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Statistical	Analysis	on	the	Cloud

Cloud	computing	is	useful	for	statistical	analysis
• Gather	distributed	data,	and	reduce	hardware cost.	
• Minimal	interactions	between	data	providers	and	the	cloud.
• The	cloud	does	most	of	the	work	for	the	analyst.

Query	&	Result

Data	collection

Third	party	cloud	server

Multiple	data	providers Analyst
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Cloud	Computing	with	Sensitive	Data

• Using	outside	cloud	servers	raises	privacy	concerns.
o E.g,	medical	records,	federal	data.	

• We	want	to	calculate	statistics	on	the	cloud	while	
keeping	the	data	secret.

Sensitive	data

Third	party	cloud	server
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Secure	Multiparty	Computation	(SMC)

• Off-the-shelf	tools	for	SMC	protocols
o Yao’s	garbled	circuit	(GC).
o Fully	homomorphic	encryption	(FHE).

• But	development	cost	and	efficiency	hinder	
applications	of	GC	and	FHE	in	the	cloud.

Z	=	F(x,	y)x y

Only	reveals	Z!
x,	y:	private	input
F:	public	function

Yao	Andrew.	Protocols	for	secure	secure	computation.	1982.
Gentry.	Fully	homomorphic	encryption	using	ideal	lattices.	2009. 4



GC	on	the	Cloud	Environment
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Secret	
Sharing

GC	protocol

GC	requires	a	large	development	cost
• Multiple	servers are	needed.

oAssume	no	collusion	between	servers.
• Fast	network	is	necessary	for	computation.

o E.g.,	10Gbps	bandwidth.



FHE	on	the	Cloud	Environment

• Less	development	cost
o Single	server	is	enough.	
oRapid	network	is	not	necessary.

• But	might	be	inefficient	in	practice
o Encrypt	bits	one	by	one.
o1~10	ms per	evaluation.
o1~10	megabytes	per	ciphertext.

Gentry	et	al.	Homomorphic	Evaluation	of	the	AES	Circuit.	2012.
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ciphertexts

FHE	protocol



Observation

• Purpose	of	encrypting	bits	separately
oTo	evaluate	any	Boolean	function.

• But	to	do	statistical	analysis,	we	can	use
omatrix	arithmetic	operation.
ocomparison operation.
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Our	Result
• Two	new	FHE-based	primitives:	

oMatrix	Operations
oBatch	Greater-than

• Secure	statistical	protocols:
ohistogram	(count),	
oorder	of	counts,	
o contingency	table (with	cell-suppression),	
opercentile,	
oprincipal	component	analysis	(PCA),
o linear	regression.

• Source	codes:	https://github.com/fionser/CODA
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Preliminaries:	Fully	Homomorphic	Encryption

• Public-private	key	scheme.
oData	providers	&	cloud	share	the	public	key.
o The	analyst	holds	the	private	key.

• Allow	addition	(subtraction)	and	multiplication
on	encrypted	integers.
oAnalogy:	black	box	with	gloves

Brakerski et	al.	Fully	Homomorphic	Encryption	without	Bootstrapping.	2012.
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Preliminaries:	Packing	(Batching)

• Enable	to	encrypt and	process	vectors at	no	extra	cost.

N.P.	Smart	et	al.	Fully	homomorphic	SIMD	operations.	2011.

1 2 3 4

8 7 6 5

+

9 9 9 9

x
Single	
homomorphic	
operation

1 2 3 4

8 7 6 5

8 14 18 20

o Fewer	ciphertexts
o Faster	computation

Multiple	results
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Preliminaries:	Slot	Manipulation

Rotate slots	of	the	encrypted	vector.

Halevi et	al.	Algorithms	in	Helib.	2014.

1 2 3 4 >>	2 3 4 1 2

Replicate a	specific	slot.

8 5 1 5 @3 1 1 1 1
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Part	II	Technical	Details

• Data	preprocessing.
• Efficient	matrix	multiplication	on	ciphertexts.
• Comparing	two	encrypted	integers.
• Example	of	two	protocols:	

oContingency	table	with	cell-suppression
o Linear	regression
(for	other	protocols,	refer	to	our	paper).
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Data	Preprocessing

• Numerical	data:	fixed-point	representation
o3.14159 → ⌈3.14159	×1000⌋ = 3142
o Precision	(e.g.,	1000)	determined	in	advance

• Categorical	data:	1-of-k	representation
o Gender	(i.e.,	k	=	2).	Female	→ [1,	0]	and	Male	→ [0,	1]

• Ordinal	data:	stair-case	encoding
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Proposed	Matrix	Primitive
• Used	for	adding	&	multiplying	encrypted	matrices
• Encrypt	each	row	separately	by	packing.

oRow-wise	encryption.
oHorizontally	partitioned	data

• Efficient	and	layout	consistent.
o𝑂 𝑁2 homomorphic	operations.
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Matrix	Multiplication[1/2]
• Encrypt	the	matrix	row	by	row	with	packing.
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1 1

2 2

a b

c d

1a+2c 1b+2dmultiply
add

multiply

11 2
3 42× 1

𝑎 𝑏
𝑐 𝑑2 = 11𝑎 + 2𝑐 1𝑏 + 2𝑑

3𝑎 + 4𝑐 3𝑏 + 4𝑑2
Replicate
@1	@21

2
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Matrix	Multiplication[1/2]
• Encrypt	the	matrix	row	by	row	with	packing.

• N2 replications,	multiplications	and	additions
o𝑂 𝑁2 	complexity	compared	to	𝑂 𝑁3 (no	packing).

• Also	row-wisely	encrypted	resulting	matrix.

3 3

4 4

a b

c d

1a+2c 1b+2d
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multiply
add

multiply 3a+4c 3b+4d

11 2
3 42× 1

𝑎 𝑏
𝑐 𝑑2 = 11𝑎 + 2𝑐 1𝑏 + 2𝑑

3𝑎 + 4𝑐 3𝑏 + 4𝑑2
Replicate
@1	@2



Matrix	Multiplication[2/2]
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• Layout	consistency	is	important	for	developing	
efficient	statistical	protocols.	
o Statistical	algorithms	need	iterative	matrix	multiplications

Efficient	for	single
multiplication

Layout	
consistent	

??

Still	efficient	for	
iterative	multi.

Inefficient	for	
iterative	multi.

Heavy	layout	
adjustment

YesNo



Experimental	Settings	of	Matrix	Primitive

• Implementations:	
o FHE:	HElib (C++	based)
o GC	:	ObliVM (java	based)

• Evaluated	on	32-bit	integers
• Networks:

o LAN	(about	88	Mbps)
o WAN	(about	48	Mbps)
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HElib.	https://github.com/shaih/HElib.
Liu	et	al.	ObliVM:	A	programming	framework	for	secure	computation.	2015.



Evaluation	of	Matrix	Primitive
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• When	do	iterative	multiplications,	FHE-based	primitive	can	
offer	better	performance.
o Save	communication	cost	between	each	iteration

Execution	Time
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Greater-than	(GT)	Primitive

GT e 𝑥 , 𝑒 𝑦 → 𝑒(𝑥 >? 𝑦) s.t. 0 ≤ 𝑥, 𝑦 ≤ D
• [Golle06]	based	on	Paillier cryptosystem:	

𝑖𝑓	𝑥 > 𝑦	𝑡ℎ𝑒𝑛	∃𝑘 ∈ 1, 𝐷 → 𝑥 − 𝑦 − 𝑘 = 0
• Combination	with	packing	gives	great	improvements:

𝑒 𝑥, … , 𝑥 − 𝑒 𝑦,… , 𝑦 	− [1, 2, … , 𝐷] 	→ 𝑒(𝜼)

o0 ∈ 𝜼 ⟺ 𝑥 > 𝑦 (i.e.,	decryption	is	needed)
oComplexity	from	𝐷 to	⌈D/ℓ	⌉.

Golle.	A	private	stable	matching	algorithm.	2006. 20

Replicated	D	times



Experimental	Settings	for	GT	Primitive

• Implementations:	
o FHE:	HElib (C++	based)
o GC	:	ObliVM (java	based)

• Domain	𝐷 =	24 ~	224		
• Number	of	slots	ℓ ≈ 1700.
• Networks:

o LAN	(about	88	Mbps)
o WAN	(about	48	Mbps)
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HElib.	https://github.com/shaih/HElib.
Liu	et	al.	ObliVM:	A	programming	framework	for	secure	computation.	2015.



Evaluation	of	Greater-than	Primitive
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Works	for	small	domains,	which	is	enough	for	ordinal	statistics.
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Secure	Statistical	Protocols

• Contingency	table	with	cell-suppression	protocol:
oUse	the	greater-than	primitive.
oOne	round	protocol	between	cloud	and	analyst.

• Linear	regression	protocol:
oUse	the	matrix	primitive.
o Two	rounds	protocol.
oUse	a	Plaintext	Precision	Expansion	technique	(discuss	it	
latter).
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Contingency	Table
Gender Smoke

Male Smoker
Female Non-smoker
Male Non-Smoker
Categorical	data

Smoker Non-smoker
Male 1 1

Female 0 1

Contingency	Table
• Indicator	encoding:

Male	→ [1,	0],										Female	→ [0,	1]
Smoker	→ [1,	0],	Non-smoker	→ [0,	1]

• Basic	Idea:	multiply	&	rotate
[a1,	a2]	x	[b1,	b2] counts	Male-Smoker,	and	Female-Nonsmoker

[a1,	a2]	x	([b1,	b2]>>1)	=	[a1,	a2]	x	[b2,	b1] gives	other	two	counts.
• Improvement	with	no	extra	preprocessing

o O(max(k1,k2))	=>	O(log	k1k2). 24

K1 =	2

K2 =	2



Contingency	Table:	Cell	Suppression

Smoker Non-smoker

Male 20 11

Female 3 12

Smoker Non-smoker

Male 20 11

Female 0 12

if	<	10	
zero	out

Origin	Table Suppressed	Table

• Protect	the	privacy	of	rare	individuals.
• Given	a	ciphertext 𝑒(𝑥),	to	compute	𝑒 𝑦 where

if	𝑥 >	threshold	then	𝑦 =	𝑥 else	𝑦 =	some	random	value
• 𝐺𝑇 𝑒 𝑥 , threshold = 𝑒 𝜼 . iff	𝑥 >	threshold,	then	0 ∈ 𝜼.
• To	compute	{𝑒 𝑥 + 𝒓 , 𝑒 𝜼 + 𝒓 , 𝑒 𝜼	×	𝒓′ }

o Non-zero	random	vectors	𝒓, 𝒓’
o If	0 ∈ 𝜼, we	have	0 ∈ 𝜼×𝒓’,	then	we	can	get	𝒓 and	know	𝑥.
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Contingency	Table	Performance	Evaluation

#records	=	4000

• Complexity	increases	logarithmically	with	the	table	sizes.
• Most	of	the	work	(>90%)	done	by	the	cloud.
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Linear	Regression	(LR)
• From	data	 𝒙𝑖, 𝑦𝑖 𝑖 , computes	a	model	𝒘 s.t.

𝒘 = (𝑿T𝑿)no𝑿T𝒚
• The	inversion	of	an	encrypted	matrix.
Division-free	Matrix	Inversion	(𝑸, 𝜆):	
set	𝑨 o = 𝑸,𝑹 o = 𝑰, 𝑎(o) = 𝜆,	and	iterate

𝑹 vwo = 2𝑎(v)𝑹 v − 𝑹 v 𝑨 v

𝑨 vwo = 2𝑎(v)𝑨 v − 𝑨 v 𝑨 v

𝑎(vwo) = 𝑎(v)𝑎(v)

[Guo06]	𝑹 v gives	a	good	approximation to	𝜆yz𝑸no if	𝜆 is	
close	to	largest	eigenvalue	of	𝑸	(use	PCA	to	compute	𝜆).

Layout	consistency	
leads	to	efficient	
iterative	protocols.

Guo et	al. A	Schur-Newton	method	for	the	matrix	pth root	and	its	inverse.	2006. 27



Plaintext	Precision	Expansion	(PPE)
• Division-free	algorithms	introduce	large	integers.	(𝜆yz)

oBut	the	current	FHE	library	allows	at	most	60-bit	integers.

• Allows	division-free	algorithms	without	changing	the	
FHE	library.

• Uses	K different	FHE	parameters	(each	b-bit	<	60)	
oAchieves	an	equivalent	Kb-bit	parameter.	
o Increases	the	time	by	K times,	but	naturally	parallelizable.

• Direct	application	of	the	Chinese	Remainder	Theorem.
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Experiments:	Linear	Regression

16.90 18.34

62.685 67.62

189.07

• Negligible	decryption	time	(less	than	2	s).
• 20x	faster	than	previous	FHE	solution	[Wu	et	al.	12]	

o 5	dimensions	(400+	mins).
• Good	scalability	(reduced	execution	using	more	cores). 29
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Summary

• Secure	statistical	analysis	in	the	cloud	with	multiple	
data	providers.

• Two	primitives
oMatrix	operation	and	greater-than

• Two	protocols.
oContingency	table	and	linear	regression.

• Encoding	and	packing	can	improve	FHE's	balance	
between	generality	and	efficiency.
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