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Statistical Analysis on the Cloud
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Cloud computing is useful for statistical analysis
e Gather distributed data, and reduce hardware cost.
* Minimal interactions between data providers and the cloud.
* The cloud does most of the work for the analyst.



Cloud Computing with Sensitive Data

‘\ r Third party cloud server
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Sensitive data
* Using outside cloud servers raises privacy concerns.

o E.g, medical records, federal data.

 We want to calculate statistics on the cloud while
keeping the data secret.



Secure Multiparty Computation (SMC)

X, Y: private input

Only reveals Z! F: public function

e Off-the-shelf tools for SMC protocols

o Yao’s garbled circuit (GC).
o Fully homomorphic encryption (FHE).

* But development cost and efficiency hinder
applications of GC and FHE in the cloud.

Yao Andrew. Protocols for secure secure computation. 1982.
Gentry. Fully homomorphic encryption using ideal lattices. 2009.



GC on the Cloud Environment
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GC requires a large development cost
 Multiple servers are needed.

o Assume no collusion between servers.

* Fast network is necessary for computation.
o E.g., 10Gbps bandwidth.



FHE on the Cloud Environment
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* Less development cost

o Single server is enough.
o Rapid network is not necessary.

* But might be inefficient in practice
o Encrypt bits one by one.
o0 1710 ms per evaluation.
o0 1710 megabytes per ciphertext.

Gentry et al. Homomorphic Evaluation of the AES Circuit. 2012.



Observation

* Purpose of encrypting bits separately
oTo evaluate any Boolean function.

* But to do statistical analysis, we can use
omatrix arithmetic operation.
ocomparison operation.



Our Result

 Two new FHE-based primitives:
o Matrix Operations
o Batch Greater-than

e Secure statistical protocols:
o histogram (count),
o order of counts,
o contingency table (with cell-suppression),
o percentile,
o principal component analysis (PCA),
o linear regression.

 Source codes: https://github.com/fionser/CODA




Preliminaries: Fully Homomorphic Encryption

* Public-private key scheme.
o Data providers & cloud share the public key.
o The analyst holds the private key.

* Allow addition (subtraction) and multiplication
on encrypted integers.
o Analogy: black box with gloves

Brakerski et al. Fully Homomorphic Encryption without Bootstrapping. 2012.



Preliminaries: Packing (Batching)

e Enable to encrypt and process vectors at no extra cost.
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homomorphic + X
KN 5

operation

d T 3

Multiple results nnnn nnnm

o Fewer ciphertexts
o Faster computation

N.P. Smart et al. Fully homomorphic SIMD operations. 2011.



Preliminaries: Slot Manipulation

Rotate slots of the encrypted vector.

12 ]34 % f3]al1]2

Replicate a specific slot.
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Halevi et al. Algorithms in Helib. 2014.
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Part Il Technical Details

* Data preprocessing.
e Efficient matrix multiplication on ciphertexts.
 Comparing two encrypted integers.

* Example of two protocols:
o Contingency table with cell-suppression
o Linear regression
(for other protocols, refer to our paper).



Data Preprocessing

* Numerical data: fixed-point representation
03.14159 - [3.14159 x1000| = 3142

o Precision (e.g., 1000) determined in advance

* Categorical data: 1-of-k representation
o Gender (i.e., k =2). Female — [1, 0] and Male — [0, 1]

* Ordinal data: stair-case encoding



Proposed Matrix Primitive

* Used for adding & multiplying encrypted matrices

* Encrypt each row separately by packing.
o Row-wise encryption.
o Horizontally partitioned data

e Efficient and layout consistent.
o O(N?%) homomorphic operations.



Matrix Multiplication[1/2]

* Encrypt the matrix row by row with packing.

Replicate bl [la+2c 1b+ 2d
@1 @2 [ ] [c ]_[3a+4c 3b + 4d

add
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Matrix Multiplication[1/2]

* Encrypt the matrix row by row with packing.

Replicate 1 2] 9 [a b] _ lla +2c 1b+ 2d
@1 @2 3 4 c d 3a+4c 3b+4d

add \
muitiply

* N replications, multiplications and additions
o O(N?) complexity compared to O(N?3) (no packing).

* Also row-wisely encrypted resulting matrix.
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Matrix Multiplication[2/2]

e Layout consistency is important for developing
efficient statistical protocols.

o Statistical algorithms need iterative matrix multiplications

Efficient for single
multiplication

Layout

consistent
?7?

Heavy layout
adjustment
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Inefficient for Still efficient for

iterative multi. iterative multi. .




Experimental Settings of Matrix Primitive

* Implementations:
o FHE: HElib (C++ based)
o GC: ObliVM (java based)

e Evaluated on 32-bit integers

 Networks:
o LAN (about 88 Mbps)
o WAN (about 48 Mbps)

HElib. https://github.com/shaih/HElib.
Liu et al. ObliVM: A programming framework for secure computation. 2015.



Evaluation of Matrix Primitive

Execution Time Communication Cost
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 When do iterative multiplications, FHE-based primitive can
offer better performance.
o Save communication cost between each iteration



Greater-than (GT) Primitive

GT(e(x), e(y)) se(x>y)st.0<x,y<D

* [Golle06] based on Paillier cryptosystem:
if x>ythendke[1,D]>x—y—k=0

 Combination with packing gives great improvements:

e(|x,...,x]) —e(ly,...,¥y]) —[1,2,...,D] — e(n)
‘_Rzplicated D times

c0€EMN & X > Y (i.e., decryption is needed)
o Complexity from D to [D/? |.

Golle. A private stable matching algorithm. 2006.



Experimental Settings for GT Primitive

* Implementations:
o FHE: HElib (C++ based)
o GC: ObliVM (java based)

e Domain D =24~ 2%
e Number of slots £ = 1700.

Networks:
o LAN (about 88 Mbps)
o WAN (about 48 Mbps)

HElib. https://github.com/shaih/HElib.
Liu et al. ObliVM: A programming framework for secure computation. 2015.
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Works for small domains, which is enough for ordinal statistics.




Secure Statistical Protocols

* Contingency table with cell-suppression protocol:
o Use the greater-than primitive.
o One round protocol between cloud and analyst.

* Linear regression protocol:
o Use the matrix primitive.
o Two rounds protocol.

o Use a Plaintext Precision Expansion technique (discuss it
latter).



Contingency Table
| Gender | Smoke

Male Smoker '
Female Non-smoker _ m

Ky

K, =2
Smoker | Non-smoker_
1 1

0 1

Male Non-Smoker

Categorical data Contingency Table

Indicator encoding:
Male — [1, 0], Female — [0, 1]

Smoker = [1, ], Non-smoker = [0, 1]

Basic Idea: multiply & rotate

[a;, a,] x[by, b.] counts Male-Smoker, and Female-Nonsmoker
[a,, a,] x ([by, B ]>>1) =[a,, a,] x [0, b,] gives other two counts.
* Improvement with no extra preprocessing
o O(max(ky,k,)) => O(log k,k,). 24



Contingency Table: Cell Suppression

if <10
| Smoker | Non-smoker [PFSSROIT, | Smoker | Non-smoker
20 11 20 11

#m
remale [NENNNE 12 Female NS 12

Origin Table Suppressed Table

* Protect the privacy of rare individuals.

* Given a ciphertext e(x), to compute e(y) where
if x > threshold then y = x else y = some random value
GT (e(x), threshold) = e(n). iff x > threshold, then 0 € 1.
* Tocompute{e(x +1),e(n+1r),e(n xr')}
o Non-zero random vectors r, 1’
o If 0 € n, we have 0 € nXr’, then we can get  and know x.
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Contingency Table Performance Evaluation

M Decryption (by the analyst)

400 B Cell Suppression (by the cloud)
B Counting (by the cloud)

300 #records = 4000

200

100

Elapsed Time (s)

15 30 120

Size of Contingency Table (k,k,)

 Complexity increases logarithmically with the table sizes.
* Most of the work (>90%) done by the cloud.
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Linear Regression (LR)

* From data {(x;, ¥;)}; , computes a model w s.t.
w = (XTX)"1XTy

* The inversion of an encrypted matrix.

Division-free Matrix Inversion (Q, A):
set AV = Q,RW =1,a = A, and iterate

Layout consistency Rt = 24O RE) _ R 4(©)
leads to efficient A(t+1) — Za(t)A(t) . A(t)A(t)

iterative protocols.
g+ — 4(®)g®

[Guo06] R®gives a good approximation to 220 Tif s
close to largest eigenvalue of Q (use PCA to compute A).

Guo et al. A Schur-Newton method for the matrix pth root and its inverse. 2006.



Plaintext Precision Expansion (PPE)

o : : : t
* Division-free algorithms introduce large integers. (12")
o But the current FHE library allows at most 60-bit integers.

* Allows division-free algorithms without changing the
FHE library.

e Uses K different FHE parameters (each b-bit < 60)
o Achieves an equivalent Kb-bit parameter.
o Increases the time by K times, but naturally parallelizable.

* Direct application of the Chinese Remainder Theorem.



Experiments: Linear Regression
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* Negligible decryption time (less than 2 s).
e 20x faster than previous FHE solution [Wu et al. 12]
o 5 dimensions (400+ mins).
e Good scalability (reduced execution using more cores). 2



Summary

 Secure statistical analysis in the cloud with multiple
data providers.
* Two primitives
o Matrix operation and greater-than

* Two protocols.
o Contingency table and linear regression.

* Encoding and packing can improve FHE's balance
between generality and efficiency.



