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Abstract—In recent years, there has been a growing trend
towards outsourcing of computational tasks with the development
of cloud services. The Gentry’s pioneering work of fully homo-
morphic encryption (FHE) and successive works have opened
a new vista for secure and practical cloud computing. In this
paper, we consider performing statistical analysis on encrypted
data. To improve the efficiency of the computations, we take
advantage of the batched computation based on the Chinese-
Remainder-Theorem. We propose two building blocks that work
with FHE: a novel batch greater-than primitive, and matrix
primitive for encrypted matrices. With these building blocks, we
construct secure procedures and protocols for different types of
statistics including the histogram (count), contingency table (with
cell suppression) for categorical data; k-percentile for ordinal
data; and principal component analysis and linear regression for
numerical data. To demonstrate the effectiveness of our methods,
we ran experiments in five real datasets. For instance, we can
compute a contingency table with more than 50 cells from 4000
of data in just 5 minutes, and we can train a linear regression
model with more than 40k of data and dimension as high as
6 within 15 minutes. We show that the FHE is not as slow as
commonly believed and it becomes feasible to perform a broad
range of statistical analysis on thousands of encrypted data.

I. INTRODUCTION

In recent years, considerable efforts have been made in the
field of fully homomorphic encryption. Starting from Gentry’s
breakthrough work in constructing the first fully homomorphic
encryption (FHE) scheme [7], successive innovations and
improvements [3]–[6], [24], [27], [28] of fully homomorphic
encryption have been proposed. At a high level, FHE enables
us to perform addition and multiplication on ciphertexts. Thus
it allows us to evaluate any function f on ciphertexts. We can
decompose the input into bits and encrypt each bit separately.
Since addition and multiplication on {0, 1} are equivalent to
the AND-gate and the XOR-gate in boolean circuits, we can
construct the corresponding boolean circuit for the function f
and evaluate the boolean circuit on ciphertexts. Such scheme
has become widely recognized as a technology to enable
processing of private data without compromising privacy.

Computational resources of cloud computing are com-
pletely virtualized, which helps to reduce the operational costs
of service providers. However, such virtualization makes it
difficult to keep control of data. In many domains; for instance,
medical, and financial ones, confidentiality and privacy of
data are one of the principal concerns raised in cloud-based
applications. FHE schemes provide a natural method to address
these concerns by encrypting data in the cloud and performing
computations on ciphertexts without decrypting the data. Since
FHE schemes theoretically allow evaluating any function on
ciphertexts, FHE schemes might enable us to use the cloud
for outsourcing computational tasks such as statistical analysis
with a guarantee of data privacy.

Statistical analysis usually involves a large scale of data
with a large number of dimensions. As a result, conducting
statistical analysis in a way that evaluates the corresponding
boolean circuits on FHE ciphertexts might be inefficient in
practice, in terms of the memory usage and computational
time. On the other hand, we can avoid encrypting the data bit-
by-bit to obtain more efficient solutions. In [24], [31], and [20],
particular encoding methods are used to obtain computation-
ally and spatially efficient solutions on FHE ciphertexts. We
remark that these encoding methods are specifically designed
for a certain statistical analysis task. Thus it seems difficult to
reuse these encoding methods for other tasks.

In this paper, we focus on applications of FHE to statistical
analysis with three types of data. Our goal is to conduct a
wide range of statistical analysis on FHE ciphertexts with
computational and space efficiency. To achieve this goal,
we need to have somewhat generic encodings for statistical
analysis and fast computing routines on FHE ciphertexts. In
this work, we present efficient procedures for a wide range of
statistical analysis using just a few of generic data encodings.
Specifically, we use two encodings to conduct descriptive and
predictive statistics including the histogram (count, histogram
order), contingency table with cell suppression, k-percentile,
principal component analysis, and linear regression.

A. Related Works

The first fully homomorphic encryption (FHE) scheme
is proposed in [7] while the efficiency of FHE is known
as a big question following its invention. During the last
few years, considerable effort has been devoted to improving
the performances of FHE schemes [3]–[6], [24], [27], [28].
Moreover, packing techniques for example [28] and [24] to
name a few, are used for accelerating the computation on
ciphertexts and are applied to real applications. In [31] the
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authors present a specific string matching method with FHE;
and in [20], the authors demonstrate a specific method for
conducting a χ2 test with FHE. These methods both leverage
unique data encoding methods for particular problems. Thus
these methods might be lacking in generality. The generic
database query system using FHE [1] can support different
aggregation queries.

Several studies that realize evaluating descriptive statistics
using FHE have been reported. Evaluating the standard de-
scriptive statistics such as the mean and standard deviation
from FHE ciphertexts are presented in [24]. In [29] the
authors also show how to compute the co-variance using FHE.
Notice that these statistics involve numerical attributes only,
while in the statistical analysis we can also have categorical
and ordinal data. For categorical and ordinal data, we can
implement procedures for statistics such as histogram and k-
percentile using the private database query system of [1]. These
implementations might require O(N) multiplicative depths on
ciphertexts where N is the number of data points, this might
be impractical for a large scale of datasets.

For predictive statistics, the earlier study [12] presents the
construction of building linear classifiers (i.e., the Linear Mean
Classifier and Fisher’s Linear Discriminant Classifier) from
FHE encrypted data. More recently, the work of [2] shows
three protocols for private evaluation of hyperplane decision
classifiers, naive Bayes classifiers and decision tree classifiers
on ciphertexts. Notice they focus on the model evaluation
and the privacy-preserving model building is beyond the
scope of [2]. In [29], the authors also present a protocol to
obtain a linear regression model from FHE encrypted data
using Cramer’s rule or matrix inversion. The computational
complexity of their method, thus, blows up factorially with the
data dimension. In other words, their method is only suitable
for data with small dimensions, i.e., less than 6. To the best
of our knowledge, no practical FHE solution that trains the
linear regression model from data with high dimension has
been established.

B. Contribution

In this work, we show that we can evaluate a broad
range of statistics for three different kinds of data on FHE
ciphertexts using two encodings methods. The evaluation of
many descriptive and predictive statistics commonly requires
comparison operations and matrix operations. We, thus, pro-
pose two building blocks: a novel batch greater-than primitive
and a layout consistent matrix primitive. We give concrete im-
plementations using an open-sourced library, i.e., HElib [26].
Our contributions are summarized as follows.

Batch Greater-than Primitive. Comparing encrypted num-
bers is a common low-level primitive in many cryptographic
protocols. In Section IV-B, we leverage the packing technique
of [28] and present a batch variant of the greater-than protocol
of [11]. Specifically, our bGT primitive requires O(d(θ2d)/`e)
homomorphic operations to compare θ pairs of d-bit inte-
gers while the greater-than protocol of [11] needs O(θ2d)
homomorphic operations. Thereby, a large ` can translate to a
substantial improvement in efficiency.

Layout-Consistent Matrix Primitive. The current routine
supports multiplication of encrypted matrices but the layout of

the resulting matrix is inconsistent with that of the input [14].
Our matrix primitive, described in Section IV-A, allows one to
conduct matrix additions and multiplications without changing
the layout of encrypted matrices. We achieved this by arranging
matrices in a row-wise manner and coupling the row-wise
layout with a replication operation from HElib. Consequently,
this layout consistency enables us to conduct iterative algo-
rithms [13], [22] on encrypted matrices and contributes to our
methods for predictive statistics.

To show that our building blocks are suitable for secure
statistical analysis, in Section IV-C, we give experimental
comparisons of our FHE-based bGT and matrix primitive with
the garbled circuit (GC) [30] implementations using the state-
of-the-art framework [19]. From the experimental results, we
can see that our FHE-based primitives, in some common cases,
are competitive with the GC counterparts.

Wide Range of Descriptive Statistics. We present practical
procedures for conducting the k-percentile queries and contin-
gency tables with cell suppression functionality in Section V-B.
We can derive the secure versions of these statistics from the
private database query system of [1]. However, it might be
impractical to apply it to these descriptive statistics since [1]
requires multiplicative depths of O(N) to perform the compar-
ison, where N is the number of the data. On the other hand,
our procedures only require a constant multiplicative depth,
which is of particular importance for the FHE scheme.

Our procedure for evaluating the contingency table also
supports the cell suppression functionality which naturally
requires comparisons. With the use of our bGT primitive, we
show that we can achieve an efficient procedure for evaluating
the contingency tables with cell suppression on ciphertexts
without any interaction. Our review of the literature suggests
that this report is the first approach to secure evaluation of
contingency tables with cell suppression from FHE ciphertexts.

Protocols for Building Predictive Models. We describe
procedures for principal component analysis (PCA) and linear
regression in Section V-C. Our procedures apply iterative algo-
rithms that involve matrix additions and multiplications only.
Thereby, we can evaluate these algorithms on FHE ciphertexts
straightforwardly. However, these iterative algorithms require
a large message space whereas HElib only offers a limited
size of message space. In Section V-C, we also propose the
use of Plaintext Precision Expansion (PPE), which provides
desired message space by compositing two or more ciphertexts
with a limited message space. With our matrix primitives and
PPE, we can evaluate the PCA and linear regression with data
dimension up to 20 which is 4-times larger than that in [29].
Our review of the literature suggests that this report is the first
practical approach to building a linear regression model with
high dimensional data from FHE ciphertexts.

II. PRELIMINARIES

We begin by introducing the notations used in this paper.
We write [d] to denote the set of positive integers {1, . . . , d}
and the cardinality of a set D are marked as |D|. We write
x

$← D to denote that x is sampled uniformly at random from
D. A matrix is shown as a bold uppercase roman letter, e.g.,
A. We presume vector v forms a column vector following the
convention of statistics. The row vector is represented by the
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transpose operation, e.g., v>. Let a>i denote the i-th row of
the matrix A: elements of a matrix are represented by non-
bold lowercase roman letters with subscripts, e.g., aij . Matrix-
vector multiplication and matrix multiplication are denoted
as Xa and XY , respectively. We denote the element-wise
multiplication of vectors as a ×̇ b where (a ×̇ b)j = ajbj
for all possible position j. We write a � k (resp. a � k)
to denote the left-rotation (resp. right-rotation) of the vector
a with an offset k. We use 1{P(x)} to denote the indicator
function for the predicate P(x), that is 1{P(x)} = 1 if and
only if P(x) is true, and 0 otherwise. We denote the encryption
of a message x as JxK.

A. Leveled Homomorphic Encryption

In this work, we specifically examine the Ring Learn-
ing with Error [21] variant of the Brakerski–Gentry–
Vaikuntanathan (BGV) scheme, a leveled homomorphic en-
cryption scheme proposed in [3].

The message space of the BGV’s scheme works over
a polynomial ring modulo a cyclotomic polynomial At :=
Zt[x]/Φm(x), where Φm(x) is the m-th cyclotomic poly-
nomial. Five algorithms specify the encryption scheme:
KeyGen,Encpk,Decsk,Add and Mul stand for key genera-
tion, encryption, decryption, addition, and multiplication re-
spectively. We write pk and sk to denote the public and private
keys, respectively. When the choice of the key is clear, we
drop the pk and sk subscripts. KeyGen takes as input three
positive integers m, t, and L; outputs a public-private key
pair (pk, sk). Here m and t determine the message space; L
indicates the multiplicative depth that the scheme can evaluate.
According to the security analysis of [9], to achieve κ-bit
security, parameters in the KeyGen should follow

φ(m) >
(L(log φ(m) + 23)− 8.5)(κ+ 110)

7.2
, (1)

where φ(·) is the Euler function. In a leveled homomorphic en-
cryption, we have additive and multiplicative homomorphisms:

Dec(Add(JaK, JbK)) = a+ b mod (Φm(x), t)

Dec(Mul(JaK, JbK)) = a× b mod (Φm(x), t),

where messages a, b ∈ At. Also, the BGV’s scheme supports
scalar addition and multiplication, that is, given a ciphertext
Enc(x) of x ∈ At, we can have operations that output
ciphertexts Enc(a + x) and Enc(ax) for all a ∈ At. Due to
space limitation, we omit the details of functions of the BGV’s
scheme here. We refer to [3] for more information about these
functions.

Packing. One interesting and useful property of the BGV’s
scheme is that it enables us to pack multiple “messages” into
one ciphertext allowing asymptotically efficient computation
on encrypted data [28]. The cyclotomic polynomial Φm(x)
factors into ` irreducible polynomials for some prime modulo
t. That is Φm(x) =

∏`
j=1 Fj(x) mod t. We can pack an

integer vector u ∈ Z`t into an element a ∈ At by viewing
each element of u as a polynomial (only with the constant
term) and then applying the polynomial Chinese-Remainder-
Theorem over factors Fj(x). On the other hand, the unpacking
function just takes the residual of the polynomial factors as
uj = a mod (Fj(x), t) for 1 ≤ j ≤ `.

The efficiency gain of the CRT-packing comes from the
element-wise addition and multiplication. We briefly demon-
strate this property. Let Pack : Z`t 7→ At be the packing
function, and Unpack : At 7→ Z`t be the unpacking function.
Given vectors x,y ∈ Z`t , the CRT-packing works as follows.

Unpack(Pack(x) + Pack(y)) = x+ y mod t

Unpack(Pack(x)× Pack(y)) = x ×̇ y mod t.

If we use Pack to encode the integer vectors before applying
the encryption function, we can perform ` homomorphic
additions (resp. multiplications) by just a single application
of Add (resp. Mul).

In addition to element-wise addition and multiplication, the
CRT-packing also supports manipulations of encrypted vectors.
Specifically, we can homomorphically rotate an encrypted
vector and replicate one element of an encrypted vector.
Similarly, let Rotate : At × Z 7→ At be the rotation function
and Replicate : At × Z 7→ At be the replication function.
These functions work over the CRT-packing as follows.

Unpack(Rotate(Pack(x), k)) = u ∈ Z`t
Unpack(Replicate(Pack(x), k)) = v ∈ Z`t,

where we have uj = xj+k mod ` (rotation) and vj = xk
(replication) for all 1 ≤ j ≤ `. For rotation, we can have
negative k while we require 1 ≤ k ≤ ` for the replication.
In this work, we take advantage of the CRT-packing and the
vector manipulation operations to give efficient solutions of
statistical analysis. For instance, we can perform matrix multi-
plications within a quadratic order of homomorphic operations.
We present the matrix primitive in Section IV.

For the sake of simplicity, we write JaK + JbK and JaK · JbK
to denote Add(JaK, JbK) and Mul(JaK, JbK), respectively. We
also use the rotation operators to indicate the invocation of the
Rotate function, i.e., JaK� k or JaK� k. When we apply the
Pack function to vectors with length less than `, we append
zeros to the vectors. We usually assume enough spaces for
packing vectors but we discuss one exception in Section IV, in
which over-sized vectors are divided into smaller parts before
applying the CRT-packing.

B. Data Representation

In this paper, we aim to conduct a broad range of statistics
of numerical, ordinal, and categorical data. We firstly describe
data representations for different types of attributes.

Categorical Attributes. The values of categorical attributes
represent some states without meaningful order. Let dc be the
number of categorical attributes. We denote the domain of each
categorical attribute as

Cj = {sj1, s
j
2, · · · , s

j
|Cj |}, 1 ≤ j ≤ dc,

where sjk is the k-th state of the attribute Cj . The cross-product
gives the domain of the categorical attributes C := C1 × · · · ×
Cdc . Let c>i ∈ C be a vector of the categorical data. Then
cij ∈ Cj is a categorical value of the j-th categorical attribute.

Ordinal Attributes. Values in an ordinal attribute have a
meaningful ranking among them. We designate the number of
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ordinal attributes as do. Similarly, the domain of each ordinal
attribute is represented as

Oj = {ŝj1, ŝ
j
2, · · · , ŝ

j
|Oj |}, 1 ≤ j ≤ do,

where ŝjk is the k-th state of the attribute Oj . The order of
attribute values is given as ŝj1 � · · · � ŝj|Oj |. We also present
the domain of the ordinal attributes as the cross-product O :=
O1 × · · · × Odo . Let o>i ∈ O be the i-th ordinal data. Then
oij is an ordinal value of the j-th ordinal attribute.

Numerical Attributes. In this paper, we presume that all the
numerical values are integers since the BGV’s scheme can
only process integers. We use a fixed point number of finite
precision. Given x ∈ R and M ∈ Z, we have bMxe ∈ Z
where b·e rounds a real number to the nearest integer. Let dn
be the dimension of numerical data and x>i ∈ Zdnt be the i-th
numerical data. The j-th element of each vector is designated
as the j-th numerical attribute.

We represent the collections of N categorical, ordinal, and
numerical data points respectively as follows.

C =

c
>
1
...
c>N

 ∈ CN O =

o
>
1
...
o>N

 ∈ ON X =

x
>
1
...
x>N

 ∈ ZN×dnt

C. Data Encoding

The choice of value encoding method can affect the ef-
ficiency of function evaluation on ciphertexts dramatically.
We introduce some encoding methods that are specifically to
categorical and ordinal data.

Indicator Encoding Eid : Cj → {0, 1}|Cj |. Eid takes as input an
attribute value sjk ∈ Cj and outputs a vector with all elements
zero except the k-th element, which is set to 1. For instance,
presuming |Cj | = 3, the indicator encoding of the second
state sj2 will be Eid(sj2) = [0, 1, 0]. We construct protocols
of the histogram (count) and the contingency table using this
encoding.

Staircase Encoding Est : Oj → {0, 1}|Oj |. Staircase encoding
takes as input an attribute value ŝjk ∈ Oj and outputs a binary
vector. The staircase encoding sets the 1-st to the (k − 1)-th
elements as 0 and sets the k-th to the last elements as 1. For
example, presuming the domain size of |Oj | = 3, the staircase
encoding of the second state ŝj2 will be Est(ŝ

j
2) = [0, 1, 1]. We

use Est for the evaluation of k-percentile.

To apply the CRT-packing to different types of attributes,
we process the numerical data with constant magnification and
convert the categorical and ordinal data using the indicator
encoding and the staircase encoding. For instance, we first
process a categorical value cij with the indicator encoding
and then encrypt it as JPack(Eid(cij))K. Also, when X is a
matrix, let Pack(X) be the vector formed by applying the
operation to each row of X separately. That is Pack(X) =
[Pack(x>1 ),Pack(x>2 ), . . . ]. In this paper, we represent the
encryption of matrices and vectors with the CRT-packing by
default. We write JxK to denote the ciphertext of vectors in-
stead of using JPack(x)K for the sake of simplicity. Similarly,
JXK denotes the ciphertext of the matrix X .

sq1 · · · sq|Cq| Total

sp1 µ11 · · · µ1|Cq| µ′1
...

...
. . .

...
...

sp|Cp| µ1|Cp| · · · µ|Cp||Cq| µ′|Cp|

Total µ1 · · · µ|Cq| N

Fig. 1: A contingency table of two categorical attributes Cp
and Cq of N data points.

III. PROBLEM STATEMENT

In this work, we consider statistical functions including
the histogram (count and histogram order) and contingency
table (with cell suppression) for categorical attributes; the k-
percentile for ordinal attributes; and the principal component
analysis and linear regression for numerical attributes. We
present these statistics in turn.

A. Descriptive Statistics

Single Categorical Attribute. Let {c1j , . . . , cNj} be the j-
th categorical attribute values of N data points. If cijs are
encoded by the indicator encoding, then the summation of
vectors yields the histogram.

Hist({c1j , . . . , cNj}) = h where h =

N∑
i=1

Eid(cij). (2)

The histogram query naturally gives the count and histogram
order. The count of the state sjp can be given as

Count({c1j , . . . , cNj}, p) = 1>p h, (3)

where 1p is an indicator vector of which the elements are 0
except the p-th element is 1.

The histogram order reveals the order of the counts of the
histogram h. We define this functionality as

HistOrder({c1j , . . . , cNj}) = k, (4)

where the count of the state sjkx is not less than the count of
the state sjky for any 1 ≤ x < y ≤ |Cj |.

Multiple Categorical Attributes. Next, we consider the evalu-
ation of contingency tables of two categorical attributes Cp and
Cq . Evaluation of a contingency table corresponds to counting
combinations (spu, s

q
v) for all possible (u, v) pairs. We write

µuv to denote the count of the combination (spu, s
q
v). For

instance, one categorical data point ci = [· · · , sp2, · · · , s
q
3, · · · ]

contributes to the count µ23 by 1. An example of the contin-
gency table of attributes Cp and Cq is shown in Fig. 1. We
define the functionality of contingency table evaluation as

ContingencyTable({cip, ciq}Ni=1) = µ. (5)

In a contingency table, small counts represent rare individ-
uals or cases of the population. For concerns of individual
privacy, applications that evaluate contingency tables with
private data collected from different sources usually addition-
ally perform cell suppression [16], [23] to conceal existence
of individuals with rare combination of attribute values. A
common practice of the cell suppression is to zero-out the
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counts that are smaller than a constant threshold T . The
functionality of zero-out suppression can be defined as

CT-Suppression({cip, ciq}Ni=1, T ) = µ̄, (6)

where µ̄s = µs · 1{µs > T } for 1 ≤ s ≤ |Cp||Cq|. Notice that
µ is the output of ContingencyTable. We describe a novel
method to compute CT-Suppression in Section V-B.

Ordinal Attributes. For the ordinal attributes, we consider k-
percentile. k-percentile is the value that separates given ordinal
values into two parts so that the one part with lower values
contains k % of the data. For instance, the 50-percentile is
also named as the median. Letting {o1j , . . . , oNj} be the j-
th ordinal attribute values of N data points, we can sort the
ordinal values in ascending order as oπ(1)j � · · · � oπ(N)j .
Here, π is a permutation function that returns indices in
descending order. Using the notation of π, we can define the
k-percentile functionality as

k-Percentile(o1j , . . . , oNj) = oN∗j , (7)

where N∗ := π(d(k · N)/100e) and oπ(i)j � oπ(i+1)j holds
for all 1 ≤ i < N .

B. Predictive Statistics

Principal Component Analysis. PCA is a statistical procedure
that converts a set of numerical observations of possibly
correlated variables into a small number of directions that are
mutually linearly independent. In PCA, we firstly compute a
covariance matrix

Σ =
1

N
X>X − µµ> where µ =

1

N

N∑
i=1

x>i . (8)

Then we compute the eigenvalues and eigenvectors of Σ.
Let the eigenvalues of Σ be λ1 ≥ · · · ≥ λdn , and denote
the corresponding eigenvectors as u1, . . . ,udn . An iterative
algorithm (i.e., PowerMethod) can evaluate the k-th eigenvalue
λk and the corresponding principal component uk with T
iterations.

PowerMethod (Σ, {λq}k−1
q=1 , {uq}

k−1
q=1 ):

1. Σk := Σ−
∑k−1
q=1 λququ

>
q .

2. Choose a random vector v(0) $← Zdnt .

3. For 0 ≤ τ < T , compute

v(τ+1) = Σkv
(τ). (9)

4. Output uk =
v(T )

‖v(T )‖
and λk =

‖v(T )‖
‖v(T−1)‖

.

Linear Regression. The problem of linear regression is to
find a model that predicts values of a numerical target variable
from observations of numerical input variables using a linear
equation. Let {(x>i , yi)}Ni=1 be the given dataset in which x>i
are the input variables and yi is the target variables. The model
of linear regression is given as y ≈ x>w. Therein, the model
w is obtained by minimizing the least-squares error:

w∗ = arg min
w

1

N

N∑
i=1

‖yi − x>i w‖22.

TABLE I: Complexity of our primitives. We write “–” to
indicate that the homomorphic operation is not used.

addition multiplication rotation

JXK · JuK O(d) O(d) O(d log d)

JXK + JY K O(d) – –
JXK · JY K O(d2) O(d2) O(d2 log d)

bGT O(d(θD)/`e) O(d(θD)/`e) O(logD)

The analytical solution w∗ is given as

w∗ = (X>X)−1X>y, (10)

where the matrix X and vector y are the collections of
numerical data. The Eq. 10 is immediately solved if we can
evaluate the inverse of X>X . We leverage a division-free
variant of the iterative matrix inversion method from [13] so
that we can compute the matrix inversion on FHE encrypted
matrices. Let M be a matrix, λ be a real value, and T be
the number of iterations. The division-free matrix inversion
method works as follows.

DF-MatrixInversion (M , λ, T ):

1. Initialize A(0) = M ,R(0) = I, α(0) = λ.

2. For 0 ≤ τ < T , compute

R(τ+1) = 2α(τ)R(τ) −R(τ)A(τ),

A(τ+1) = 2α(τ)A(τ) −A(τ)A(τ),

α(τ+1) = α(τ)α(τ).

(11)

3. Output R(T ).

Here I is an identity matrix. This method approximates the
inverse of the matrix M . According to the analysis of [13],
R(τ) converges to λ2τM−1 quadratically if λ is close to the
largest eigenvalue of M .

IV. BUILDING BLOCKS

In the previous section, we have described the descriptive
and predictive statistics that we are going to evaluate. We can
see that the evaluations of these statistics require operations
including matrix addition, matrix multiplication, and compari-
son operation. In this section, we present two building blocks
for matrix operations and comparison on encrypted values. We
give the summary of complexities of our primitives in Table I.

A. Matrix Operations

For our statistical analysis, we process every data in the
form of matrices and vectors. Once matrices are encoded and
encrypted, it requires expensive homomorphic operations to
rearrange the layout of these values. For instance, it requires
many homomorphic operations to change a row-wise encrypted
matrix to a column-wise encrypted counterpart. To achieve a
low computation overhead, it is important for us to keep the
layout consistent throughout each matrix operation. We intro-
duce layout-consistent matrix operations for FHE encrypted
matrices.

Halevi et al. [14] introduced three layouts to represent
matrix as a single ciphertext: the row-major order, the column-
major order, and the diagonal-major order. In this work, we
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Algorithm 1 Batch greater-than primitive.
- Input: JaK, and JbK, where a, b ∈ [D]θ for D, θ ∈ Z+.
- Output: JγK where the length of γ is θD.
- Remark: One can learn 1{aj > bj} = 1{0 ∈ {γk·θ+j}D−1

k=0 }
1: Compute JãK = Repeat(JaK, θ,D); Jb̃K = Repeat(JbK, θ,D).
2: Generate random permutations πj : [D]→ [D] for 0 ≤ j < θ.
3: Compute a θ ·D dimension vector w in which wα(j) = πj(α).

Here α(j) := θ · α+ j, for α ∈ [D] and 0 ≤ j < θ.
4: Compute JβK = JãK− Jb̃K− Pack(w).
5: Compute JγK = JβK · Pack(r) where r $← (Zt/{0})θ·D .
6: Output JγK.

consider the row-major order in which rows of the matrix
are encrypted separately. It is natural to apply this layout in
real applications. For instance, some research agents might
independently hold data with a different size but following the
same data schema. Recall that we apply the CRT-packing to
each row of matrices and then encrypt each row. Thereby, we
write {Jx>i K}di=1 and {Jy>i K}di=1 to denote the ciphertexts of
each row of X and Y , respectively. The ciphertext of a vector
u ∈ Zdt is JuK.

Matrix–vector Multiplication. Halevi et al. [14] introduced a
general procedure for the matrix–vector multiplication. For the
row-major layout, their procedure requires to “sum up” all the
slots of the CRT-packing, which might be expensive than the
replication operation regarding computational time. However,
we give a different routine according to the observation that
we only involve symmetric matrices in the matrix–vector mul-
tiplication (i.e., PCA). We thus can conduct the matrix–vector
multiplication as JXuK =

∑d
i=1Jx

>
i K · Replicate(JuK, i).

The idea of this equation follows that the matrix X being
symmetric, thus, having the i-th row equals to the i-th column.

Matrix Addition & Multiplication. We can simply conduct
the layout-consistent matrix addition as Jx>i K + Jy>i K for 1 ≤
i ≤ d while we need more delicate operations to achieve the
matrix multiplication without destroying the row-major layout.

We hope to conduct XY so that we can evaluate the
inverse matrix (i.e., Eq. 11) on encrypted matrices. To keep the
layout consistent, we use the Replicate function. We conduct
the matrix multiplication on encrypted matrices as

d∑
i=1

Replicate(Jx>j K, i) · Jy>i K for 1 ≤ j ≤ d.

We give an example to demonstrate this routine as follows.

[
[1 2]
[3 4]

]
︸ ︷︷ ︸

X

·
[
[e f ]
[g h]

]
︸ ︷︷ ︸

Y

=


j=1︷ ︸︸ ︷

1 · [e f ] + 2 · [g h]
3 · [e f ] + 4 · [g h]︸ ︷︷ ︸

j=2

 .
Also, we can compute Juu>K on the ciphertext JuK in a similar
manner. Specifically, the ciphertext of the k-th row of the
matrix uu> is given as Replicate(JuK, k) · JuK. We write
JuK · Ju>K to denote this operation.

B. Batch Greater-than Primitive

For conducting statistics such as contingency tables, his-
togram order, and k-percentile, we need comparison opera-

tions. To this end, we introduce a novel batch greater-than
(bGT) primitive.

Given integers a, b ∈ [D] for some positive D, we know
that a > b if and only if ∃w ∈ [D] such that a − b − w = 0.
Thereby, we can construct a straw-man protocol by homomor-
phically computing (a − b − w) · r for all w ∈ [D] where
the random value r is used to hide |a − b|. This straw-man
protocol, thus, requires O(D) homomorphic operations and
generates O(D) ciphertexts. The idea behind the straw-man
protocol follows the greater-than protocol of [11].

We can reduce the computational cost and the number
of ciphertexts of the straw-man protocol by using the CRT-
packing. Recall that the CRT-packing enables us to pack `
integers into one ciphertext and the homomorphic addition
and multiplication are then carried out on these ` integers
simultaneously. Thereby, we can compute (a− b−w) · r with
` different w by viewing these w as a vector w and using the
Pack function. Moreover, we need to shuffle the positions of
each w before packing them since |a−b| will be revealed if the
position of w is predictable. This greater-than method, thus,
requires O(dD/`e) homomorphic operations and generates
O(dD/`e) ciphertexts which is a considerable improvement
for a large `.

Indeed, we can give a generalized batch greater-than
method which takes as input JaK and JbK where a, b ∈ [D]θ

and outputs 1{aj > bj} for all 1 ≤ j ≤ θ. The method
described above is a specialization of this with θ = 1. The
bGT protocol is shown in Alg. 1. The Repeat function (Step
1) takes as input JuK, θ, and R. Repeat duplicates the first
θ elements of u for R times. For instance Repeat(JuK, θ =
3, R = 2) = J[u1u2u3u1u2u3]K.

Repeat(JuK, θ, R):

1. JũK = JuK · Pack([1 . . . 1︸ ︷︷ ︸
θ

00 . . . ]).

2. R = (bρ · · · b1b0)2 where bρ is the most significant bit.

3. For 0 ≤ i ≤ ρ
a) If bi is 1 then JũK = JũK� k; JũK = JũK + JuK
b) JuK = JuK + (JuK� k)
c) k = k × 2

4. return JũK

The Repeat procedure requires O(log2R) homomorphic ad-
ditions and rotations.

We operate multiple comparisons in a batch manner. Thus
we need to avoid collisions of w in different comparisons
(Step 3). Moreover, we might do not have enough spaces, i.e.,
` < θD for packing. In this case, we can extend the spaces with
multiple ciphertexts. The bGT protocol performs comparisons
of θ pairs of integers and requires O(d(θD)/`e) homomorphic
operations and generates O(d(θD)/`e) ciphertexts. In this
work, we usually use θ = 1 while we use θ > 1 in
the evaluation of the contingency table and k-percentile. We
usually use the bGT only in the last step of a larger protocol
since we need to decrypt the output of bGT to obtain the
comparison result. However, exceptions do exist when we can
take advantage of the randomness of the output of bGT. For
instance, in this work, we use the bGT as an intermediate step
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Fig. 2: Performance numbers (averaged over 10 runs) of FHE-based and GC-based primitive implementations. LAN and WAN
were introduced. For the matrix addition and matrix multiplication, matrices with 32-bits values were used. The numbers on the
figure (g) – figure (i) indicate the number of AND-gates in the garbled circuits.

to evaluate Eq. 6. Precisely, at Line 5 – Line 7 of the PCT-
Suppression protocol in Section V-B, the output of bGT is
used to mask the suppressed counts with random values.

C. Comparison with the Garbled Circuit

We experimentally compared our proposed primitives with
the garbled circuit implementations (Fig. 2).

GC Setting. For GC, we used a state-of-the-art framework,
ObliVM [19] which allows us to implement the garbled circuit
with a high-level programming language interface. We used
two physically separated machines as the circuit generator and
the circuit evaluator. The generator and evaluator held random
shares of the private inputs. We ran the GC experiments on two
network settings: a Local Area Network (two machines located
inside the same router) and a Wide Area Network (one machine
located in Japan and the other located on the west coast of
USA). The network bandwidth of LAN and WAN was about
88 Mbps and 48 Mbps, respectively. In ObliVM, we used the
real-mode which provides the garbled-row-reduction [25] and
free-XOR [17] optimizations.

FHE Setting. In the executions of the FHE primitives, we as-
sume an encryptor encrypts the private inputs and uploads the
ciphertexts to the server. The server operates the primitives on
the ciphertexts and obtains the result. A decryptor downloads
the result from the server and gets the plain result after the
decryption. For performance measurement, we used the same
network (LAN and WAN) as GC. For FHE-based primitives,
we implemented using eight parallels. We also used different
parameters in bGT and the matrix primitives. Specifically, we
set the parameters of the BGV’s scheme t = 67499 and Φm(x)
with m = 5227 (i.e., ` = 1742) for evaluating the batch
greater-than primitive. On the other hand, we use t = 73213

and m = 27893 (i.e., ` = 78) for evaluating the matrix
primitives.

Performance Measurements. We employed three different
performance measurements: evaluation time, ciphertext size,
and operation time. The operation time of our FHE-based
primitives includes the time of encryption, upload, evaluation,
download, and decryption. The evaluation time includes the
time of evaluation only, which is independent of the network
bandwidth. For the GC implementations, we measured the
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time for circuit generation and the time for circuit evaluation.

When we use the FHE primitives as an independent two-
party computation, the entire computation time is measured
by the operation time. On the other hand, when the FHE
primitives are used as building blocks for a more complicated
two-party computation, the outputs of the FHE primitives are
successively reused without interaction with the other party.
In such reuses, encryption, upload, and download are not
processed, and thus the server does not need to communicate
with encryptors and decryptors. Thus, to measure the efficiency
of our FHE primitives, we measured the evaluation time, too.
We note that we can not separately evaluate the evaluation
time from operation time for GC execution. Therefore, the
evaluation time of GC is the same as the operation time in
our evaluation.

We also compared the size of ciphertexts that the FHE-
based primitives output with the size of network packets
exchanged during the execution of the GC-based primitives 1.

Greater-than. Fig. 2a, Fig. 2d, and Fig. 2g show the perfor-
mances of the FHE-based and GC-based greater-than imple-
mentations. As shown in the results, our FHE-based greater-
than primitive offers competitive performances to its GC
counterpart when comparing relatively small integers such as
integers with less than 16 bits. The complexity of the FHE-
based greater-than grows exponentially with the bit length.
Thus, it seems inefficient for our greater-than primitive to han-
dle large numbers. Noting that descriptive statistics of ordinal
or categorical attributes typically assumes small domains (e.g.,
0 ≤ age ≤ 150), we consider 12 ∼ 16-bits to be sufficient to
meet regular requirements in many cases.

Matrix Addition. Fig. 2b, Fig. 2e, and Fig. 2h show the per-
formances of the FHE-based and GC-based implementations
of matrix addition. Since we leverage the CRT-packing for
FHE encrypted matrices, the evaluation time of the FHE-based
matrix addition increases linearly with the matrix dimension.
The FHE-based matrix addition can operate faster than its
GC counterpart in terms of evaluation time while the size of
ciphertexts generated by the FHE-based matrix addition was
two magnitudes larger than that in the GC counterpart. The
operation time of the FHE-based matrix addition is thus greater
than that of its GC counterpart. We can also see that the evalu-
ation time of the FHE-based matrix addition was smaller than
the operation time of the GC (Fig. 2b). In the WAN setting,
the operation times of these two implementations were quite
close. We emphasize that the performance of the GC-based
matrix addition and that of the FHE-based matrix addition
are not directly comparable. If the matrix addition itself is
the target computation, the GC-based solution works faster.
However, when we need successive matrix additions in the
middle of a larger computation, the FHE-based implementation
can provide competitive performance with its GC counterpart.

Matrix Multiplication. Fig. 2c, Fig. 2f, and Fig. 2i show the
performances of FHE-based and GC-based implementations
of matrix multiplication. The GC implementation ran slightly
faster than the FHE-based one in the LAN environment while
in the WAN environment, these two implementations per-
formed almost the same regarding evaluation time. Notice that

1We counted the number of AND-gates (20 bytes each) in the circuit.

TABLE II: Input-output relationships for the stakeholders. We
write “–” to indicate no input or output.

Stakeholder Possess Input Output

encryptor pk x –
cloud pk – JzK

decryptor pk, sk – z

the number of ciphertexts in the FHE-based matrix multiplica-
tion and that of the FHE-based matrix addition were the same
due to the layout-consistency of our matrix primitives. On
the other hand, the GC-based matrix multiplication exchanged
more network packets than that of the GC-based matrix
addition. We can see that the evaluation time and operation
time of the FHE-based matrix multiplication were almost the
same, indicating the time of network communication in FHE-
based matrix multiplication is negligible. When we need to
operate iterative matrix multiplications, the FHE-based prim-
itive, which requires less network communication time, can
offer better performance in terms of operation time.

From the experimental results, we can conclude that our
two building blocks are viable for cloud-based applications.
We admit that our greater-than primitive might be inefficient
for comparing large numbers, but for many statistics, small
domains such as sizes of several thousand might be suffi-
cient. Also, we have to transfer hundreds of megabytes of
ciphertexts which seems to hinder the performance of our
FHE-based matrix primitives. But we are interested in the
statistical analysis rather than a single matrix addition or
multiplication. As Eq. 11 shows, we need to perform matrix
operations iteratively. For the FHE-based matrix primitives, the
number of generated ciphertexts is independent of the number
of iterations. Thus, after the cloud finishes the analysis, the
cost of transferring the FHE ciphertexts might not be the
bottleneck. However, the network packets exchanged by the
GC-based implementations increases linearly with the number
of iterations. In other words, for evaluating complex functions,
e.g. functions with a large multiplicative depth or functions
with large fan-in, the communication time might become the
bottleneck of GC solutions. Moreover, FHE-based solutions
enable to delegate the computation to the cloud, and allow the
encryptor to perform encryption only.

V. COMPUTING STATISTICS ON CIPHERTEXTS

This section presents the details of evaluating the statistics
described in Section III on FHE encrypted data.

A. Security Model

We give an overview of our desired security properties. We
consider three stakeholders: encryptor, cloud, and decryptor.
We assume all stakeholders behave semi-honestly and the
cloud does not collude with the decryptor. Let x be a private
input of the encryptor and f be a publicly known function. We
consider the following model (Table II). The encryptor sends
the ciphertext JxK to the cloud for the computation of a par-
ticular function f . The cloud operates specified homomorphic
operations on JxK and sends the resulting ciphertext JzK to
the decryptor. The decryptor decrypts the resulting ciphertext
and learns z but nothing else. The cloud and the encryptor
learn nothing at the end of the execution of the protocol. The
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TABLE III: A summary of the form of ciphertexts and statistics

Data Type Ciphertext Form Statistics

ciq ∈ Cq JPack(Eid(ciq))K
histogram, count, histogram order

and contingency table
oip ∈ Op JPack(Est(oip))K k-percentile
xi ∈ Zdc JPack(xi)K PCA and linear regression

encryptor sends the encryption of his private input following
the data processing of different types of data in Table III. In the
following protocol descriptions, we thus omit the encryption
phase of the encryptor.

B. Descriptive Statistics

Histogram and Count. The evaluations of Eq. 2 (histogram)
and Eq. 3 (count) on FHE encrypted categorical data are
straightforward using the CRT-packing and indicator encoding.
For the collection of categorical dataC ∈ CN , we can compute
the histogram of Cp, i.e. the p-th attribute, as

∑N
i=1JEid(cip)K.

Also, we can compute the histograms of multiple attributes
simultaneously. For instance

∑N
i=1JEid(cip)‖Eid(ciq)K gives the

histograms of Cp and Cq . Moreover, to give the count of
specific attribute values, we need one more homomorphic
multiplication. For example,

(∑N
i=1JEid(cip)K

)
· Pack(13)

gives the ciphertext of the count for sp3, i.e., the third state
of the attribute of Cp. Similarly, we can give multiple counts
simultaneously.

Histogram Order. The evaluation of Eq. 4 requires computing
the order of the counts in the histogram, which indicates that
comparisons of encrypted integers are needed. Our method for
calculating the histogram order on ciphertexts splits into two
stages: one for operating bGT and the other for recovering the
histogram order from the outputs of bGT. In the second stage,
we need to decrypt the outputs of bGT.

PrivateHistOrder ({JEid(cij)K}Ni=1):

The cloud:

1. Computes the histogram JhK =
∑N
i=1JEid(cij)K.

2. Computes JhpK = Replicate(JhK, p) for 1 ≤ p ≤ |Cj |.
3. For all 1 ≤ u < v ≤ |Cj | pairs, invokes the Alg. 1 with

D = N and θ = 1

JγuvK = bGT(JhuK, JhvK).

4. Outputs ciphertexts {JγuvK}1≤u<v≤|Cj |.
The decryptor:

5. Constructs a matrix ∆ ∈ {0, 1}|Cj |×|Cj | according to the
decryption of {JγuvK}1≤u<v≤|Cj |.
a) The diagonal of ∆ is set to 0, that is δuu = 0.
b) For all (u, v) pairs such that 1 ≤ u < v ≤ |Cj |, set

δuv = 1{0 ∈ γuv} and set δvu = 1− δuv .

6. Outputs a vector k with the value kl set as the row-
index of ∆ which contains exactly |Cj | − l of 1s for
1 ≤ l ≤ |Cj |.

PrivateHistOrder calls the bGT primitive O(|Cj |2) times. By
operating these comparisons, we have obtained the order of

Eid(cip) Eid(cip) Eid(cip)
element-wise multi. Eid(ciq) Eid(ciq)

contribute to µ11 µ22 – µ21 µ12 –

Fig. 3: One multiplication gives 2×2 combinations of attributes
of cip ∈ Cp and ciq ∈ Cq where |Cp| = 2 and |Cq| = 2.

the values of the histogram. According to bGT, if 0 ∈ γuv
holds then we know that the count of state sju is larger than
that of state sjv . In the protocol, the matrix ∆ just acts as a
handy helper for us to calculate the histogram order.

Contingency Table. We first present a novel method to
evaluate the contingency table (Eq. 5) from ciphertexts and
then describe how to achieve the zero-out suppression (Eq. 6).

PrivateContingencyTable ({JEid(cip)K, JEid(ciq)K}Ni=1 ):

The cloud:

1. Finds the smallest co-prime integers k1 and k2 such that
k1 ≥ |Cp| and k2 ≥ |Cq|.

2. For 1 ≤ i ≤ N , computes

JpiK = Repeat(JEid(cip)K, k1, k2)

JqiK = Repeat(JEid(ciq)K, k2, k1).

3. Computes and outputs JµK =
∑N
i=1JpiK · JqiK.

The decryptor obtains the contingency table of Cp and Cq from
the vector µ. Specifically, the count µuv in the contingency
table is given by the x-th element of µ where (x−1) ≡ (u−1)
mod k1 and (x−1) ≡ (v−1) mod k2

2. We present a concrete
example in Fig. 3, in which the domain sizes are |Cp| = |Cq| =
2 and k1 = 2, k2 = 3. In Fig. 3, the white cells indicate 0 since
we use 0-padding in the CRT-packing. Thereby element-wise
multiplications on these positions only give 0, and thus no
other information except the contingency table are revealed by
µ. The idea behind this method, to some extent, is the Chinese-
Remainder-Theorem. The coprime duplication plays a major
role in the above evaluation.

Following the PrivateContingencyTable procedure, we
describe how to achieve the zero-out suppression functionality.
Let the suppression threshold be T ∈ Z+ and let Σ := k1k2.

PCT-Suppression ({JEid(cip)K, JEid(ciq)K}Ni=1, T ):

The cloud: Step 1 to 3 follows PrivateContingencyTable.

4. Invokes bGT: JγK = bGT(JµK, JT K) with D = N and
θ = Σ for the bGT protocol.

5. Computes Jµ′K = JµK + Pack(δ) where δ $← ZΣ
t .

6. Computes Jγ′K = JγK + Pack(r) where the length of
the vector r is NΣ, rkΣ+x = δx for 0 ≤ k < N , and
1 ≤ x ≤ Σ.

7. Samples r∗ $← (Zt/{0})NΣ and computes Jγ∗K = JγK ·
Pack(r∗).

8. Outputs Jµ′K, Jγ′K and Jγ∗K.

The decryptor:

2Indices start from 1.

9



9. Finds out the set SZ := {(s, z = kΣ + s)|γ∗kΣ+s =
0, 1 ≤ s ≤ Σ, 0 ≤ k < N}.

10. Initializes µ̂ as µ̂ = 0 and then sets µ̂s = µ′z − γ′z for
(s, z) ∈ SZ .

11. Outputs µ̂.

We describe the idea of our PCT-Suppression protocol.
Without loss of generality, we presume that µs > T for some
specific 1 ≤ s ≤ Σ. According to the bGT protocol, we have
one and only one 0 in the set Γs := {γkΣ+s}N−1

k=0 . This enables
us to hide numbers. If we have only one 0 in Γs, we can
recover the value of µs from the tuple {µs+ δ, δ+Γs, r

∗ ·Γs}
with some non-zero random value r∗. Here the mathematic
operations are carried out on each element of Γs.

On the other hand, if µs ≤ T , after the execution of
the bGT protocol we have 0 /∈ Γs. We can not recover
the value of µs from the tuple. Thereby, the suppression is
achieved. We aim to hide the rare individuals or cases in the
population by zero-outing the counts in contingency tables.
Our PCT-Suppression procedure hides the counts in the
contingency table with values smaller than T but enables us
to learn other counts that with values larger than T .

k-percentile. To compute the k-percentile on ciphertexts,
we leverage the staircase encoding Est. We conduct the k-
percentile of the attribute Oj on FHE ciphertexts as follows.

Private k-Percentile ({JEst(oij)K}Ni=1, k)

The cloud:

1. Computes JfK =
∑N
i=1JEst(oij)K.

2. Computes k′ = d(kN)/100e.
3. Invokes bGT: JγK = bGT(JfK, k′) with D = N and

θ = |Oj | for the bGT protocol.

4. Outputs JγK.

The decryptor:

5. Finds out an index 1 ≤ n∗ ≤ |Oj | s.t. 0 /∈
{γk|Oj |+n∗−1}N−1

k=0 and 0 ∈ {γk|Oj |+n∗}
N−1
k=0 . If no such

n∗ exists, sets the value of n∗ as

n∗ =

{
1 if 0 /∈ γ
|Oj | o.w.

6. Outputs ŝjn∗ .

The decryptor can derive the k-percentile of the attribute
Oj from γ. Indeed, we obtain the cumulative frequencies
of {o1j , . . . , oNj} in Step 1 due to the use of staircase
encoding. For instance, let us consider the ordinal data
{ŝj1, ŝ

j
2, ŝ

j
3, ŝ

j
3, ŝ

j
1, ŝ

j
2} for N = 6. Then the summation in Step

1 gives cumulative frequencies f = [2, 4, 6]. To get the k-
percentile, we only need to find out, from left to right, the
first frequency that is larger than d(kN)/100e. In the previous
example, we know ŝj2 is the 50-percentile point because
f1 < 3∧ f2 ≥ 3. We perform the comparisons using the bGT
protocol. Thus, to determine the k-percentile from γ we simply
find an index 1 ≤ n∗ ≤ |Oj | s.t. 0 /∈ {γk|Oj |+n∗−1}N−1

k=0 while
0 ∈ {γk|Oj |+n∗}

N−1
k=0 . For the boundary conditions, we can

determine that ŝj1 is the k-percentile point if 0 is absent in γ.

On the other hand if 0 ∈ {γk|Oj |+n∗}
N−1
k=0 for all possible n∗,

we know that ŝj|Oj | is the k-percentile of the population.

C. Predictive Statistics

Principal Component Analysis. For the evaluation of PCA,
we can perform the computation of Eq. 8 and Eq. 9 on
ciphertexts directly. Given the collection of numerical data
X ∈ ZN×dnt , we evaluate the first principal component with
T iterations as follows.

PrivatePCA ({Jx>i K, Jxix>i K}Ni=1, T )

The cloud:

1. Computes JNµK =
∑N
i=1Jx

>
i K.

2. Computes JN2ΣK = N ·
∑N
i=1Jxix

>
i K−JNµK ·JNµ>K.

3. Computes Jv(τ+1)K = JN2ΣK · Jv(τ)K for 0 ≤ τ < T .

4. Outputs Jv(T )K and Jv(T−1)K.

5. The decryptor outputs the largest eigenvalue as λ1 =
‖v(T )‖/‖v(T−1)‖ and the associated eigenvector as
u1 = v(T )/‖v(T )‖.

Step 1 and Step 2 follow Eq. 8 except we can not perform the
division on ciphertexts. Notice that, in Step 2, the operation
JNµK · JNµ>K generates ciphertexts of a matrix. The evalua-
tion in Step 3 is also straightforward using our matrix–vector
multiplication primitives described in Section IV-A.

Linear Regression. To conduct the linear regression of Eq. 10,
we need to compute the inverse of the design matrix X>X .
To do so, we use the DF-MatrixInversion procedure in
Eq. 11. The evaluation of Eq. 11 on ciphertexts are straight-
forward using our matrix multiplication primitive described
in Section IV-A. Given the collection of numerical data
{(x>i , yi)}Ni=1 and the largest eigenvalue λ1 of the design
matrix, we can evaluate Eq. 10 with T iterations as follows.

PrivateLR ({Jyix>i K, Jxix>i K}Ni=1, Jλ1K, T )

The cloud:

1. Computes JX>yK =
∑N
i=1Jyix

>
i K and JX>XK =∑N

i=1Jxix
>
i K.

2. Invokes the DF-MatrixInversion procedure

Jλ2T

1 (X>X)−1K = DF-MatrixInversion(JX>XK, Jλ1K, T ).

3. Outputs Jλ2T

1 w
∗K = Jλ2T

1 (X>X)−1K · JX>yK.

4. The decryptor outputs w∗ by dividing λ2T

1 w
∗ with λ2T

1 .

Notice that the multiplication in Step 3 is a matrix–vector
multiplication. The DF-MatrixInversion computes the matrix
inversion with a known factor λ2T

1 . Thereby, our PrivateLR
procedure computes the linear regression model w∗ with the
factor λ2T

1 .

Plaintext Precision Expansion (PPE). We have described
straightforward procedures to conduct the PCA and linear
regression on ciphertexts, using our matrix primitives. How-
ever, we still have an issue in implementing these procedures.
That is, the current implementation of the BGV scheme, i.e.,

10



the HElib [26], only allows a maximum of 60-bits plaintext
precision which might not be sufficiently large enough for con-
ducting the PCA and linear regression. We show an example
of this below.

We take the PCA as an example. Assume that the dn× dn
covariance matrix Σ (as Eq. 8) is B-bounded, i.e. |σij | ≤ B
for all σij ∈ Σ. After T iterations, the output from Eq. 9 is
bounded by dTnM

T+1BT+1. Recall that we need to introduce
a fixed magnifier M to convert the real values to integers.
Presuming that we use B = 102, M = 103, and dn = 5,
then the estimation above reveals that T = 3 iterations are not
allowed because d3

nM
4B4 ≈ 273 exceeds 260, the maximum

plaintext precision. As a result, the 60-bits precision makes
it possible to perform only a few iterations on ciphertexts.
However, the iterative algorithms we used for the PCA and
linear regression might not give converged solutions within a
few iterations, which means we can obtain only very rough
approximations for the PCA and linear regression. To address
this, we need to perform more iterations, which requires a
higher plaintext precision.

We introduce PPE to achieve a higher plaintext preci-
sion with the application of the Chinese-Remainder-Theorem
(CRT) [15]. Let f be the function that we evaluate, and let x
be the input of f . Suppose that f(x) > 260. We, thus, cannot
directly evaluate f on the ciphertext of x since we cannot offer
plaintext with values larger than 260. To alleviate this problem,
we with K distinct plaintext spaces and get K values as {f(x)
mod tk}Kk=1, where tk < 260 for all k. According to the CRT,
if we have gcd(tk, tk′) = 1 for all k 6= k′, then from the
set of values {f(x) mod tk}Kk=1, we can uniquely determine
the value which is equal to f(x) mod t for t =

∏K
k=1 tk.

Thereby we can obtain f(x) by using such small tk’s with
product is larger than f(x). If we fix the magnitude of tk,
then we can achieve any desired precision by adjusting K for
a desired precision. Indeed, PPE is achieved at the expense of
increasing both computational and communication cost by a
factor K while PPE is totally parallelizable. We can also apply
the PPE to the evaluation of the descriptive statistics.

Tuning of Parameters. To obtain a final solution with the
desired precision, we need to appropriately determine the
magnification constant M , the number of iterations T , and
the number ciphertexts used for precision expansion K. Given
a desired precision of the final solution, the number of it-
erations required to reach the precision can be determined
by the convergence property of the iterative method (The
power method for PCA guarantees geometric convergence. The
iterative matrix inversion guarantees quadratic convergence).
Given the desired precision and the number of iterations, the
bit-length to represent the final solution can be determined. If
this bit length is shorter than the plaintext size, PPE is not
needed. If the bit length exceeds the plaintext size, precision
expansion is introduced so that the plaintext space covers the
required bit length. We experimentally surveyed the relations
between the desired precision of the final solution, the number
of iterations, the magnification constant, and the bit-length to
represent the final solution. See Appendix A for the details.

VI. SECURITY ANALYSIS

We also assume that all stakeholders hold the encryption
key pk while only the decryptor holds the decryption key sk.

We focus on secure outsourcing in this paper. Thus, we do not
discuss the phase of key generation and key distribution.

The outline of our secure outsourcing that evaluates de-
terministic function f proceeds as follows. We consider the
following two models for the security analysis.

Model-I (z = f(x)). The encryptor encrypts his private input
x and sends JxK to the cloud. The cloud homomorphically
evaluates f on JxK and sends Jf(x)K to the decryptor. The
decryptor decrypts Jf(x)K and obtains f(x).

Model-II (z 6= f(x)). The encryptor encrypts his private input
x and sends JxK to the cloud. The cloud performs specified
homomorphic operations on JxK and sends the resulting ci-
phertext JzK to the decryptor. The decryptor decrypts JzK and
obtains z. The decryptor derives f(x) from z by some local
post-processing.

We summarize the model classification of the proposed
protocols in Table IV. We give the security statements about
the protocols.

Theorem 1: We assume all stakeholders behave semi-
honestly and assume that the decryptor and the cloud do
not collude with each other. Let x be a private input of the
encryptor. If the FHE scheme provides semantic security, after
execution of the protocol for f , the decryptor learns z but
nothing else. The encryptor and the cloud learn nothing.

We give the proof of Theorem 1 in the next paragraph. If
z = f(x), Theorem 1 guarantees the security of the protocol
for f . If z 6= f(x), we need to show that z reveals nothing
but f(x). For some protocols (i.e. bGT, PCT-Suppression,
Private k-Percentile, and PrivateHistOrder), we show that
z does not reveal any information except f(x). However, in
our construction, we allow the protocol of PrivatePCA and
PrivateLR to output z that contains information more than
f(x) for the sake of efficiency. We discuss these points in the
following.

Security Analysis. We give a sketch proof of Theorem 1 and
defer the full argument to the full version of our paper. Our
proof follows the simulation-based paradigm [10]. Let the view
of the encryptor, decryptor, and the cloud during the execution
of the protocol be Ve, Vd, and Vc, respectively. Notice that the
encryptor does not receive any message from other entities.

Proof of Theorem 1 (Sketch): Let pk be the encryption
key used by the encryptor. From the construction of the
protocol, the security against the semi-honest encryptor and
the semi-honest decryptor are apparent. So, we omit the proofs
for the encryptor and decryptor.

Security against a semi-honest cloud follows from
the fact that the view of the cloud, Vc, consists of
{pk,Encpk(x),Encpk(z)}. We can simply construct a simu-
lator Sc as follow. Sc firstly randomly chooses values x′ and
z′. Then Sc simulates Vc by V̂c = {pk,Encpk(x′),Encpk(z′)}.
Since the FHE provides semantic security by assumption, Vc
and V̂c are indistinguishable. Thus, our protocols are secure at
the presence of a semi-honest cloud.

Security Discussion under Model-II. For protocols classified
in the model-II, the decryptor obtains f(x) with some post-
processing on z. We show that z reveals nothing except f(x)
for certain protocols.
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Class Protocol Input x Output z f(x)

model-I

Matrix addition X,Y X + Y X + Y

Matrix multiplication X,Y XY XY

Histogram {Eid(cij)}Ni=1 h h (Eq. 2)
Count {Eid(cij)}Ni=1 1>p h 1>p h (Eq. 3)

PrivateContingencyTable {Eid(cpj), Eid(cqj)}Ni=1 µ µ (Eq. 5)

model-II

bGT a, b γ 1{a > b}
PCT-Suppression {Eid(cpj), Eid(cqj)}Ni=1 µ′,γ′,γ∗ µ̂ (Eq. 6)

Private k-Percentile {Est(oij)}Ni=1 γ ŝj
n∗ (Eq. 7)

PrivateHistOrder {Eid(cij)}Ni=1 {γuv}1≤u<v≤|Cj | k (Eq. 4)

PrivatePCA {x>i ,xix
>
i }

N
i=1 v(T ),v(T−1) u1, λ1 (Eq. 9)

PrivateLR {yix>i ,xix
>
i , λ1}Ni=1 λ2T

1 w∗ w∗ (Eq. 10)

TABLE IV: Model classification

Batch Greater-Than. In bGT(JaK, JbK) (we assume that
θ = 1), if a ≤ b holds then the output z consists of D
uniform random values from Zt/{0} and reveals nothing but
the output. If a > b, we have one 0 in γ at a position
selected randomly and values at remaining positions distribute
uniformly on Zt/{0}. Thereby, from z the decryptor can only
learn 1{a > b} but nothing else.

PCT-Suppression. We use bGT to compare Σ values in the
contingency table, i.e., µ, with the threshold T . Since these
comparisons are independent of each other, we focus on a
specific µs. γ∗ is the output from the bGT (each element
are multiplied with non-zero random values). If µs > T , we
have one 0 in set Γs := {γ∗kΣ+s}

N−1
k=0 at a random position

and remaining values are all random. Otherwise, Γs consists
of uniform random values on Zt/{0}. Presume that, in the
set Γs, we have γ∗k′Σ+s = 0. Then the decryptor can learn
µ̂s = µ′s − γ′k′ which is the desired output. On the other hand
if µs ≤ T , for all 1 ≤ k ≤ Σ, value µ′s − γ′k is uniformly
distributed on Zt/{0}. Consequently, from the output z, the
decryptor only learns µ̂ and nothing else.

Private k-Percentile. The output z of the k-percentile protocol
comes from the bGT. From z, the decryptor learns that
cumulative frequencies before ŝjn∗ are less than dkN/100e
and cumulative frequencies of ŝjn′ with n′ > n∗ are larger
than dkN/100e. That is equivalent to knowing that ŝjn∗ is the
k-percentile of the population. Since the bGT reveals nothing
except the comparison results, the k-percentile protocol reveals
to the decryptor no more than that ŝjn∗ is the k-percentile.

PrivateHistOrder. The histogram order protocol invokes bGT
O(|Cj |2) times to compare |Cj | values in the histogram and
outputs the comparison results. Since the bGT reveals nothing
except the comparison results, it is straightforward to see that
the PrivateHistOrder protocol reveals to the decryptor no
more than the order of counts in the histogram.

PrivatePCA. In this protocol, the decryptor receives two
vectors, v(T ) and v(T−1). He learns the largest eigenvalue
λ1 = ‖v(T )‖/‖v(T−1)‖ and the associated eigenvector u1 =
v(T )/‖v(T )‖. Precisely speaking, the difference of the di-
rection of v(T ) and v(T−1) can contain some information
about the inputs. However, due to the geometric convergence
property of the power method algorithm, the difference of the
directions is negligible after a sufficient number of iterations.
We consider that it is worth letting the decryptor perform the
division after the decryption for the sake of efficiency.

PrivateLR. In this protocol, the output z = λ2T

1 w
∗. We can

see that the only information leaked to the decryptor is the
iteration number T . Precisely speaking, T can contain some
information about the condition number of X>X , which is
related to the eigenvalues of X>X . However, it is not likely
that the decryptor can recover (a part of) X from T . Thereby,
letting the decryptor perform the division after the decryption
can lead to a more efficient evaluation.

VII. EXPERIMENTAL EVALUATION

We implemented our building blocks and all the procedures
that is described in Section V. Our implementations were
written in C++, and we used the HElib library [26] for the
implementation of the BGV scheme. We compiled our code
using g++ 4.9.2 on a machine running Ubuntu 14.04.4 with
eight 2.60GHz Intel(R) Xeon(R) E5-2640 v3 processors and 32
GB of RAM. The proposed procedures and the PPE technique
are parallelizable. We leveraged 8 parallels in our benchmarks
to accelerate the computation.

We used multiple parameter sets in our benchmarks to
show the best performance of our procedures. Our choices for
selecting the parameters of the HElib are shown in Table V.
In this table, we have modulo parameter tk, the number of
slots of the CRT-packing `, levels parameter L, the parameter
for cyclotomic polynomial m, the number of coprime moduli
K, and the security level κ. We used at most K = 8
moduli and for each modulo we set tk ≈ 236 to achieve
about 300-bit precision. Specifically, we used parameter set
(I) for evaluating the PrivateHistOrder, Private k-Percentile
procedures. The evaluations of PrivateContingencyTable and
PCT-Suppression used parameter set (II) while the evalua-
tions of PrivatePCA and PrivateLR use the set (III).

We conducted experiments on five datasets from the UCI
Machine Learning Repository [18]. For detailed discussions,
we focus on one of them, the Adult dataset, which includes
32561 records with 6 numerical attributes, 7 categorical at-
tributes, and 1 ordinal attribute. Specifically, to show the
scalability of the PrivatePCA and PrivateLR procedures, we
also gave the benchmarks on other four datasets.

A. Experiment Setup

Parameters of HElib. To achieve the best performance, we
need to choose the parameters of the HElib appropriately. We
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tk ` L m K κ

(I) 67499 1742 5 5227 1 90

(II) 8191 4096 10 16384 1 80

(III) ≈ 236 ≈ 70 32 27893 ≤ 8 110

TABLE V: Parameter sets of the BGV scheme.

Type Domain N Evaluation Decryption

Hist. Order

|Cj | = 8

500 1.26 ± 0.145s 1.26s
1k 1.31 ± 0.157s 1.23s
10k 2.72 ± 0.289s 4.80s
32k 6.28 ± 0.484s 13.2s

|Cj | = 16

500 2.42 ± 0.439s 3.27s
1k 2.53 ± 0.336s 3.30s
10k 6.24 ± 0.448s 13.6s
32k 13.8 ± 1.38s 41.2s

|Oj | = 100

500 4.768 ± 0.12s 3.27s
K-per- 1k 9.487 ± 0.92s 3.11s
centile 10k 97.515± 1.60s 18.6s

32k 321.285 ± 21.7s 48.8s

TABLE VI: Benchmark (adult dataset) of the PrivateHis-
tOrder, and Private k-Percentile. Values are averaged over
10 runs.

determined the parameters of the HElib based on the three
concerns.

1) To provide the desired security level.
2) To offer sufficient spaces of the CRT packing, i.e. `.
3) To operate the homomorphic rotation efficiently.

In our experiments, we used parameters shown in Table V.
These parameter sets offer at least 80-bit security level and
provide the number of slots up to several thousand. Moreover,
homomorphic rotation on these parameters is efficient. From
the implementation aspect, we choose m and tk so that
(PAlgebra is a C++ class in HElib)

PAlgebra::numOfGens() == 1
&& PAlgebra::SameOrd(0) == true

We refer to [8], [9], [26] for the homomorphic rotation.

Error Ratio. Our PrivatePCA and PrivateLR procedures
use iterative algorithms and fixed-precision values. It thus
introduces error. We write λ∗ and w∗ to denote the solutions to
the PCA and the LR, respectively. We write λ̂ and ŵ to denote
the outputs obtained from our PCA and LR procedures. We
define the error ratio of our procedures as follows.

Errorλ∗ =
|λ∗ − λ̂|
λ∗

Errorw∗ =
‖w∗ − ŵ‖2
‖w∗‖2

.

This error ratio definition enables us to estimate the loss
of accuracy. We experimentally studied the iteration-error
tradeoffs in Appendix A.

B. Experimental Results

We measured the time of procedure evaluation and time of
decryption of the results. We give the standard deviations only
for the evaluation time due to the space limitation. We remark

Attributes N Evaluation Decryption

|Cp| = 8, |Cq| = 6

500 35.69 ± 1.55s 3.84s
1k 68.42 ± 4.17s 7.45s
2k 155.26 ± 20.01s 14.83s
4K 287.02 ± 10.10s 30.00s

TABLE VII: Benchmark of the PCT-Suppresion procedures.
Values are averaged over 10 runs.

that standard deviations for decryption times were negligible
in our experiments.

Histogram Order & K-percentile. Table VI shows the
experimental results of the PrivateHistOrder and Priavte k-
Percentile procedures. For the histogram order (upper part),
we ran the experiments on two categories workclass and educa-
tion, which respectively consists of 8 and 16 attribute values.
The time of decryption increases linearly with respect to N
and it dominates the evaluation time when N is large. This is
because we needed to decrypt d(|Cj |2 ·N)/`e ciphertexts. The
decryption is totally parallelizable so it can be easily reduced
by using more cores.

For the k-percentile procedures, we conducted the exper-
iments with the ordinal attribute age from the adult dataset
and presumed that the domain size |Oj | = 100 (lower part of
Table VI). As long as n < ` (i.e., 1742), the time for download
and decryption were steady. When n > `, the decryption time
increased almost linearly with n. To reduce the response time,
the analyst can choose the parameters of BGV that offer a
larger `.

Contingency Table. Table VII shows the benchmarks of the
PCT-Suppression. We ran the experiments on two categories
workclass and relationship, which respectively consists of 8
and 6 attribute values. The time of evaluation and decryption
grow linearly with the number of data N , but this computation
is entirely parallelizable in our PCT-Suppression procedure.
We can easily accelerate this procedure with a higher level of
parallelism.

Most of the decryption time in the PCT-Suppression pro-
cedure is the time of decrypting the output of the bGT protocol
due to the suppression functionality, while the decryption time
in the PrivateContingencyTable procedure is independent of
the number of data N .

PCA & Linear Regression. We used three different magni-
fication constants M and three different iteration numbers T
to benchmark the PCA protocol (only for the first principal
component). The results are shown in Table VIIIa.

By applying the CRT-packing, the number of ciphertexts
to transfer and decrypt during the post-processing phase are
O(ddn/`e), which is independent of the number of records
N . As shown in Table VIIIa, the download and decryption
time were steady. It took less than three minutes to evaluate
one principal component with a low error ratio Errorλ∗ < 0.1
(i.e., T = 5, M = 1000 in Fig. 4a in Appendix A).

The experimental results of the LR protocol are shown
in Table VIIIb. We omit here the computation time for ob-
taining the largest eigenvalue λ1. Similarly, we benchmarked
the protocol in nine settings. For the same reason as for
the PCA protocol, the time to download and the time to
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M T K Evaluation Decryption
3 2 67.3 ± 4.89s 0.876s

10 4 3 99.9 ± 4.77s 0.848s
5 3 122 ± 2.63s 0.874s
3 3 70.6 ± 4.19s 0.848s

100 4 4 104 ± 7.68s 1.27s
5 4 128 ± 7.93 1.26s
3 3 72.7 ± 2.12s 0.96s

1000 4 4 108 ± 4.06s 1.25s
5 5 136 ± 5.67s 1.43s

(a) PCA (for the first principal component)

M T K Evaluation Decryption
1 1 173 ± 9.12s 0.475s

10 2 3 341 ± 8.12s 0.428s
3 5 672 ± 9.76s 0.618s
1 2 160 ± 3.97s 0.397s

100 2 4 400 ± 27.8s 0.649s
3 7 787 ± 10.5s 0.816s
1 2 164 ± 8.25s 0.388s

1000 2 4 383 ± 10.0s 0.622s
3 8 865 ± 11.7s 0.944s

(b) Linear Regression (the time of one call of PCA were
omitted)

TABLE VIII: Benchmarks of the PCA and LR protocol (adult dataset): M stands for the magnification constant; T denotes the
number of iterations. K is the expansion factor. Values are averaged over 10 runs.

Data set dn N PCA (eval/decrypt) LR (eval/decrypt)
adult 6 32561 141.21 / 2.36 872.82 / 1.59

autompg 7 398 149.80 / 1.82 950.93 / 1.47
wine-equality 12 4898 217.32 / 1.94 3543.76 / 1.68

forestfires 13 513 299.38 / 1.87 3757.99 / 1.59
communities 20 1994 472.98 / 1.86 10871.34 / 1.76

TABLE IX: Experimental results of the PCA and LR protocol
using UCI datasets. dn stands for the number of the numerical
attributes. The unit of time is the second.

decrypt the output from our LR protocol were negligible. The
matrix inversion converges quadratically. We thus achieved
a error ratio Errorw∗ < 10−3 within a few iterations (i.e.,
T = 3,M = 1000 in Fig 4b in Appendix A). For the
evaluation time, it took about 17 minutes to achieve this error
guarantee.

Extra Experiments for the Predictive Statistics. The extra
experimental results of the PCA protocol (the first principal
component only) and the LR protocol are shown in Table IX.
Here, we used M = 1000 and T = 3, and we listed the
evaluation time and decryption time. We can see that the
evaluation time of PCA protocol increases linearly with the
input dimension dn, while the evaluation time of the LR
procedure increases quadratically with dn.

VIII. CONCLUSIONS

We proposed to conduct privacy-preserving statistical anal-
ysis using fully homomorphic encryption. Also, we introduced
two building blocks, matrix operations of encrypted matrices
and a novel batch greater-than primitive. With the application
of these primitives, we show how to conduct the descriptive
and predictive statistics on FHE ciphertexts efficiently. We
experimentally demonstrated the utility of our procedures. For
example, it took us less than 20 minutes to conduct the model
building of a linear regression on about 30k data of 6 features
as input. We conclude that with applications of CRT-packing
and appropriate data encoding, securely conducting statistical
analysis on large-scale datasets using a fully homomorphic
encryption is becoming more and more practical.
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APPENDIX

A. Iteration-Error Tradeoffs

To study the tradeoffs between the computation time
(number of iterations) and the error ratio, we ran a grid-
search experiment on the adult dataset. Figure 4a presents the
tradeoffs for Errorλ∗ (the base of log is e). This plot enables us
to choose parameters for our system. Suppose the analyst seeks
an error ratio of approximately 10−2 with 3 digits preserved.
The plot indicates that he should use a magnifier that is larger
than 1000 for preserving the digits, and to use more than 6
iterations according to the observation that − log 10−2 ≈ 4.6.
Thereby, he requires a plaintext precision of more than 120
bits. In other words, if the moduli pk ≈ 236, the expansion
factor K > 3 is needed for plaintext precision expansion.

The convergence rate of DF-MatrixInversion depends on
the choice of λ, which is preferred to be the largest eigenvalue
of the inverse matrix. To demonstrate the effectiveness of our
system, we ran another grid-search experiment. In the second
grid-search experiment, we ran the regression protocol on
the adult dataset in plain, whereas we used the output from
our PCA protocol as λ. Similarly, the Figure 4b depicts the
tradeoffs for Errorw∗ . From the plot, it is apparent that even
with the approximated eigenvalue, our regression algorithm
works properly. Given the required error ratio and the number
of digits to preserve, the way to decide the expansion factor
K is similar to that in the PCA protocol.
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