extractable, non-programmable
random oracle clearly satisfies this property [13]. The type of
garbling scheme considered in this work [72] could in principle
be made adaptively secure by using a programmable random
oracle using techniques described in [11], [55].1 We avoid
using the programability of the random oracle by changing
the usual approach a little. Normally security proofs need
to program the circuit to hit the right output. We instead
garble the circuits correctly and then program or equivocate the
output decoding information to decode to the value we need to
hit. Specifically we use equivocation of the UC commitment
scheme to incorrectly open the least significant bit of the output
keys when we need to hit a different value. Returning to the
simulation, we therefore garble all gates and answer all cut-
and-choose challenges honestly. As we now know all garbling
keys we can also open consistently to differences between 0-
keys for the remaining evaluation gates. Finally, in order to

1It is also possible to build an adaptively secure garbling scheme (with short
input keys) using a non-programmable random oracle [9], but this particular
scheme is not as efficient as the one of [72].
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make the complete soldered garbled circuit “hit” the output z
we equivocate the openings of the least significant bits of the
output keys such that this becomes the decoded value. This is
possible as the decoding information is only opened after we
extract the input of the corrupt receiver. If the garbling is done
using a random oracle this will have the same distribution as
in the protocol.

For Change 3 we again use that we are in the random
oracle model. The first step in the proof will be to go from
the case where ∆ is reused in the garbling scheme to the case
where an independent ∆′ is used for garbling as in [33]. In this
hybrid we also let A commit to ∆′. We then use equivocation
of the commitment scheme to make the cut-and-choose proof
that ∆′ = ∆ go through. Since B only sees one key for each
wire and has high entropy on ∆ and ∆′, this change will
be indistinguishable to B if the output of the hash function
appears random as long as the inputs are all unknown and have
sufficient entropy, even if inputs are related. As above, a non-
extractable, non-programmable random oracle clearly satisfies
this property.

We finally address Change 4. Using a ∆-ROT to offer
the input keys to B ensures that when A inputs the keys
to the OT, either both are correct or both are incorrect. If
both are incorrect, it will be detected by a key authenticator
independently of the input of B. This means that the only
remaining attack vector is for A to swap the two correct keys.
This is detected by B as B knows the least significant bit of the
∆-ROT 0-strings and the two correct keys have different least
significant bits. Again the detection is independent of the input
of B. Notice that the output decoding information is sent to B
using FHCOM after he sends his input correction value e, so we
can equivocate it to hit the correct output z. This, together with
the fact that the outputs of the hash function appear random,
is why it is secure to perform the VerLeak step before learning
the input of B.

As argued above, our modified protocol can be proven
secure in the non-extractable, non-programmable random ora-
cle model following the proof of [33]. As we do not require
programmability of the random oracle we conjecture that our
protocol can be proven secure in the standard (OT hybrid)
model using the recently proposed ICE framework of [31], an
extension of the UCE framework of [9]. However, we note
that it does not seem like our scheme can be proven secure
using the UCE framework as in our setting all the garbled
gates are related (all garbled with the same ∆) and therefore
a single leakage phase as prescribed in the UCE framework
seems insufficient.

V. IMPLEMENTATION

In this section we highlight some of the more technical
details of our implementations of the XOR-homomorphic
commitment scheme and our final 2PC protocol supporting
independent preprocessing. The source code of the project can
be found at https://github.com/AarhusCrypto/TinyLEGO.

A. UC-Secure XOR-Homomorphic Commitments

As part of our full 2PC prototype we implement the
XOR-homomorphic commitment scheme of [34] as a separate
subprotocol. This is to our knowledge the first time a scheme

following this OT + PRG blueprint has been implemented
and we believe our experimental findings are of independent
interest. At a high level, the scheme works by the parties
initially doing ñ BaseOTs of security parameter k-bit strings,
where ñ is the code-length for some linear error correcting
code C with parameters [ñ, κ, s]F2

with κ being the bit-
length of the committed messages. The parties then expand the
received k-bit strings into bit-strings of length γ using a PRG
which then define the γ random commitments the sender is
committing to. Next, the sender sends a correctional value for
each produced commitment to turn these into codewords of C.
Finally, to ensure that the sender sent valid corrections, the
receiver challenges the sender to decommit to 2s random linear
combinations of all produced commitments. This is done in a
way such that no information is leaked about the γ committed
values. Additively homomorphism then follows from the fact
that the code C is linear and all operations on the expanded
PRG strings are linear as well. We highlight the fact that any
XOR homomorphic commitment scheme supports the notion
of batch opening/decommitment which is similar in nature
to the above consistency check. The idea is that the sender
initially sends the decommited values directly to the receiver,
who hereafter challenges the sender to decommit to s linear
combinations of the postulated values where s is the statistical
security parameter. Notice that it is only in the initial commit
step that 2s combinations are necessary. If the decommitted
values match the linear combinations of the postulated values,
the receiver accepts. As now only s values are decommitted
this approach has the benefit of making the communication
overhead independent of the number of values decommitted
to. For the full details we refer to [34].

We implement the above scheme in C++14 taking advan-
tage of multi-core capabilities and Intel SSE instructions. We
can therefore base the PRG on AES-NI in counter mode and
for the error correcting code we use a modified version of
the linux kernel implementation of the BCH code family [17],
[38]. As part of the commitment step the parties are required to
transpose a binary matrix S ∈ {0, 1}ñ×γ in order to efficiently
address the committed values in column-major order. As γ in
our case can be huge (> 220 Mio. for 2000 AES-128 com-
putations) we use the efficient implementation of Ekhlund’s
cache-efficient algorithm for binary matrix transposition [30]
presented in [5], [6].2 As a side note we also augment
the OT extension code to support the randomness extraction
technique described in Section III-A to implement the F∆-ROT
functionality needed in our 2PC protocol.

During the development of our implementation we iden-
tified the main computational bottleneck of the scheme to be
the computation of the random linear combinations. Even if
these operations are based on mere XORs, when implemented
naively, the number of required instructions is still γs in
expectation. Therefore, inspired by [21], we use a different
approach for computing the consistency checks using Galois
field multiplication. Combined with efficient matrix transposi-
tion the effect of using GF(2l) multiplication can be seen as
computing l linear combinations in parallel. For our particular
setting we set l = 128 as this is the smallest power of 2
greater than the required 2s for s = 40. We can then use
the Intel SSE instruction PCLMULQDQ to very efficiently

2Available at https://github.com/encryptogroup/OTExtension
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γ #Threads Commit [µs] Decommit [µs]

500 1 7.21 (2815.28) 2.20
1000 2 3.85 (1401.83) 1.40

15 000 4 0.64 (93.99) 0.34
50 000 8 0.57 (28.49) 0.22

500 000 20 0.45 (3.25) 0.17
10 000 000 200 0.21 (0.35) 0.14

200 000 000 400 0.20 (0.21) 0.14

TABLE III. TIMINGS FOR COMMITTING TO γ STRINGS OF LENGTH 128
BIT WITH s = 40. ALL TIMINGS ARE µs PER COMMITMENT. THE COMMIT
TIME IN PARENTHESES INCLUDES THE COST OF THE INITIAL BASEOTS.

compute the GF(2128) multiplications. In detail, our approach
to compute the checks is as follows:

1) Given a random challenge element α ∈R GF(2l) the
matrix S of committed values in column-major order is
split into u = dS/le blocks Bi ∈ {0, 1}ñ×l. Each block is
then transposed into row-major order.

2) For i ∈ [u] and j ∈ [ñ], the new matrix B′i = Bji · αi
is computed where Bji ∈ {0, 1}l is the j’th row of Bi
interpreted as an element of GF(2l).

3) Finally, the combined matrix B′ =
∑u
i=1B

′
i is produced

and transposed back into column-major order.

Each column of B′ can now be seen as a random linear
combination of all values of S. As a further optimization we
see that most GF elements are only multiplied a single time
in the above and we can therefore postpone the expensive
degree reduction step of the multiplication until B′ has been
fully computed. This is different for computing αi which we
therefore reduce at each iteration. In total the required number
of degree reductions becomes n+u as opposed to (n+1)u. Our
experiments show that using the above method of computing
128 linear combinations compared to the naive approach is
between 10-13x faster starting at a moderate number of random
commitments γ > 8000.

As our implementation of the XOR-homomorphic com-
mitment scheme might be of independent interest we here
present our observed timings for committing and decommitting
to γ random bit-strings of length 128 with k = 128 and
s = 40. We instantiate the binary BCH code with parameters
[312, 128, 41] and for convenience we use the implementation
of [6] augmented with our randomness extraction technique
to compute the required 312 Random OTs. In total this takes
about 1400 ms with our implementation, where 1392 ms are
due to the BaseOTs (using PVW [63]). From the timings re-
ported in [23] we predict that this initial setup step can be done
much faster (around 20 ms) using their implementation, but
since this requires a programmable random oracle assumption
and this cost amortizes away as γ grows we did not pursue
this. Also, if the commitment scheme is used in an application
that already relies on oblivious transfer, OT extension can be
used to produce the starting BaseOTs at very low cost. We
report our findings in Table III. As the scheme requires ñ
BaseOTs to setup we include this cost in the commit timings in
parentheses. It can thus be seen by comparing the commitment
numbers how the initial OT cost amortizes away as γ increases.
As there is no initial cost associated with decommitment these
timings are only affected by the number of worker-threads

we spawn. Furthermore, these experiments were performed on
the local LAN setup described in Section VI and not on the
Amazon Web Services (AWS) architecture.

B. 2PC with preprocessing using LEGO

We implement the TinyLEGO protocol with our modifica-
tions on top of the previously described commitment scheme.
The code is also written in C++14 and makes heavy use
of parallelism and Intel SSE instructions for garbling and
evaluation of the garbled gates. At a high level, the Generate
step is implemented by first partitioning the inputs (q, n,m)
into t equally sized subsets for some parameter t. The main
thread then starts t parallel executions of the generate step with
two synchronization points, one where the commitment to ∆ is
sent (which only one execution is charged with), and one after
the cut-and-choose step. The latter is necessary as the random
permutation that describes the initial bucketing must only be
revealed after all garbled components have been sent to B. We
emphasize that it is due to our preprocessing being independent
of the structure of f that we can trivially parallelize the above
step using any number of threads t. Due to the above design
we also run t executions of the commitment scheme, however
for the PRG expansion we use the same seed OT values in all
executions. As the PRG is based on a block cipher in counter
mode this is not an issue as execution i + 1 sets it’s counter
sufficiently high compared to the i’th execution so there is no
overlap. Since they all use the same seed OTs the choice-bits
are also the same across all executions and they can therefore
be combined in the same way as for a single execution.

The Build and Eval phases follow roughly the same design
pattern as above. We note however that in these phases each
thread is responsible for soldering and evaluating an entire
circuit. The garbling and evaluation of garbled gates and wire
authenticators are implemented purely as 128-bit SSE instruc-
tions to maximize performance. We base the hash function for
garbling gates and producing wire authenticators on Fixed-Key
AES-NI as advocated in [10]. This choice is mainly motivated
by producing as comparable results as possible to previous
works that are also based on Fixed-Key AES-NI.

The Eval phase consists of two rounds, one where B
specifies the input mask and one where A replies with its
keys and decommitments. A’s reply has communication com-
plexity knA for A’s input keys and (ñ + k)(nB + m) for the
decommitments of B’s input keys and the lsb masks of the
output keys, where ñ is the code-length of the BCH code.
We note that the communication cost of the decommitments
can be reduced to (ñ + k)s + k(nB + m) using the batch
decommit approach mentioned in Section V-A, but at the
cost of adding an additional round. For the circuits used in
our experiments (AES-128, SHA-256) we observed a loss of
around a factor 1.25 in the LAN setting and much more in
the WAN setting with this approach. Still, for other circuits
where the ratio (nB+m)/|f | is substantial and both network
latency and bandwidth are low we suspect that adding this
extra round can pay off. Finally if one is willing to assume a
programmable random oracle the online cost for the output bits
can be eliminated entirely as the simulator then can program
the oracle to output matching output keys for a preprocessed
decommitment lsb-bit once it learns the final output.
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VI. PERFORMANCE

To give a broad view of the performance of our prototype
we run experiments in a local LAN setting and on both a LAN
and WAN on the Amazon Web Services (AWS). In more detail:

Local LAN with two machines, one acting as A and the
other acting as B. We measured a total bandwidth of
942 Mbits/sec with round trip time (rtt) 0.12 ms. Both
machines run Ubuntu 16.04 with an Intel Ivy Bridge i7
3.5 GHz quad-core processor and 32 GB DDR3 RAM.

AWS LAN with two c4.8xlarge instances located in the Vir-
ginia region connected via a high performance LAN. We
measured a bandwidth of 9.52 Gbits/sec with rtt 0.16 ms.
Both machines run Amazon Linux AMI 2016.03.2 with
an Intel Xeon E5-2666 v3 (Haswell) processor with 36
vCPUs and 60 GB RAM.

AWS WAN with two c4.8xlarge instances, one in Virginia
and one in Ireland. We measured a bandwidth of 214
Mbits/sec on average for a single TCP connection and up
to 3.17 Gbit/sec when running many parallel connections.
The rtt measured was 81.32 ms. Both machines run Ama-
zon Linux AMI 2016.03.2 with an Intel Xeon E5-2666
v3 (Haswell) processor with 36 vCPUs and 60 GB RAM.

For all settings the code was compiled using GCC-5.4 with
the -O3 optimization flag set. As mentioned in Section V-A
the implementation used for the BaseOTs are based on [6]
using PVW [63]. If one is willing to assume a programmable
random oracle, these can be replaced with the fast protocol
and implementation of [23] and we would expect a total cost
around 20 ms as opposed to 850 ms (AWS LAN) with the
current implementation.

A. Our Performance Results

We summarize our measured results in Table IV on the
following page for the three above-mentioned settings. All
numbers reported are averages of 10 executions. Not surpris-
ingly we see the best performance on the AWS machines in the
LAN setting where we can evaluate an AES-128 circuit with
latency 1.13 ms or 0.08 ms throughput per AES-128 in the
online phase. We also see that when considering 1024 AES-
128 evaluations the dependent preprocessing + the online phase
is below 2 ms. When including the cost of the independent
preprocessing each AES-128 can be done in total time less than
16 ms. Similarly when considering 256 SHA-256 evaluations
the online phase can be done with latency 9.14 ms or 1.05 ms
of throughput per SHA-256. Also the dependent preprocessing
+ online phase and total cost is below 22 ms and 205 ms,
respectively (when preprocessing material enough for 256
SHA-256 evaluations).

For the single execution setting we see a significant
increase in execution time for the dependent preprocessing
compared to above. This is due to the design of our prototype
which only uses multiple execution threads in the dependent
preprocessing and online phases if several, possibly different,
circuits are processed at the same time. We also note that our
prototype requires a large amount of RAM as we store all
garbling material and commitments in-memory. This design
choice is due to convenience, but for a deployed system
based on the LEGO approach this should be addressed using

external memory sources with support for pipelined evaluation
as described in Section IV.

For the AWS WAN setting we see that a single execution of
AES-128 takes around 83 ms online time where almost all of
the runtime is spent waiting due to a latency of ∼81 ms. The
latency also severely impacts the two preprocessing phases
where the independent preprocessing takes around 1882 ms
(20x compared to AWS LAN) and the dependent offline
phase takes 96 ms (7x compared to AWS LAN). However
this overhead can be somewhat mitigated when considering
several circuits, down to a factor 2-4x compared to AWS
LAN due to the computation and communication being more
interleaved and better utilization of the bandwidth with several
TCP connections.

Finally in Table V on the next page we report on the
amount of data our prototype transfers from the circuit
constructor to the circuit evaluator for both AES-128 and
SHA-256. For clarity we have not included the communi-
cation from evaluator to constructor, but note that for 1024
AES-128 and 256 SHA-256 a total of 8.12 MB and 4.09 MB
are transferred, respectively, and for both cases around 99%
of the communication stems from the initial BaseOTs. The
table also summarizes the bucketing parameters used in our
experiments, which have been chosen so that the probability
bound given by Theorem 2 in Section IV-A is negligible.
Also we set the two input bucket parameters β̃ = 2β + 1
and α̃ = 2α + 1 which ensures a correct majority for all
the input buckets and authenticators except with negligible
probability. For the data numbers in Table V it can be seen
in parentheses how the relative preprocessing cost of a circuit
decreases as more evaluations are considered. We highlight
that in this work (and previous LEGO protocols) this is due to
the increasing number of gates produced, not by the number
of circuits. As an example of this effect, going from a single
AES-128 with 6928 gates3 to 1024 AES-128 with 7 094 272
gates decreases the cost of the independent preprocessing by
a factor 2.3x per AES-128, from 14.94 MB to 6.42 MB. It
is worth noting that the “LEGO effect” only applies to the
independent preprocessing. This is because in the subsequent
dependent preprocessing step two solderings (k bits each) are
sent per gate of the circuit f and not for each garbled gate
produced. In addition a small constant 2.2 kB of decommit-
ment data is transferred in this phase for the s challenge linear
combinations. For the online step the communication consists
of nAk bits for the constructors input + (ñ+ k)(nB +m) bits
for the decommitments to the evaluators input and the output
decoding bits where ñ is the code-length of the ECC C used
in the commitment scheme. In Section V-B we discussed how
this could further be reduced to (ñ+ k)s+ k(nB +m) at the
price of adding an extra round to the online phase.

B. Comparison with Related Work

We compare our measured timings to those reported in
the recent works of [56] and [65], both of which are solely
applicable in the amortized setting. In contrast our protocol
can naturally handle the single execution setting, along with a
more general amortized setting where several distinct functions

3We use the AES non-expanded circuit of [68] which has 6800 AND gates.
However we augment the circuit with identity gates on the 128 output wires
in order to simplify output decoding using VerLeak.
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Setting Circuit Number BaseOTs Ind. Preprocessing Dep. Preprocessing Online (latency) Online (throughput)

Local LAN

AES-128

1 1400.89 220.44 15.12 2.52 2.52
32 44.90 87.63 3.35 2.25 0.35

128 11.23 70.89 2.95 1.86 0.26
1024 1.40 61.33 2.85 1.60 0.25

SHA-256
1 1400.39 1381.05 208.00 22.65 22.65

32 44.94 812.12 44.59 11.77 3.12
128 11.22 771.27 37.72 10.43 3.02

AWS LAN

AES-128

1 850.42 89.61 13.23 1.46 1.46
32 26.61 27.91 0.85 1.23 0.18

128 6.65 14.85 0.68 1.15 0.09
1024 0.84 13.84 0.74 1.13 0.08

SHA-256

1 852.90 478.54 164.40 11.19 11.19
32 26.82 165.26 14.87 9.14 1.42

128 6.67 173.05 12.13 9.35 1.09
256 3.34 183.51 11.70 9.56 1.05

AWS WAN

AES-128

1 2980.25 1881.63 96.66 83.17 83.17
32 93.75 142.00 5.19 83.21 2.71

128 23.44 72.31 3.96 83.65 0.73
1024 2.96 39.18 2.12 83.15 0.62

SHA-256

1 3043.64 2738.62 350.01 93.94 93.94
32 92.98 670.98 42.01 92.42 4.04

128 23.66 431.71 25.44 92.38 1.70
256 11.75 356.48 27.97 92.74 1.87

TABLE IV. EVALUATOR TIMINGS MEASURED IN THE LOCAL LAN, AWS LAN AND AWS WAN SETTING FOR AES-128 AND SHA-256 WITH k = 128
AND s = 40. ALL TIMINGS ARE ms PER CIRCUIT.

Circuit Number β pg α pa BaseOTs Ind. Preprocessing Dep. Preprocessing Online

AES-128

1 7 2−4 6 2−3 19.52 kB 14.94 MB 226.86 kB 16.13 kB

32 4 2−2 3 2−2 19.52 kB (610 B) 279.78 MB (8.74 MB) 7.26 MB (226.86 kB) 516.10 kB (16.13 kB)
128 4 2−3 3 2−3 19.52 kB (153 B) 924.68 MB (7.22 MB) 29.04 MB (226.86 kB) 2.06 MB (16.13 kB)

1024 4 2−5 3 2−6 19.52 kB (19 B) 6.57 GB (6.42 MB) 232.31 MB (226.86 kB) 16.52 MB (16.13 kB)

SHA-256

1 5 2−3 4 2−4 19.52 kB 120.34 MB 2.93 MB 22.23 kB

32 4 2−4 3 2−5 19.52 kB (610 B) 2.73 GB (85.19 MB) 93.63 MB (2.93 MB) 712.70 kB (22.23 kB)
128 4 2−6 3 2−5 19.52 kB (153 B) 10.31 GB (80.54 MB) 374.52 MB (2.93 MB) 2.85 MB (22.23 kB)
256 4 2−7 3 2−5 19.52 kB (76 B) 20.28 GB (79.20 MB) 749.03 MB (2.93 MB) 5.70 MB (22.23 kB)

TABLE V. BUCKETING PARAMETERS AND DATA RECEIVED BY THE EVALUATOR IN THE DIFFERENT PHASES OF OUR PROTOCOL FOR AES-128 AND
SHA-256 WITH k = 128 AND s = 40. NUMBERS IN PARENTHESES ARE DATA PER CIRCUIT PRODUCED.

Protocol Setting Number Ind. Preprocessing Offline Online

[56]

AWS LAN
32 7 197 12
128 7 114 10
1024 7 74 7

AWS WAN
32 7 1126 163
128 7 919 164
1024 7 759 160

[65]

AWS LAN
32 7 45 1.7
128 7 16 1.5
1024 7 5.1 1.3

AWS WAN
32 7 282 190
128 7 71 191
1024 7 34 189

This Work

AWS LAN
32 54.52 0.85 1.23
128 21.5 0.68 1.15
1024 14.68 0.74 1.13

AWS WAN
32 235.75 5.19 83.21
128 95.75 3.96 83.65
1024 42.14 2.12 83.15

TABLE VI. COMPARISON OF THE REPORTED TIMINGS FOR AES-128
IN THE AWS LAN AND AWS WAN SETTING WITH k = 128 AND s = 40.

THE PREPROCESSING COLUMN INCLUDES THE COST OF THE BASEOTS
FOR THIS WORK. ALL TIMINGS ARE ms PER AES-128. BEST RESULTS

MARKED IN BOLD.

can be preprocessed in the same batch. However to make a
meaningful comparison we focus on the “traditional” amor-
tized setting considering 32, 128, and 1024 AES-128 compu-
tations and we summarize the comparison in Table VI. The
independent preprocessing timings for our protocol consists
of the BaseOTs + the independent preprocessing. The first
thing to notice is that for applications where independent
preprocessing is applicable, and can therefore be disregarded,
our dependent offline performance is superior to both prior
works for any number of AES-128 computations by a large
margin. Compared to [56] our reported timings are better by
100-358x depending on the setting and number of circuits. For
[65] the gap is smaller, but still substantial, namely by 6-54x.
For applications where independent preprocessing can not be
utilized we are still superior to the work of [56], but for most
settings and number of circuits we cannot compete with the
offline phase of [65]. However the differences are typically
within a factor 1.2-3x.

For the online timings in the AWS LAN setting for
AES-128 we measure faster overall timings than [65] for all
number of circuits by a tiny margin. As the differences are less
than half a millisecond we believe the only reasonable thing
to conclude is that the online times are comparable. Though
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Protocol Number Ind. Preprocessing Offline Online

[56]
32 7 8.13 MB 312 kB
128 7 5.45 MB 238 kB

1024 7 3.76 MB 170 kB

[65]∗
32 7 3.75 MB 25.76 kB
128 7 2.5 MB 21.31 kB

1024 7 1.56 MB 16.95 kB

This Work
32 8.74 MB 226.86kB 16.13kB
128 7.22 MB 226.86kB 16.13kB

1024 6.42 MB 226.86kB 16.13kB
∗Dual-execution, so total offline communication is double the reported numbers.

TABLE VII. COMPARISON OF THE DATA RECEIVED BY THE
EVALUATOR FOR DIFFERENT NUMBER OF EXECUTIONS OF AES-128 WITH
k = 128 AND s = 40. ALL NUMBERS ARE DATA PER AES-128. BEST

RESULTS MARKED IN BOLD.

when looking at raw throughput we outperform [65] by more
than a factor 3x (0.08 ms vs. 0.26 ms). Going beyond Table VI
and considering the larger SHA-256 circuit we note that our
online phase is not faster than [65] (9.35 ms vs. 8.8 ms for
128 circuits). This is again due to the design of our prototype
that uses a single execution thread in the online phase per
circuit, while [65] uses several threads. We therefore see it as
an interesting problem for future research to tailor the LEGO
online phase to better exploit parallelism for a single circuit.

With regards to online latency in the AWS WAN setting
there is however no doubt that our two round online phase
outperforms both [56] and [65]. This is directly related to the
previous protocols having more rounds which in a high latency
network significantly decreases performance. For comparison
[56] has a 4 round online phase and [65] has 5. One thing
to note however is that [65] delivers output to both parties
in 5 rounds, whereas both our work and [56] would need an
extra round to support this. Also the implementation of [56] is
written in a mix of Java and C++ using JNI which definitely
adds overhead to the running time. It is however unclear how
much of a speedup a native implementation would achieve,
but we suspect it would be substantial. The implementation of
[65] is written solely in C++ and according to the paper also
takes full advantage of parallelization.

In Table VII we summarize the required communication for
the previously considered protocols and our work for the same
setting as Table VI. As was the case for the measured timings,
when disregarding the cost of the independent preprocessing,
our protocol requires significantly less communication in both
the offline and online phase compared to the previous works.
For the offline phase the communication is 5-12x less than [65]
and 16-358x less than [56]. If the independent preprocessing
is included as part of the offline phase our protocol however
requires transferring more raw data than the previous two
works for any of the considered number of circuits. However
this is only so because we are considering multiple copies
(32, 128, and 1024) of the same function AES-128. If we
instead consider settings with few copies (the larger the better),
a single copy, or several different circuits, the amount of data
received in the independent + dependent preprocessing phase
of our protocol can match or be lower than the dependent
offline phase of [65], depending on the circuit sizes and number
of circuits considered. Also, as [65] uses the dual-execution
paradigm where both parties send and receive the same amount

of data, the above comparison is only meaningful assuming
a full-duplex channel which might not always be available.
Finally, even if the amount of data received by the evaluator
in our protocol is up to ∼4x that of [65] in Table VII,
due to the highly parallelizable nature of our independent
preprocessing phase, this does not translate into equivalently
lower performance as can be seen in Table VI.

For the online phase, our protocol is more data-efficient
than the previous works for any of the considered settings.
In particular, we require sending 16.13 kB per AES which
is around 1.05-1.6x less data than [65] and 10.5-19x less
than [56], depending on the number of executions considered.
Furthermore if one is willing to assume a programmable
random oracle, as is already the case of both [65] and [56], our
online phase can easily be modified to only sending 6.30 kB
(using 3 rounds) or 9.09 kB (using 2 rounds) as explained in
Section V-B.

Finally as mentioned in Section I and summarized in Ta-
ble I the best reported timings for evaluating a single AES-128
is 65 ms in [69]. Based on the reported numbers in their paper
we estimate that ∼20 ms of the execution time consists of
the initial BaseOTs. We therefore consider the actual cost
of their protocol to be around 45 ms and motivate this by
observing that a single computation of BaseOTs can be reused
for any number of future executions using OT extension. To
give as meaningful a comparison as possible we also ran
our implementation on the same AWS setup (c4.2x instance)
for the single execution AES-128 case measuring 105.7 ms
of ind. preprocessing time, 12.07 ms dep. preprocessing time
and 1.41 ms online time on a LAN. Therefore our protocol
performs around 2.5x times slower than theirs in total time
(when also ignoring the cost of our initial BaseOTs). However
if ind. preprocessing can be applied, then from the time the
circuit is input by the parties, our protocol takes around
13.48 ms to evaluate, which is around 3.5x faster than [69].
We ran the same experiment in the WAN setting where we
evaluate an AES-128 in 1837 ms of ind. preprocessing time,
82.51 ms dep. preprocessing time and 72.63 ms online time. As
[69] takes 1513 ms in total, when adjusting for initial BaseOT
cost the difference is about a factor 1.5x in favor of the latter.
However, when ignoring time for independent preprocessing
our protocol can perform around an order of magnitude faster.
We believe this difference in factors between LAN and WAN
is due to our protocol having fewer rounds (when ignoring
our preprocessing) and our implementation fully saturating the
network as it sets up multiple parallel TCP connections for
maximal bandwidth utilization.
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