
Automated Analysis of Privacy Requirements
for Mobile Apps

Sebastian Zimmeck∗◦, Ziqi Wang∗, Lieyong Zou∗, Roger Iyengar†◦, Bin Liu∗,
Florian Schaub‡◦, Shomir Wilson§◦, Norman Sadeh∗, Steven M. Bellovin¶ and Joel Reidenberg‖

∗School of Computer Science, Carnegie Mellon University, szimmeck@andrew.cmu.edu, sadeh@cs.cmu.edu
†Department of Computer Science and Engineering, Washington University in St. Louis

‡School of Information, University of Michigan
§Department of Electrical Engineering & Computing Systems, University of Cincinnati

¶Department of Computer Science, Columbia University
‖School of Law, Fordham University

Abstract—Mobile apps have to satisfy various privacy require-
ments. Notably, app publishers are often obligated to provide a
privacy policy and notify users of their apps’ privacy practices.
But how can a user tell whether an app behaves as its policy
promises? In this study we introduce a scalable system to help
analyze and predict Android apps’ compliance with privacy
requirements. We discuss how we customized our system in a
collaboration with the California Office of the Attorney General.
Beyond its use by regulators and activists our system is also meant
to assist app publishers and app store owners in their internal
assessments of privacy requirement compliance.

Our analysis of 17,991 free Android apps shows the viability
of combining machine learning-based privacy policy analysis with
static code analysis of apps. Results suggest that 71% of apps that
lack a privacy policy should have one. Also, for 9,050 apps that
have a policy, we find many instances of potential inconsistencies
between what the app policy seems to state and what the code
of the app appears to do. In particular, as many as 41% of
these apps could be collecting location information and 17%
could be sharing such with third parties without disclosing so in
their policies. Overall, each app exhibits a mean of 1.83 potential
privacy requirement inconsistencies.

I. I NTRODUCTION

“We do not ask for, track, or access any location-specific
information [...].” This is what Snapchat’s privacy policy
stated.1 However, its Android app transmitted Wi-Fi- and
cell-based location data from users’ devices to analytics
service providers. These discrepancies remained undetected
before they eventually surfaced when a researcher examined

◦Part of this work was conducted while Sebastian Zimmeck was a PhD student at
Columbia University working in Prof. Sadeh’s group at Carnegie Mellon University.
Roger Iyengar, Florian Schaub, and Shomir Wilson were all in Prof. Sadeh’s group at
Carnegie Mellon University while involved in this research project, Roger Iyengar as an
NSF REU undergraduate student, Florian Schaub as a post-doctoral fellow, and Shomir
Wilson as a project scientist.

1Complaint In the Matter of Snapchat, Inc. (December 31, 2014).

Snapchat’s data deletion mechanism. His report was picked
up by the Electronic Privacy Information Center and brought
to the attention of the Federal Trade Commission (FTC),
which launched a formal investigation requiring Snapchat to
implement a comprehensive privacy program.2

The case of Snapchat illustrates that mobile apps are
often non-compliant with privacy requirements. However, any
inconsistencies can have real consequences as they may lead
to enforcement actions by the FTC and other regulators. This
is especially true if discrepancies continue to exist for many
years, which was the case for Yelp’s collection of childrens’ in-
formation.3 These findings not only demonstrate that regulators
could benefit from a system that helps them identify potential
privacy requirement inconsistencies, but also that it would
be a useful tool for companies in the software development
process. This would be valuable because researchers found
that privacy violations often appear to be based on developers’
difficulties in understanding privacy requirements [7] rather
than on malicious intentions. Thus, for example, tools that
automatically detect and describe third-party data collection
practices may be helpful for developers [7]. Consequently, it is
a major motivation of our work to help companies identify red
flags before they develop into serious and contentious privacy
problems.

On various occasions, the FTC, which is responsible for
regulating consumer privacy on the federal level, expressed
dissatisfaction with the current state of apps’ privacy compli-
ance. Three times it manually surveyed childrens’ apps [28],
[29], [33] and concluded that the “results of the survey are
disappointing” [29]. Deviating from mandatory provisions,
many publishers did not disclose what types of data they
collect, how they make use of the data, and with whom the
data is shared [29]. A similar examination of 121 shopping
apps revealed that many privacy policies are vague and fail to
convey how apps actually handle consumers’ data [32]. Given
that the FTC limited its investigations to small samples of apps,
a presumably large number of discrepancies between apps and
their privacy policies remain undetected.

In this study we are presenting a privacy analysis sys-
tem for Android that checks data practices of apps against

2Decision and Order In the Matter of Snapchat, Inc. (December 31, 2014).
3United States of America v. Yelp, Inc. (September 17, 2014).

Permission to freely reproduce all or part of this paper for noncommercial purposes
is granted provided that copies bear this notice and the full citation on the first page.
Reproduction for commercial purposes is strictly prohibited without the prior written
consent of the Internet Society, the first-named author (for reproduction of an entire
paper only), and the author’s employer if the paper was prepared within the scope of
employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23034

privacy requirements derived from their privacy policies and
selected laws. Our work enables app publishers to identify
potentially privacy-invasive practices in their apps before they
are published. Moreover, our work can also aid governmental
regulators, such as the FTC, to achieve a systematic enforce-
ment of privacy laws on a large scale. App store owners,
researchers, and privacy advocates alike might also derive
value from our study. Our main contribution consists of the
novel combination of machine learning (ML) and static analy-
sis techniques to analyze apps’ potential non-compliance with
privacy requirements. However, we want to emphasize that we
do not claim to resolve challenges in the individual techniques
we leverage beyond what is necessary for our purposes. This
holds especially true for the static analysis of mobile appsand
its many unresolved problems, for example, in the analysis of
obfuscated code. That said, the details of our contributionare
as follows:

1) For a set of 17,991 Android apps we check whether
they have a privacy policy. For the 9,295 apps that have
one we apply machine learning classifiers to analyze
policy content based on a human-annotated corpus of
115 policies. We show, for instance, that only 46% of
the analyzed policies describe a notification process for
policy changes. (§ III).

2) Leveraging static analysis we investigate the actual data
practices occurring in the apps’ code. With a failure
rate of 0.4%, a mean F-1 score of 0.96, and a mean
analysis time of 6.2 seconds per app our approach makes
large-scale app analyses for legally relevant data practices
feasible and reliable. (§ IV).

3) Mapping the policy to the app analysis results we identify
and analyze potential privacy requirement inconsistencies
between policies and apps. We also construct a statistical
model that helps predict such potential inconsistencies
based on app metadata. For instance, apps with a Top
Developer badge have significantly lower odds for the
existence of potential inconsistencies. (§ V).

4) In collaboration with the California Office of the Attorney
General we performed a preliminary evaluation of our
system for use in privacy enforcement activities. Results
suggest that our system can indeed help their lawyers and
other users to efficiently analyze salient privacy require-
ments allowing them to prioritize their work towards the
most critical areas. (§ VI).

II. RELATED WORK

We leverage prior work in privacy policy analysis (§ II-A),
mobile app analysis (§ II-B), and their combination to identify
potential privacy requirement inconsistencies (§ II-C).

A. Privacy Policy Analysis

Privacy policies disclose an organization’s data practices.
Despite efforts to make them machine-readable, for instance,
via P3P [17], natural language policies are the de-facto stan-
dard. However, those policies are often long and difficult
to read. Few lay users ever read them and regulators lack
the resources to systematically review their contents. For
instance, it took 26 data protection agencies one week, working
together as the Global Privacy Enforcement Network (GPEN),
to analyze the policies of 1,211 apps [38]. While various works

aim to make privacy policies more comprehensible [34], there
is a glaring absence of an automated system to accurately
analyze policy content. In this study we aim for a solution. We
want to automate and scale the analysis of natural language
privacy policies. As of now, Massey et al. provided the most
extensive evaluation of 2,061 policies, however, not focusing
on their legal analysis but rather their readability and suitability
for identifying privacy protections and vulnerabilities from a
requirements engineering perspective [48]. In addition, Hoke
et al. [40] studied the compliance of 75 policies with self-
regulatory requirements, and Cranor et al. analyzed structured
privacy notice forms of financial institutions identifyingmulti-
ple instances of opt out practices that appear to be in violation
of financial industry laws [16].

Different from previous studies we analyze policies at a
large scale with a legal perspective and not limited to the
financial industry. We analyze whether policies are available,
as sometimes required by various laws, and examine their
descriptions of data collection and sharing practices. Forour
analysis we rely on the flexibility of ML classifiers [72] and
introduce a new approach for privacy policy feature selection.
Our work is informed by the study of Costante et al., who
presented a completeness classifier to determine which data
practice categories are included in a privacy policy [15]
and proposed rule-based techniques to extract data collection
practices [14]. However, we go beyond these works in terms
of both breadth and depth. We analyze a much larger policy
corpus and we focus on legal questions that have not yet
been automatically analyzed. Different from many existing
works that focus on pre-processing of policies, e.g. by using
topic modeling [13], [63] and sequence alignment [46], [55]
to identify similar policy sections and paragraphs, we are
interested in analyzing policy content.

Supervised ML techniques, as used in this study, require
ground-truth. To support the development of these techniques
crowdsourcing has been proposed as a viable approach for
gathering rich annotations from unstructured privacy poli-
cies [59], [68]. While crowdsourcing poses challenges due to
the policies’ complexity [56], assigning annotation tasksto
experts [72] and setting stringent agreement thresholds and
evaluation criteria [68] can in fact lead to reliable policy
annotations. However, as it is a recurring problem that privacy
policy annotations grapple with low inter-annotator agree-
ment [56], [72], we introduce a measure for analyzing their
reliability based on the notion that high annotator disagreement
does not principally inhibit the use of the annotations for ML
purposes as long as the disagreement is not systematic.

B. Mobile App Analysis

Different from the closest related works [22], [62], our
analysis of Android apps reflects the fundamental distinction
between first and third party data practices. Both have to
be analyzed independently as one may be allowed while the
other may not. First and third parties have separate legal
relationships to a user of an app. Among the third parties,
ad and analytics libraries are of particular importance. Gibler
et al. found that ad libraries were responsible for 65% of
the identified data sharing with the top four accounting for
43% [35]. Similarly, Demetriou et al. [18] explored their
potential reach and Grace et al. [39] their security and privacy

2

risks. They find that the most popular libraries have the biggest
impact on sharing of user data, and, consequently, our analysis
of sharing practices focuses on those as well. In fact, 75% of
apps’ location requests serve the purpose of sharing it withad
networks [44].

One of our contributions lies in the extension of various
app analysis techniques to achieve a meaningful analysis
of apps’ potential non-compliance with privacy requirements
derived from their privacy policies and selected laws. The core
functionality of our app analyzer is built on Androguard [20],
a static analysis tool. In order to identify the recipients of
data we create a call graph [35], [66] and use PScout [6],
which is comparable to Stowaway [26], to check whether an
app has the required permissions for making a certain Android
API call or allowing a library to make such. Our work takes
further ideas from FlowDroid [4], which targeted the sharing
of sensitive data, its refinement in DroidSafe [36], and the ded
decompiler for Android Application Packages (APKs) [23].
However, neither of the previous works is intended for large-
scale privacy requirement analysis.

Static analysis is ideally suited for large-scale analysis.
However, as it was recently shown [1], [45], it also has its lim-
itations. First, to the extent that the static analysis of Android
apps is limited to Java it cannot reach code in other languages.
In this regard, it was demonstrated that 37% of Android
apps contain at least one method or activity that is executed
natively (i.e., in C/C++) [1]. In addition to native code there is
another obstacle that was shown to make the static analysis of
Android apps challenging: code obfuscation. A non-negligible
amount of apps and libraries are obfuscated at the package or
code level to prevent reverse engineering [45]. Finally, static
analysis cannot be used to identify indirect techniques, such
as reflection, which often occurs in combination with native
code [1]. We will discuss how these limitations affect our study
in § IV-B.

C. Potential Privacy Requirement Inconsistencies

While mobile app analysis has received considerable at-
tention, the analysis results are usually not placed into a legal
context. However, we think that it is particularly insightful
to inquire whether the apps’ practices are consistent with
the disclosures made in their privacy policies and selected
requirements from other laws. The legal dimension is an
important one that gives meaning to the app analysis results.
For example, for apps that do not provide location services the
transfer of location data may appear egregious. Yet, a transfer
might be permissible under certain circumstances if adequately
disclosed in a privacy policy. Only few efforts have attempted
to combine code analysis of mobile apps with the analysis of
privacy policies, terms of service, and selected requirements.
Such analysis can identify discrepancies between what is
stated in a legal document and what is actually practiced in
reality. We are filling this void by identifying potential privacy
requirement inconsistencies through connecting the analyses
of apps, privacy policies, and privacy laws.

Various studies, e.g., [71], [70], demonstrated how to create
privacy documentation or even privacy policies from program
code. Other works focused on comparing program behavior
with non-legal texts. For example, Huang et al. proposed

AsDroid to identify contradictions between apps and user inter-
face texts [41]. Kong et al. introduced a system to infer security
and privacy related app behavior from user reviews [42]. Gorla
et al. [37] used unsupervised anomaly detection techniquesto
analyze app store descriptions for outliers, and Watanabe et
al. [66] used keyword-based binary classifiers to determine
whether a resource that an app accesses (e.g., location) is
mentioned in the app’s description.

Different from most previous studies we analyze apps’
behavior for potential non-compliance with privacy require-
ments derived from their privacy policies and selected laws. A
step in this direction was provided by Bhoraskar et al., who
found that 80% of ads displayed in apps targeted at children
linked to pages that attempt to collect personal information
in violation of the law [8]. The closest results to our study
were presented by Enck et al. [22] and Slavin et al. [62].
In an analysis of 20 apps Enck et al. found a total of 24
potential privacy law violations caused by transmission of
phone data, device identifiers, or location data [22]. Slavin
et al. proposed a system to help software developers detect
potential privacy policy violations [62]. Based on mappings of
76 policy phrases to Android API calls they discovered 341
such potential violations in 477 apps.

Our approach is inspired by TaintDroid [22] and similar
to the studies of Slavin et al. [62] and Yu et al. [69]. How-
ever, we move beyond their contributions. First, our privacy
requirements cover privacy questions previously not examined.
Notably, we address whether an app needs a policy and
analyze the policy’s content (i.e., whether it describes how
users are informed of policy changes and how they can access,
edit, and delete data). Different from Slavin et al. we also
analyze the collection and sharing of contact information.
Second, TaintDroid, is not intended to have app store wide
scale. Third, previous approaches do not neatly match to legal
categories. They do not distinguish between first and third
party practices [22], [62], do not take into account negative
policy statements (i.e., statements that an app doesnot collect
certain data, as, for example, in the Snapchat policy quotedin
§ I) [62], and base their analysis on a dichotomy of strong
and weak violations [62] unknown to the law. Fourth, we
introduce techniques that achieve a mean accuracy of 0.94
and a failure rate of 0.4%, which improve over the closest
comparable results of 0.8 and 21% [62], respectively.

III. PRIVACY POLICY ANALYSIS

In this section we present our automated large-scale ML
analysis of privacy policies. We discuss the law on privacy
notice and choice (§ III-A), our evaluation of how many apps
have a privacy policy (§ III-B), and the analysis of policy
content (§ III-C).

A. Privacy Notice and Choice

The privacy requirements analyzed here are derived from
selected laws and apps’ privacy policies. If a policy or app
does not appear to adhere to a privacy requirement, we define
a potential privacy requirement inconsistency to occur (which
we also refer to as potential inconsistency or non-compliance).
In this regard, we caution that a potential inconsistency does
not necessarily mean that a law is violated. First, not all privacy

3

Privacy Notice and Choice

Implementation

Notices

* IP, Android/Device ID, MAC, IMEI,

 Google Ad ID and Client ID, ...

** GPS, Cell Tower, Wi-Fi, ...

*** E-Mail, Phone Number, ...

Notices

Fig. 1: Per our privacy requirements, apps that process
Personally Identifiable Information (PII) need to (1) have a
privacy policy, (2-3) include notices about policy changesand
access, edit, and deletion rights in their policy, (4-6) notify
users of data collection practices, and (7-9) disclose how
data is shared with third parties. The notice requirements for
policy changes and access, edit, and deletion are satisfied by
including the notices in the policies while the collection and
sharing practices must be also implemented in the apps. We
consider collection and sharing implemented in an app if it
sends data to a first or third party server, respectively. Thus,
it is not enough if data is kept on the phone but never sent.

requirements might be applicable to all apps and policies.
Second, our system is based on a particular interpretation of
the law. While we believe that our interpretation is sound and
in line with the enforcement actions of the FTC and other
regulatory agencies, reasonable minds may differ.4 Third, our
system is based on machine learning and static analysis and,
thus, by its very nature errors can occur. Figure 1 provides
an overview of the law on notice and choice and the nine
privacy requirements that our system analyzes (Privacy Policy
Requirement, NPC, NAED, CID, CL, CC, SID, SL, SC).

As to the privacy policy requirement, there is no generally
applicable federal statute demanding privacy policies forapps.
However, California and Delaware enacted comprehensive
online privacy legislation that effectively serves as a national
minimum privacy threshold given that app publishers usually
do not provide state-specific app versions or exclude California
or Delaware residents. In this regard, the California Online
Privacy Protection Act of 2003 (CalOPPA) requires online
services that collect PII to post a policy.5 The same is true
according to Delaware’s Online Privacy and Protection Act
(DOPPA).6 In addition, the FTC’s Fair Information Practice
Principles (FTC FIPPs) call for consumers to be given notice
of an entity’s information practices before any PII is col-
lected [27]. Further, the Children’s Online Privacy Protection

4We are focusing on the US legal system as we are most familiar with it. However, in
principle, our techniques are applicable to any country with a privacy notice andchoice
regime.

5Cal. Bus. & Prof. Code§22575(a).
6Del. Code Tit. 6§1205C(a).

Act of 1998 (COPPA) makes policies mandatory for apps
directed to or known to be used by children.7 Thus, we treat
the existence of a privacy policy as a privacy requirement.

CalOPPA and DOPPA demand that privacy policies de-
scribe the process by which users are notified of policy
changes.8 COPPA also requires description of access, edit, and
deletion rights.9 Under the FTC FIPPs [27] as well as CalOPPA
and DOPPA those rights are optional.10 We concentrate our
analysis on a subset of data types that are, depending on
the context, legally protected: device IDs, location data,and
contact information. App publishers are required to disclose
the collection of device IDs (even when hashed) and location
data.11 Device IDs and location data are also covered by
CalOPPA12 and for childrens’ apps according to COPPA.13

The sharing of these types of information with third parties
requires consent as well.14 Our definition of sharing covers the
direct data collection by third parties from first party apps.15

Beyond device IDs and location data, contact information, such
as e-mail addresses, may be protected, too.16

It should be noted that we interpret ad identifiers to be PII
since they can be used to track users over time and across
devices. We are also assuming that a user did not opt out
of ads (because otherwise no ad identifiers would be sent to
opted out ad networks). We further interpret location data to
particularly cover GPS, cell tower, and Wi-Fi locations. We
assume applicability of the discussed laws and perform our
analysis based on the guidance provided by the FTC and
the California Office of the Attorney General (Cal AG) in
enforcement actions and recommendations for best practices
(e.g., [27] and [11]). Specifically, we interpret the FTC actions
as disallowing the omission of data practices in policies and
assume that silence on a practice means that it does not occur.17

Finally, we assume that all apps in the US Play store are
subject to CalOPPA and DOPPA.18 We believe this assumption
is reasonable as we are not aware of any US app publisher
excluding California or Delaware residents from app use or
providing state-specific app versions.

B. Privacy Policy Requirement

To assess whether apps fulfill the requirement of having
a privacy policy we crawled the Google Play store and
downloaded a sample (n = 17, 991) of free apps (full app
set).19 We started our crawl with the most popular apps and
followed random links on their Play store pages to other apps.
We included all categories in our crawl, however, excluded
Google’s Designed for Families program (as Google already

716 CFR§312.4(d).
8Cal. Bus. & Prof. Code§22575(b)(3), Del. Code Tit. 6§1205C(b)(3).
916 CFR§312.4(d)(3).
10Cal. Bus. & Prof. Code§22575(b)(2), Del. Code Tit. 6§1205C(a).
11In the Matter of Nomi Technologies, Inc. (September 3, 2015).
12Cal. Bus. & Prof. Code§22577(a)(6) and (7) [11].
1316 CFR§312.2(7) and (9).
14Complaint In the Matter of Goldenshores Technologies, LLC, and Erik M. Geidl

(April 9, 2014).
15Cal. Bus. & Prof. Code§22575(b)(6), Del. Code Tit. 6§1205C(b)(6).
16Complaint In the Matter of Snapchat, Inc. (December 31, 2014).
17Complaint In the Matter of Snapchat, Inc. (December 31, 2014).
18Cal. Bus. & Prof. Code§§22575–22579, Del. Code Tit. 6§1205C.
19Whenever we refer to the Google Play store we mean its US site. Details on the

various app and policy sets that we are using are described in Appendix A.

4

Apps have Policy link? Apps need policy?

No

Yes

No (PII not processed)

No (Policy Elsewhere)

Yes

17,991

9,295

0

48%

52%

8,696
12%

17%

71%

0

7,676

6,198

Fig. 2: We analyze 17,991 free apps, of which 9,295 (52%)
link to their privacy policy from the Play store (left). Out of
the remaining apps, 6,198 (71%) appear to lack a policy while
engaging in at least one data practice (i.e., PII is processed)
that would require them to have one (right).

requires apps in this program to have a policy) and Android
Wear (as we want to focus on mobile apps). We assume
that our sample is representative in terms of app categories,
which we confirmed with a two-sample Kolmogorov-Smirnov
goodness of fit test (two-tailed) against a sample of a million
apps [49]. We could not reject the null hypothesis that both
were drawn from the same distribution (i.e., p> 0.05).
However, while the Play store hosts a long tail of apps that
have fewer than 1K installs (56%) [49], we focus on more
popular apps as our sample includes only 3% of such apps.

Potential Privacy Policy Requirement Inconsistencies.Out
of all policies in the full app set we found thatn = 9, 295
apps provided a link to their policy from the Play store (full
policy set) andn = 8, 696 apps lacked such. As shown in
Figure 2, our results suggest that 71% (6,198/8,696) apps
without a policy link are indeed not adhering to the policy
requirement. We used the Play store privacy policy links as
proxies for actual policies, which we find reasonable since
regulators requested app publishers to post such links [30],
[11] and app store owners obligated themselves to provide the
necessary functionality [10]. The apps in the full app set were
offered by a total of 10,989 publishers, and their app store
pages linked to 6,479 unique privacy policies.

We arrive at 71% after making two adjustments. First,
if an app does not have a policy it is not necessarily non-
compliant with the policy requirement. After all, apps thatare
not processing PII are not obligated to have a policy. Indeed,
we found that 12% (1,020/8,696) of apps without a policy link
are not processing PII and, thus, accounted for those apps.
Second, despite the regulators’ requests to post policy links
in the Play store, some app publishers may still decide to
post their policy elsewhere (e.g., inside their app). To account
for that possibility we randomly selected 40 apps from our
full app set that did not have a policy link in the Play store
but processed PII. We found that 83% (33/40) do not seem
to have a policy posted anywhere (with a Clopper-Pearson
confidence interval (CI) ranging from 67% to 93% at the 95%

40%

50%

60%

70%

80%

90%

2010 2012 2014 2016
Last Update Year

%
 A

pp
s

w
/o

 P
ol

ic
y

Li
nk

May 2, 2015

March 15, 2015

January 23, 2015

May 13, 2015

December 31, 20150%

10%

20%

30%

40%

50%

500−1K 50K−100K 5M−10M
Number of Installs

%
 A

pp
s

w
/o

 P
ol

ic
y

Li
nk

Fig. 3: A linear regression model with the last app update year
as independent variable and the percentage of apps without a
policy link as dependent variable givesr2 = 0.79 (top). In
addition, a polynomial regression model using the number of
installs as independent variable results in a multipler2 = 0.9
(bottom).

level based on a two-tailed binomial test).20 Thus, accounting
for an additional 17% (1,478/8,696) of apps having a policy
elsewhere leaves us with100% − 12% − 17% = 71% out
of n = 8, 696 apps to be potentially non-compliant with the
policy requirement.

Predicting Potential Privacy Policy Requirement Inconsis-
tencies.As it appears that apps with frequent updates typically
have a policy, we evaluate this hypothesis on our full app set
using Pearson’s Chi square test of independence. Specifically,
it is our null hypothesis that whether an app has a policy is
independent from the year when it was most recently updated.
As the test returns p≤ 0.05, we can reject the null hypothesis
at the 95% confidence level. Indeed, as shown in the linear
regression model of Figure 3 (top), apps with recent update
years have more often a policy than those that were updated
longer ago. In addition to an app’s update year there are
other viable predictors. As shown in the polynomial regression
model of Figure 3 (bottom) the number of installs is insightful.
Apps with high install rates have more often a policy than apps
with average install rates (p≤ 0.05). Surprisingly, the same
is also true for apps with low install rates. An explanation
could be that those are more recent apps that did not yet
gain popularity. Indeed, apps with low install rates are on
average more recently updated than apps with medium rates.
For example, apps with 500 to 1K installs were on average
updated on March 15, 2015 while apps with 50K to 100K
installs have an average update date as of January 23, 2015.

Further, apps with an Editors’ Choice or Top Developer
badge usually have a policy, which is also true for apps that
offer in-app purchases. It is further encouraging that appswith
a content rating for younger audiences often have a policy.

20All CIs in this paper are based on a two-tailed binomial test and the Clopper-Pearson
interval at the 95% level.

5

Practice No. Ann Agpol % Agpol Fleisspol/Krippol

NPC 395 86/115 75% 0.64
NAED 414 80/115 70% 0.59
CID 449 92/115 80% 0.72
CL 326 85/115 74% 0.64
CC 830 86/115 75% 0.5
SID 90 101/115 88% 0.76
SL 51 95/115 83% 0.48
SC 276 85/115 74% 0.58

TABLE I: Absolute numbers of annotations (No. Ann) and
various agreement measures, specifically, absolute agree-
ments (Agpol), percentage agreements (% Agpol), Fleiss’ κ
(Fleisspol), and Krippendorff ’sα (Krippol). All agreement
measures are computed on the full corpus of 115 policies
and on a per-policy basis (e.g., for 92 out of 115 policies
the annotators agreed on whether the policy allows collection
of identifiers).

Most apps for Everyone 10+ (75%), Teen (65%), and Mature
17+ (66%) audiences have a policy while apps that have an
Everyone rating (52%) or are unrated (30%) often lack one.21

Further, various app categories are particularly susceptible for
not having a policy. Apps in the Comics (20%), Libraries
& Demo (10%), Media & Video (28%), and Personalization
(28%) categories have particularly low policy percentages, as
compared to an average of 52% of apps having a policy across
categories. Combining these predictors enables us to zoom
in to areas of apps that are unlikely to have a policy. For
instance, in the Media & Video category the percentage of
apps with a policy decreases from 28% for rated apps to 12%
for unrated apps. A similar decrease occurs in the Libraries&
Demo category from 10% to 8%.

C. Privacy Policy Content

We now move from examining whether an app has a policy
to the analysis of policy content (i.e., privacy requirements 2-9
in Figure 1). As a basis for our evaluation we use manually
created policy annotations.

1) Inter-annotator Agreement:For training and testing of
our policy classifiers we leverage the OPP-115 corpus [67]—a
corpus of 115 privacy policies annotated by ten law students
that includes 2,831 annotations for the practices discussed
in this study. The annotations, which are described in detail
in [67], serve as the ground-truth for evaluating our classifiers.
Each annotator annotated a mean of 34.5 policies (median 35).
We select annotations according to majority agreement (i.e.,
two out of three annotators agreed on it). As it is irrelevant
from a legal perspective how often a practice is described in
a policy, we measure whether annotators agree that a policy
describes a given practice at least once.

High inter-annotator agreement signals the reliability ofthe
ground-truth on which classifiers can be trained and tested.As
agreement measures we use Fleiss’κ and Krippendorff’sα,
which indicate that agreement is good above 0.8, fair between
0.67 and 0.8, and doubtful below 0.67 [47]. From our results
in Table I it follows that the inter-annotator agreement for
collection and sharing of device IDs with respective values

21Ratings follow the Entertainment Software Rating Board (ESRB) [24].

0.11

1

1

0.32

0.87

1

0.26

0.94

0.26

0.35

0.97

0.86

0.04

0.32

0.65

1

0.54

0.26

1

0.91

1

1

0.01

0.9

0.35

1

1

0.7

1

0.26

0.74

1

0.05

0.94

0.02

0.26

1

0.54

1

1

1

0.94

0.01

0.74

0.43

0.8

0.65

0.21

0.41

0.91

0.7

1

0.26

1

1

1

0.33

1

1

0.33

0.26

1

0.7

1

0.33

1

0.33

0.33

1

1

0.87

0.87

0.21

0.87

0.21

0.65

0.05

0.8

1

0.87Ann

Bea

Bob

Dan

Gil

Ira

Liv

Mae

Ray

Zoe

NPC (4.5) NAED (6.6) CID (5.1) CL (5.1) CC (6) SID (1.2) SL (1.8) SC (5.1)

0.25

0.50

0.75

1.00
p values

0.87

1

0.02

1

0.54

0.11

1

1

0.26

0.41

0.26

0.7

1

0.91

0.54

0.7

1

0.65

0.56

0.74

0.33

1

1

1

1

1

0.04

1

1

0.7

1

0

1

1

1

0.7

0.7

0.56

1

0.56

0.56

0.56

1

1

1

1

0.7

1

0.33

0.02

1

1

0.41

0.56

0.7

0.56

0.26

1

0.33

1

1

0

1

1

1

0.32

0.74

0.87

0.33

0.65

0.41

0.41

1

0.94

0.74

0.33

1

1

0.26

0.11Ann

Bea

Bob

Dan

Gil

Ira

Liv

Mae

Ray

Zoe

NPC (4.2) NAED (3.9) CID (1.8) CL (3.9) CC (2.7) SID (2.7) SL (4.2) SC (3.9)

0.25

0.50

0.75

1.00
p values

Fig. 4: Analysis of systematic disagreement among anno-
tators for the different data practices with binomial tests.
Larger p values mean fewer disagreements. If there are no
disagreements, we define p= 1. An annotator can be in
the minority when omitting an annotation that the two other
annotators made (top) or adding an extra annotation (bottom).
Our results show few instances of systematic disagreement.The
numbers in parentheses show the average numbers of absolute
disagreements per annotator for the respective practices.

of 0.72 and 0.76 is fair. However, it is below 0.67 for the
remaining classes. While we would have hoped for stronger
agreement, the annotations with the observed agreement levels
can still provide reliable ground-truth as long as the classifiers
are not misled by patterns of systematic disagreement, which
can be explored by analyzing the disagreeing annotations [57].

To analyze whether disagreements contain systematic pat-
terns we evaluate how often each annotator disagrees with the
other two annotators. If he or she is in a minority position
for a statistically significant number of times, there mightbe
a misunderstanding of the annotation task or other systematic
reason for disagreement. However, if there is no systematic
disagreement, annotations are reliable despite low agreement
levels [57]. Assuming a uniform distribution each annotator
should be in the minority in 1/3 of all disagreements. We
test this assumption with the binomial test for goodness of
fit. Specifically, we use the binomial distribution to calculate
the probability of an annotator beingx or more times in the
minority by adding up the probability of being exactlyx times
in the minority, beingx+1 times in the minority, up tox+n
(that is, being always in the minority), and comparing the result
to the expected probability of 1/3. We use a one-tailed test as
we are not interested in finding whether an annotator is fewer
times in the minority than in 1/3 of the disagreements.

As shown in Figure 4, we only found few cases with
systematic disagreement. More specifically, for 7% (11/160) of
disagreements we found statistical significance (p≤ 0.05) for
rejecting the null hypothesis at the 95% confidence level that
the disagreements are equally distributed. We see that nearly
half of the systematic disagreements occur for Gil. However,
excluding Gil’s and other affected annotations from the training

6

Practice Classifier Parameters
Base

(n=40)
Accpol
(n=40)

95% CI
(n=40)

Precneg

(n=40)
Recneg

(n=40)
F-1neg

(n=40)
F-1pos

(n=40)
Pos

(n=9,050)

NPC SVM RBF kernel, weight 0.7 0.9 0.76–0.97 0.79 0.92 0.85 0.93 46%
NAED SVM linear kernel 0.58 0.75 0.59–0.87 0.71 0.71 0.71 0.78 36%
CID Log. Reg. LIBLINEAR solver 0.65 0.83 0.67–0.93 0.77 0.71 0.74 0.87 46%
CL SVM linear kernel 0.53 0.88 0.73–0.96 0.83 0.95 0.89 0.86 34%
CC Log. Reg. LIBLINEAR, L2, weight 0.8 0.88 0.73–0.96 0.71 0.63 0.67 0.92 56%
SID Log. Reg. LBFGS solver, L2 0.88 0.88 0.73–0.96 0.94 0.91 0.93 0.55 10%
SL SVM linear kernel, weight 0.95 0.93 0.8–0.98 0.97 0.95 0.96 - 12%
SC SVM poly kernel (4 degrees) 0.73 0.78 0.62–0.89 0.79 0.93 0.86 0.47 6%

TABLE II: Classifiers, parameters, and classification results for thepolicy test set (n=40) and the occurrence of positive
classifications (Pos) in a set of n=9,050 policies (full app/policy set). We obtained the best results by always setting the
regularization constant toC = 1 and for NPC, CC, and SL adjusting weights inversely proportional to class frequencies
with scikit-learn’sclass_weight (weight). Except for the SL practice, all classifiers’ accuracies (Accpol) reached or exceeded
the baseline (Base) of always selecting the most often occurring class in the training set.Precneg, Recneg, and F-1neg are the
scores for the negative classes (e.g., data is not collectedor shared) while F-1pos is the F-1 score for positive classes.

1 def location_feature_extraction(policy):
2

3 data_type_keywords = [’geo’, ’gps’]
4 action_keywords = [’share’, ’partner’]
5 relevant_sentences = ’’
6 feature_vector = ’’
7

8 for sentence in policy:
9 for keyword in data_type_keywords:

10 if (keyword in sentence):
11 relevant_sentences += sentence
12

13 words = tokenize(relevant_sentences)
14 bigrams = ngrams(words,2)
15

16 for bigram in bigrams:
17 for keyword in action_keywords:
18 if (keyword in bigram):
19 feature_vector += bigram, bigram[0],

bigram[1]
20

21 return feature_vector

Listing 1: Pseudocode for the location sharing practice.

set for our classifiers had only little noticeable effect. For
some practices the classification accuracy slightly increased,
for others it slightly decreased. Thus, we believe that our
annotations are sufficiently reliable to serve as ground-truth
for our classifiers. As other works have already explored, low
levels of agreement in policy annotations are common and do
not necessarily reflect their unreliability [56], [72]. In fact,
different from our approach here, it could be argued that an
annotator’s addition or omission of an annotation is not a
disagreement with the others’ annotations to begin with.

2) Feature Selection:One of the most important tasks
for correctly classifying data practices described in privacy
policies is appropriate feature selection. Listing 1 showsa
simplified example of our algorithm for the location sharing
practice. Using information gain and tf-idf we identified the
most meaningful keywords for each practice and created sets
of keywords. One set of keywords refers to the data type of the
practices (e.g., for the location sharing practicegeo andgps)
and is used to extract all sentences from a policy that contain at
least one of the keywords. On these extracted sentences we are

using a second set of keywords that refers to the actions of a
data practice (e.g., for the location sharing practiceshare and
partner) to create unigram and bigram feature vectors [72].
Thus, for example, if the keyword “share” is encountered, the
bigrams “not share” or “will share” would be extracted if the
words before “share” are “not” and “will,” respectively. The
feature vectors created from bigrams (and unigrams) are then
used to classify the practices. If no keywords are extracted, the
classifier will select the negative class. We applied the Porter
stemmer to all processed text.

For finding the most meaningful features as well as for
the subsequent classifier tuning we performed nested cross-
validation with 75 policies separated into ten folds in the inner
loop and 40 randomly selected policies as held out test set
(policy test set). We used the inner cross-validation to select
the optimal parameters during the classifier tuning phase and
the held out policy test set for the final measure of classification
performance. We stratified the inner cross-validation to avoid
misclassifications due to skewed classes. After evaluatingthe
performance of our classifiers with the policy test set we added
the test data to the training data for the final classifiers to be
used in our large-scale analysis.

3) Classification: During the tuning phase we prototyped
various classifiers with scikit-learn [51], a Python library.
Support vector machines and logistic regression had the best
performance. We selected classification parameters individu-
ally for each data practice.

Classifier Performance for Policy Test Set.The classification
results for our policy test set, shown in Table II, suggest that the
ML analysis of privacy policies is generally feasible. For the
negative classifications our classifiers achieveF-1neg scores
between 0.67 and 0.96. These scores are the most important
measures for our task because the identification of a potential
privacy requirement inconsistency demands that a practice
occurring in an app isnot covered by its policy (§ V-A).
Consequently, it is less problematic that the sharing practices,
which are skewed towards the negative classes, have relatively
low F-1pos scores of 0.55 (SID) and 0.47 (SC) or could not
be calculated (SL) due to a lack of true positives in the policy
test set.

Classification Results for Full App/Policy Set.We applied
our classifiers to the policies in the full app/policy set with

7

Fig. 5: (1) Our system first crawls the US Google Play store for free apps. (2) Then, it performs for each app a static analysis.
Specifically, it applies permission extraction, call graphcreation, and call ID analysis, the latter of which is based on Android
system and third party APIs. (3) Finally, results for the collection and sharing practices are generated and stored.

n = 9, 050 policies. We obtained this set by adjusting our
full policy set (n = 9, 295) to account for the fact that
not every policy link might actually lead to a policy: for 40
randomly selected apps from our full policy set we checked
whether the policy link in fact lead to a policy, which was
the case for 97.5% (39/40) of links (with a CI of 0.87 to 1
at the 95% level). As the other 2.5%, that is, one link, lead
to some other page and would not contain any data practice
descriptions, we randomly excluded from the full policy set
2.5% = 245 of policies without any data practice descriptions
leaving us withn = 9, 295 − 245 = 9, 050 policies in the
full app/policy set. We emphasize that this technique does not
allow us to determine whether the 245 documents actually
did not contain a policy or had a policy that did not describe
any practices. However, in any case the adjustment increases
the occurrence of positive data practice instances in the full
app/policy set keeping discrepancies between apps and policies
at a conservative level as some apps for which the analysis did
not find any data practice descriptions are now excluded.22

It appears that many privacy policies fail to satisfy privacy
requirements. Most notably, per Table II, only 46% describe
the notification process for policy changes, a mandatory
requirement for apps under California and Delaware law.
Similarly, only 36% of policies contain a statement on user
access, edit, and deletion rights, which COPPA requires for
childrens’ apps, that is, apps intended for children or known
to be used by children. For the sharing practices we expected
more policies to engage in the SID, SL, and SC practices. The
respective 10%, 12%, and 6% are rather small percentages
for a presumably widely occurring practice, especially, given
our focus on policies of free apps that often rely on targeted
advertising.

Runtime Performance and Failure Rate. The analysis of
all practices for the policies in the full app/policy set required
about half an hour in total running ten threads in parallel onan
Amazon Web Services (AWS) EC2 instance m4.4xlarge with
2.4 GHz Intel Xeon E5-2676 v3 (Haswell), 16 vCPU, and 64
GiB memory [2]. The feature extraction took up the majority
of time and the training and classification finished in about
one minute. There was no failure in extracting policy features
or analyzing policies.

22We also checked the random sample of 40 apps for policies dynamically loaded via
JavaScript because for such policies the feature extraction would fail. We had observed
such dynamic loading before. However, as neither of the policies in the sample was
loaded dynamically, we do not make an adjustment in this regard.

IV. M OBILE APPANALYSIS

In order to compare our policy analysis results to what
apps actually appear to do we now discuss our app analysis
approach. We begin with our system design (§ IV-A) and
follow up with the system’s analysis results (§ IV-B).

A. App Analysis System Design

Our app analysis system is based on Androguard [20],
an open source static analysis tool written in Python that
provides extensible analytical functionality. Apart fromthe
manual intervention in the construction and testing phase,our
system’s analysis is fully automated. Figure 5 shows a sketch
of our system architecture. A brief example for sharing of
device IDs will convey the basic program flow of our data-
driven static analysis.

For each app our system builds an API invocation map,
which is utilized as a partial call graph (call graph creation).
To illustrate, for sharing of device IDs all calls to the
android.telephony.TelephonyManager.getDeviceId
API are included in the call graph because the caller can
use it to request a device ID. All calls to this and other
APIs for requesting a device ID are added to the graph and
passed to the identification routine (call ID analysis), which
checks the package names of the callers against the package
names of third party libraries to detect sharing of data. We
focus on a set of ten popular libraries, which are listed in
Table III.23 In order to make use of thegetDeviceId API a
library needs theREAD_PHONE_STATE permission. Only if the
analysis detects that the library has the required permission
(permission extraction), the app is classified as sharing device
IDs with third parties.24 We identified relevant Android API
calls for the types of information we are interested in and the
permission each call requires by using PScout [6].

Our static analysis is informed by a manual evaluation
of Android and third party APIs. Because sharing of data
most often occurs through third party libraries [23], we can
leverage the insight that the observation of data sharing for
a given library allows extension of that result to all apps

23The limitation on a small set of libraries allows us to manually analyze the library
functions freeing us from using resource-intensive data flow analysis techniques inour
app analysis. However, in principle, it is possible to include more libraries.

24Android’s permission model as of Android 6.0 does not distinguish between
permissions for an app and permissions for the app’s libraries, which, thus, canrequest
all permissions of the app.

8

3rd Party Library
Crashlytics/Fabric
Crittercism/Aptel.
Flurry Analytics
Google Analytics
Umeng
AdMob*
InMobi*
MoPub*
MillennialMedia*
StartApp*

TABLE III: Ad*
and analytics li-
braries.

Pract
Base

(n=40)
Accapp
(n=40)

95% CI
(n=40)

Precpos
(n=40)

Recpos
(n=40)

F-1pos

(n=40)
F-1neg

(n=40)
Posw/ pol

(n=9,295)
Posw/o pol

(n=8,696)
CID 0.8 0.9 0.76–0.97 0.89 1 0.94 0.67 95% 87%
CL 0.55 0.8 0.64–0.91 0.73 1 0.85 0.71 66% 49%
CC 0.78 1 0.91–1 1 1 1 1 25% 12%
SID 0.68 0.95 0.83–0.99 1 0.93 0.96 0.93 71% 62%
SL 0.93 1 0.91–1 1 1 1 1 20% 16%
SC 0.98 1 0.91–1 1 1 1 1 2% 0%

TABLE IV: App analysis results for the app test set (n=40) and the percentages of practices’
occurrences in the full app set (n=17,991). More specifically, Pos w/ pol and Pos w/o pol are
showing what percentage of apps engage in a given practice for the subset of apps in the full app set
with a policy (n=9,295) and without a policy (n=8,696), respectively. We measure precision, recall,
and F-1 score for the positive and negative classes with thepos and neg subscripts designating the
respective scores.

using the same library [35]. As the top libraries have the
farthest reach [35] we focus on those. We used AppBrain [3]
to identify the ten most popular libraries by app count that
process device ID, location, or contact data. To the extent
we were able to obtain them we also analyzed previous
library versions dating back to 2011. After all, apps sometimes
continue to use older library versions even after the library
has been updated. For each library we opened a developer
account, created a sample app, and observed the data flows
from the developer perspective. For these apps as well as
for a sample of Google Play store apps that implement the
selected libraries we additionally observed their behavior from
the outside by capturing and decrypting packets via a man-in-
the-middle attack and a fake certificate [54]. We also analyzed
library documentations. These exercises allowed us to evaluate
which data types were sent out to which third parties.

B. App Analysis Results

Performance Results for App Test Set.Before exploring the
analysis results for the full app set we discuss the performance
of our app analysis on a set of 40 apps (app test set), which
we selected randomly from the publishers in the policy test
set (to obtain corresponding app/policy test pairs for our
later performance analysis of potential privacy requirement
inconsistencies in§ V-A). To check whether the data practices
in the test apps were correctly analyzed by our system we
dynamically observed and decrypted the data flows from the
test apps to first and third parties, performed a manual static
analysis for each test app with Androguard [20], and studied
the documentations of third party libraries. Thus, for example,
we were able to infer from the proper implementation of a
given library that data is shared as explained in the library’s
documentation. We did not measure performance based on
micro-benchmarks, such as DroidBench [4], as those do not
fully cover the data practices we are investigating.

In the context of potential inconsistencies (§ V-A) correctly
identifying positive instances of apps’ collection and sharing
practices is more relevant than identifying negative instances
because only practices thatare occurring in an app need to be
covered in a policy. Thus, the results for the data practiceswith
rarely occurring positive test cases are especially noteworthy:
CC, SL, and SC all reachedF-1pos = 1 indicating that our
static analysis is able to identify positive practices evenif they
rarely occur. Further, the F-1pos scores, averaging to a mean

of 0.96, show the overall reliability of our approach. For all
practices the accuracy is also above the baseline of always
selecting the test set class that occurs the most for a given
practice. Overall, as shown in Table IV, our results demonstrate
the general reliability of our analysis.

Data Practice Results for Full App Set. For all six data
practices we find a mean of 2.79 occurring practices per app
for apps with policies and 2.27 occurrences for apps without
policies. As all practices need to be described in a policy per
our privacy requirements (§ III-A), it is already clear that there
are substantial amounts of potential inconsistencies between
apps and policies simply due to missing policies. For example,
the SID practice was detected in 62% of apps that did not
have a policy (Table IV), which, consequently, appear to be
potentially non-compliant with privacy requirements. Further-
more, for apps that had a policy only 10% disclosed the SID
practice (Table II) while it occurred in 71% of apps (Table IV).
Thus, 61% of those apps are potentially non-compliant in this
regard. The only practices for which we cannot immediately
infer the existence of potential inconsistencies are the CC
and SC practices with policy disclosures of 56% and 6% and
occurrences in apps of 25% and 2%, respectively. We can think
of two reasons for this finding.

First, there could be a higher sensitivity among app
publishers to notify users of practices related to con-
tact data compared to practices that involve device iden-
tifiers and location data. Publishers may categorize con-
tact data more often as PII. Second, different from de-
vice ID and location data, contact information is often pro-
vided by the user through the app interface bypassing the
APIs that we consider for our static analysis (most notably,
the android.accounts.AccountManager.getAccounts
API). Thus, our result demonstrates that the analysis approach
has to be custom-tailored to each data type and that the
user interface should receive heightened attention in future
works [62]. It also illustrates that our results only represent a
lower bound, particularly, for the sharing practices (SID,SL,
SC), which are limited to data sent to the ten publishers of the
libraries in Table III.

Limitations. There are various limitations of our static anal-
ysis. At the outset our approach is generally subject to the
same limitations that all static analysis techniques for Android
are facing, most notably, the difficulties of analyzing native

9

Practice
Acc

(n=40)
Accpol· Accapp

(n=40)
95% CI
(n=40)

Precpos
(n=40)

Recpos
(n=40)

F-1pos

(n=40)
F-1neg

(n=40)
MCC

(n=40)
TP, FP, TN, FN

(n=40)
Inconsistent
(n=9,050)

CID 0.95 0.74 0.83–0.99 0.75 1 0.86 0.97 0.84 6, 2, 32, 0 50%
CL 0.83 0.7 0.67–0.93 0.54 1 0.7 0.88 0.65 8, 7, 25, 0 41%
CC 1 0.88 0.91–1 - - - 1 - 0, 0, 40, 0 9%
SID 0.85 0.84 0.7–0.94 0.93 0.74 0.82 0.87 0.71 14, 1, 20, 5 63%
SL 1 0.93 0.91–1 1 1 1 1 1 3, 0, 37, 0 17%
SC 1 0.78 0.91–1 1 1 1 1 1 1, 0, 39, 0 2%

TABLE V: Results for identifying potential privacy requirement inconsistencies in the app/policy test set (n=40) and the
percentage of such potential inconsistencies for all 9,050app/policy pairs (Inconsistent). Assuming independence of policy
and app accuracies, Accpol· Accapp, that is, the product of policy analysis accuracy (Table II)and app analysis accuracy
(Table IV), indicates worse results than the directly measured accuracy. The Matthews correlation coefficient (MCC), which is
insightful for evaluating classifiers in skewed classes, indicates a positive correlation between observed and predicted classes.

code, obfuscated code, and indirect techniques (e.g., reflec-
tion). However, there are various considerations that ameliorate
exposure of our approach to these challenges. First, if an
app or a library uses native code, it cannot hide its access
to Android System APIs [35]. In addition, the use of native
code in ad libraries is minimal [45]. Indeed, we have rarely
encountered native code in our analysis. Similarly, the need to
interact with a variety of app developers effectively prohibits
the use of indirect techniques [9]. However, code obfuscation
in fact presents an obstacle. Our static analysis failed in 0.4%
(64/18,055) of all cases due to obfuscation (i.e., an app’s
Dex file completely in bytecode). However, our failure rate
improves over the closest comparable rate of 21% [62].

It is a further limitation of our approach that the identifica-
tion of data practices occurs from the outside (e.g., server-side
code is not considered). While this limitation is not a problem
for companies’ analysis of their own apps, which we see as
a major application of our approach, it can become prevalent
for regulators, for instance. In many cases decrypting HTTPS
traffic via a man-in-the-middle attack and a fake certificatewill
shed some light. However, it appears that some publishers are
applying encryption inside their app or library. In those cases,
the analysis will need to rely on inferring the data practicein
question indirectly. For example, it remains possible to check
whether a library is properly implemented in an app according
to the library’s documentation, which lends evidence to the
inference that the app makes use of the documented practices.

Also, our results for the sharing practices only refer to
the ten third parties listed in Table III. The percentages for
sharing of contacts, device IDs, or locations would almost
certainly be higher if we would consider additional libraries.
In addition, our definition of sharing data with a third party
only encompasses sharing data with ad networks and analytics
libraries. However, as it was shown that ad libraries are the
recipients of data in 65% of all cases [35], we believe that this
definition covers a substantial portion of sharing practices. It
should be finally noted that our investigation does not include
collection or sharing of data that occurs through user input,
offline, or at app servers’ backends. However, as our analysis
already identifies a substantial percentage of potentiallynon-
compliant apps, we think that there is value in our techniques
even with these limitations.

Runtime Performance. In terms of runtime performance,
using ten threads in parallel on an AWS EC2 instance

m4.10xlarge with 2.4 GHz Intel Xeon E5-2676 v3 (Haswell),
40 vCPU, and 160 GiB memory [2] the analysis of all 17,991
APKs took about 31 hours. The mean runtime is 6.2 seconds
per APK analysis.

V. I DENTIFYING POTENTIAL INCONSISTENCIES

In this section we unite our policy (§ III) and app (§ IV)
analyses. We explore to which extent apps are potentially non-
compliant with privacy requirements (§ V-A) and show how
app metadata can be used to zoom in on sets of apps that have
a higher likelihood of non-compliance (§ V-B).

A. Potential Inconsistencies in Individual App/Policy Pairs

Potential Inconsistencies from a Developer’s Perspective.
As the results of a survey among app developers suggest a
lack of understanding privacy-best practices [7], it couldbe
that many of the potential inconsistencies we encountered
are a consequence of this phenomenon as well. Especially,
many developers struggle to understand what type of data
third parties receive, and with limited time and resources even
self-described privacy advocates and security experts grapple
with implementing privacy and security protections [7]. Inthis
regard, our analysis approach can provide developers with a
valuable indicator for instances of potential non-compliance.
For identifying potential inconsistencies positive app classes
and negative policy classes are relevant. In other words, ifa
data practice does not occur in an app, it does not need policy
coverage because there can be no inconsistency to begin with.
Similarly, if a user is notified about a data practice in a policy,
it is irrelevant whether the practice is implemented in the app
or not. Either way, the app is covered by the policy. Based on
these insights we analyze the performance of our approach.

Performance Results for App/Policy Test Set.To evaluate the
performance of our system for correctly identifying potential
privacy requirement inconsistencies we use a test set with
corresponding app/policy pairs (app/policy test set). Theset
contains the 40 random apps from our app test set (§ IV-B)
and their associated policies from our policy test set (§ III-C3).
We associate an app and a policy if the app or its Play store
page links to the policy or if the policy explicitly declares
itself applicable to mobile apps. As only 23 policies satisfy this
requirement some policies are associated with multiple apps.
As shown in Table V, accuracy results range between 0.83
and 1 with a mean of 0.94. Although not fully comparable,

10

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6
Number of Potential Privacy Requirement Inconsistencies

D
en

si
ty

0

500

1K

1.5K

2K

No. of Apps

Fig. 6: For the full app/policy set (n = 9,050) we found that
2,455 apps have one potential inconsistency, 2,460 have two,
and only 1,461 adhere completely to their policy. Each app
exhibits a mean of 1.83 (16,536/9,050) potential inconsisten-
cies (with the following means per data practice: CID: 0.5,
CL: 0.41, CC: 0.09, SID: 0.63, SL: 0.17, SC: 0.02).

AsDroid achieved an accuracy of 0.79 for detecting stealthy
behavior [41] and Slavin et al. [62] report an accuracy of
0.8 for detecting discrepancies between app behavior and
policy descriptions. For the 240 classification instances in the
app/policy test set—that is, classifying six practices for each
of the 40 app/policy pairs—our system correctly identified
32 potential inconsistencies (TP). It also returned five false
negatives (FN), 10 false positives (FP), and 193 true negatives
(TN).25

The F-1pos scores for our analysis, ranging from 0.7
to 1, indicate the overall reliable identification of potential
inconsistencies. While we think that these results are generally
promising, we obtain a relatively low precision value of
Precpos = 0.54 for the CL practice and for the CID practice
we had hoped for a higher precision thanPrecpos = 0.75 as
well. These results illustrate a broader point that is applicable
beyond those practices. False positives seem to occur because
our analysis takes into account too many APIs that are only
occasionally used for purposes of the data practice in question.
Despite our belief that it is better to err on the side of false
positives, which is especially true for an auditing system [35],
in hindsight we probably would have left out some APIs.
The opposite problem seems to occur in the SID practice. We
included too few relevant APIs. In this regard, we acknowledge
the challenge of identifying a set of APIs that captures the bulk
of cases for a practice without being over- or under-inclusive.

Potential Inconsistencies for Full App/Policy Set.As indi-
cated by the high percentages shown in Table V, we identified
potential inconsistencies on a widespread basis. Specifically,
collection of device IDs and locations as well as sharing of
device IDs are practices that are potentially inconsistentfor
50%, 41%, and 63% of apps, respectively. However, given the
relatively low precision and high recall for these practices, we
caution that their percentages might be an overestimation.It
is further noteworthy that for sharing of location and contact
information nearly every detection of the practices goes hand
in hand with a potential inconsistency. For the apps that share
location information (20%, per Table IV) nearly all (17%, per
Table V) do not properly disclose such sharing. Similarly, for
the 2% of apps that share contact data only a handful provide
sufficient disclosure.

25Appendix B describes details of calculating true and false positives and negatives.

Variable Pos p value OR 95% CI
No. User Ratings 100% 0.0001 0.9 0.9999998–0.9
Overall Score 100% <0.0001 1.4 1.24–1.57
Badge 21% <0.0001 0.57 0.49–0.65
In-app Purchases 27% 0.08 1.15 0.99–1.34
Interactive Elm 45% <0.0001 1.33 1.17–1.53
Content Unrated 5% 0.002 0.68 0.53–0.87

TABLE VI: Significant variables for predicting apps’ potential
non-compliance with at least one privacy requirement as eval-
uated on our full app/policy set (n=9,050). Top Developer and
Editor’s Choice badges are assigned by Google. Interactive
elements and unrated content refer to the respective ESRB
classifications [24]. Pos designates the percentages of positive
cases (e.g., 100% apps have an overall score), OR is the odds
ratio, and the 95% CI is the profile likelihood CI.

The average number of 1.83 potential inconsistencies per
app is high compared to the closest previous averages with
0.62 (113/182) cases of stealthy behavior [41] and potential
privacy violations of 1.2 (24/20) [22] and 0.71 (341/477) [62].
Figure 6 shows details of our results. In this regard, it should
be noted that for apps without a policy essentially every data
collection or sharing practice causes a potential inconsistency.
For example, all 62% apps without a policy that share device
IDs (Table IV) are potentially non-compliant. Thus, overall our
results suggest a broad level of potential inconsistency between
apps and policies.26

B. Potential Inconsistencies for Groups of App/Policy Pairs

Analyzing individual apps for potential non-compliance at
scale is a resource-intensive task. Thus, it is worthwhile to
first estimate an app population’s potential non-compliance
as a whole before performing individual app analyses. Our
suggestion is to systematically explore app metadata for cor-
relations with potential inconsistencies based on statistical
models. This broad macro analysis supplements the individual
app analysis and reveals areas of concern on which, for
example, privacy activists can focus on. To illustrate thisidea
we evaluate a binary logistic regression model that determines
the dependence of whether an app has a potential inconsistency
(the dependent variable) from six Play store app metadata
variables (the independent variables). Our results, shownin
Table VI, demonstrate correlations at various statisticalsig-
nificance levels with p values ranging from 0.0001 to 0.08.
Particularly, with an increase in the number of user ratingsthe
probability of potential inconsistencies decreases. There is also
a decreasing effect for apps with a badge and for apps whose
content has not yet been rated.

Interestingly, apps with higher overall Google Play store
scores do not have lower odds for potential inconsistencies.
In fact, the opposite is true. With an increase in the overall
score the odds of a potential inconsistency become higher.
An increase of the overall score by one unit, e.g., from 3.1
to 4.1 (on a scale of 1 through 5), increases the odds by
a factor of 1.4. A reason could be that highly rated apps
provide functionality and personalization based on user data,

26As we are evaluating our system for use in privacy enforcement activities (§ VI) we
decided to abstain from contacting any affected app publishers of our findings.

11

0.70

0.75

0.80

0.85

0 250K 500K 750K 1M

Number of User Ratings

P
re

d
ic

te
d

 P
ro

b
a

b
ili

ty

Badge

No

Yes

Fig. 7: In our logistic model the predicted probability of an app
having a potential inconsistency is dependent on the number
of user ratings and assignment of a badge. The overall score is
held at the mean and in-app purchases, interactive elements,
and unrated content are held to be not present. The shaded
areas identify the profile likelihood CIs at the 95% level.

whose processing is insufficiently described in their privacy
policies. Also, users do not seem to rate apps based on
privacy considerations. We found the word “privacy” in only
1% (220/17,991) of all app reviews. Beyond an app’s score,
the odds for a potential inconsistency also increase for apps
that feature in-app purchases or interactive elements. Also,
supplementing our model with category information reveals
that the odds significantly (p≤ 0.05) surge for apps in the
Finance, Health & Fitness, Photography, and Travel & Local
categories while they decrease for apps in the Libraries &
Demo category.

In order to evaluate the overall model fit based on statistical
significance we checked whether the model with independent
variables (omitting the category variables) had significantly
better fit than a null model (that is, a model with the intercept
only). The result of a Chi square value of 151.03 with six
degrees of freedom and value of p≤ 0.001 indicates that our
model has indeed significantly better fit than the null model.To
see the impact of selected aspects of the model it is useful to
illustrate the predicted probabilities. An example is contained
in Figure 7. Apps with a Top Developer or Editor’s Choice
badge have a nearly 10% lower probability of a potential
inconsistency. That probability further decreases with more
user ratings for both apps with and without badge.

VI. CASE STUDY: EVALUATING OUR SYSTEM FORUSE
BY THE CAL AG

We worked with the Cal AG, to evaluate our system’s capa-
bilities for supplementing the enforcement of CalOPPA [12].
To that end, we implemented a custom version of our system
(§ VI-A) and added various new analysis features (§ VI-B).
The feedback we received is encouraging and confirms that
our system could enable regulators to achieve more systematic
enforcement of privacy requirements (§ VI-C).27

A. System Implementation

As shown in Figure 8, we implemented our system for the
Cal AG as a web application. It allows users to request analyses
for individual apps and also supports batch processing. For

27We continue our work with the Cal AG beyond this study and expect furtherresults.

Fig. 8: Our system allows users to analyze apps for potential
privacy requirement non-compliance. An app can be subject to
multiple privacy policies—for example, one policy from inside
the app and one from the app’s Play Store page. In these cases
the app is checked against multiple policies.

scalability reasons we chose to leverage AWS EC2 t2.large
instances with up to 3.0 GHz Intel Xeon, 2 vCPU, and 8 GiB
memory [2].

The system’s graphical user interface applies the Flask
Python web framework [58] running on an Apache web
server [64] with Web Server Gateway Interface module [21].
All analysis requests are added to a Celery task queue [5],
which communicates with the Flask application using the
RabbitMQ message broker [52]. Once an analysis is finished
the results are loaded by the Flask application and displayed
in the users’ browsers.

Similar as in our original system, all APKs are downloaded
via Raccoon [50] and apps’ privacy policy links are retrieved
from their respective Play store pages. However, in order to
download the websites that the links are leading to we auto-
mated a Firefox browser with Selenium [60] and PyVirtualD-
isplay [53]. Using a real browser instead of simply crawling
the HTML of the privacy policy pages is advantageous as it
can obtain policies that are loaded dynamically via JavaScript.

12

After the website with the privacy policy is downloaded
any elements that are not part of the policy, such as page
navigation elements, are removed. The system then runs our
feature extraction routines (§ III-C2) as well as ML classifiers
(§ III-C3) on the policy and the static analysis (§ IV) on the
downloaded APK. Finally, the results are displayed to the user
with flags raised for potential inconsistencies.

B. Additional Functionality

We placed high emphasis on usability from both a legal
and human-computer interaction perspective. Notably, in some
cases the Cal AG users were interested in receiving additional
information. For instance, one additional piece of information
was the breakdown of third parties in the sharing practices.
The initial version of our system’s report simply showed
that the user’s contact and device ID were shared, however,
without disclosing that those were shared with, say, InMobi
and Crashlytics. Distinguishing which type of informationis
shared with which third party is important under CalOPPA
because the sharing of contact information makes a stronger
case than the sharing of device IDs, for example.28

Given its importance we implemented additional contact
information functionality. Because we believe that the rela-
tively low detection rate for the collection and sharing of
contact information (§ V-A) is due to the fact that such
information is often manually entered by the user or obtained
via other sources, we enhanced our system in this regard.
Particularly, we leveraged the Facebook Login library that
gives apps access to a user’s name and Facebook ID [25].
The system detects the usage of the Facebook Login library in
an app by extracting the app’s manifest and resource files with
Apktool [65] and then searching for signatures required forthe
Facebook Login to work properly. These include an activity or
intent filter dedicated to the Login interface, a Login button in
the layout, and the invocation of an initialization, destruction,
or configuration routine.

Another feature that we added is the download of privacy
policies linked to from within apps. Our initial policy crawler
was limited to downloading policies via an app’s Play store
page. As the Cal AG provided guidance to app publishers
for linking to the policy from both the Play store and from
within an app [11], our new approach is intended to cover both
possibilities. The system finds the links in an app by extracting
strings from the APK file using Apktool and then extracting
URLs from within these strings that contain relevant keywords,
such as “privacy.” If a policy link inside an app differs fromthe
app’s Play store policy link or if there are multiple policy links
identified within an app, our system downloads and analyzes
all documents retrieved from these links.

C. System Performance

The Cal AG users reported that our system has the potential
to significantly increase their productivity. Particularly, as they
have limited resources it can give them guidance on certain
areas, e.g., categories of apps, to focus on. They can also put
less effort and time into analyzing practices in apps for which

28Compare Cal. Bus. & Prof. Code§22577(a)(3), according to which an e-mail address
by itself qualifies as PII, and§22577(a)(7), which covers information types that only
qualify as PII in combination with other identifiers.

Pract
Acc

(n=20)
Precpos
(n=20)

Recpos
(n=20)

F-1pos

(n=20)
Inconsistent

(n=20)
CID 0.85 0.5 1 0.67 15%
CL 0.75 0.38 1 0.55 15%
CC 0.95 1 0.75 0.86 15%
SID 0.95 0.94 1 0.97 75%
SL 0.9 0.75 1 0.86 30%
SC 1 - - - 0%

TABLE VII: Classification results for the Cal AG app/policy
set (n=20).

our system does not find potential inconsistencies. Instead,
they can concentrate on examining apps for which flags were
raised. In addition, the Cal AG users expressed that our system
was useful for estimating the current overall state of CalOPPA
compliance. For example, the analysis results alerted themof
some app policies that use vague language in the descriptions
of their collection and sharing practices.

We evaluated our system implementation for the Cal AG
on a random sample of 20 popular Play store apps and their
associated policies (Cal AG app/policy set). We asked the Cal
AG users to give us their interpretations of the policies and
used these to evaluate the results of our system. As shown
in Table VII, it appears that the Facebook Login functionality
is able to identify the contact information collection practice
fairly reliably. Obviously, the results are limited to a small
number of 20 app/policy pairs. Further, our system achieves
high recall overall. It performs well on identifying the absence
of potential inconsistencies. At the same time, similar to
our results in§ V-A, we find a non-negligible number of
false positives. Particularly, we observe a precision of 0.5
for collection of device IDs and 0.38 for locations. However,
despite these low precision values, the high recall values
suggest that our system is unlikely to miss many potential
inconsistencies. Rather, upon closer manual inspections some
of those will prove to be false alarms.

VII. F UTURE DIRECTIONS

The law of notice and choice is intended to enable en-
forcement of data practices in mobile apps and other online
services. However, verifying whether an app actually behaves
according to the law and its privacy policy is decisively hard.
To alleviate this problem we propose the use of an automated
analysis system based on machine learning and static analysis
to identify potential privacy requirement inconsistencies. Our
system advances app privacy in three main areas: it increases
transparency for otherwise largely opaque data practices,offers
the scalability necessary for potentially making an impacton
the app eco-system as a whole, and provides a first step towards
automating mobile app privacy compliance analysis.

Our results suggest the occurrence of potential privacy
requirement inconsistencies on a large scale. However, the
possibilities of the techniques introduced here have yet tobe
fully explored. For example, the privacy policy analysis can
be further developed to capture nuances in policy wording—
possibly by leveraging the structure of policies (e.g., by
identifying definitions of PII and where those are referenced
in a policy). Similarly, the accuracy of the app analysis could
be enhanced by integrating data flow analysis techniques.
However, for performance reasons resources should be used

13

sparingly. A practical system for the purpose of large-scale
app analysis necessarily remains relatively lightweight.

The findings in this study raise the question of extending
our approach to other areas. We believe, the principles could
be used in analyzing website practices, e.g., by leveraging
the work of Sen et al. [61]. First and third party cookies
and other tracking mechanisms could be observed to evaluate
collection and sharing of data. Implementing our approach
in other mobile platforms, particularly, iOS, is likely more
challenging. Notably, the difficulty of decompiling iOS apps
might necessitate a dynamic app analysis approach [19], [43].
The web interface of Apple’s App Store also does not seem
to provide app pages with a standardized privacy policy link
field. However, these challenges would not need to be resolved
for the integration of a privacy requirement analysis into iOS
software development tools.

We think that it is necessary to develop the proposed
privacy requirement analysis in tandem with public policy and
law. Regulators are currently pushing for app store standardiza-
tion [10] and early enforcement of potentially non-compliant
privacy practices [31]. Approaches like the one proposed here
can relieve regulators’ workloads through automation allowing
them to focus their limited resources to move from a purely
reactionary approach towards systematic oversight. As we
also think that many software publishers do not intend non-
compliance with privacy requirements, but rather lose track of
their obligations or are unaware of them, we also see potential
for implementing privacy requirement analyses in software
development tools and integrating them into the app vetting
process in app stores.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
comments on the draft of this study. We are also grateful for the
insights provided by our Cal AG collaborators Justin Erlich,
Cassidy Kim, Stacey Schesser, TiTi Nguyen, Joanne McN-
abb, Sarah Dalton, Jeremy AronDine, and Sundeep Pattem.
We further thank our academic collaborators Aswarth Dara,
Peter Story, Mads Schaarup Andersen, Amit Levy, Vaggelis
Atlidakis, and Jie SB Li. This study was supported in part
by the NSF under grants CNS-1330596, CNS-1330214, and
SBE-1513957, as well as by DARPA and the Air Force
Research Laboratory, under agreement number FA8750-15-
2-0277. The US Government is authorized to reproduce and
distribute reprints for Governmental purposes not withstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA, the Air
Force Research Laboratory, the NSF, or the US Government.

REFERENCES

[1] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupe, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna, “Going native: Using a large-scale analysis of android
apps to create a practical native-code sandboxing policy,” inNDSS ’16. ISOC.

[2] Amazon, “Amazon EC2 instance types,” https://aws.amazon.com/ec2/instance-typ
es/, accessed: Dec 19, 2016.

[3] AppBrain, “Android library statistics,” http://www.appbrain.com/stats/libraries/,
accessed: Dec 19, 2016.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” inPLDI ’14. ACM.

[5] Ask Solem & Contributors, “Celery - distributed task queue,” http://docs.celerypr
oject.org/en/latest/, accessed: Dec 19, 2016.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the android
permission specification,” inCCS ’12. ACM.

[7] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. F. Cranor, “The privacy and security
behaviors of smartphone app developers,” inUSEC ’14.

[8] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R. Wang,
and D. Wetherall, “Brahmastra: Driving apps to test the security of third-party
components,” inUSENIX Security ’14. USENIX Assoc.

[9] T. Book and D. S. Wallach, “A case of collusion: A study of the interface between
ad libraries and their apps,” inSPSM ’13. ACM.

[10] California Department of Justice, “Attorney General Kamala D. Harris se-
cures global agreement to strengthen privacy protections for users of mo-
bile applications,” http://www.oag.ca.gov/news/press-releases/attorney-general-ka
mala-d-harris-secures-global-agreement-strengthen-privacy, Feb. 2012, accessed:
Dec 19, 2016.

[11] ——, “Making your privacy practices public,” https://oag.ca.gov/sites/all/files/
agweb/pdfs/cybersecurity/makingyour privacy practicespublic.pdf, May 2014,
accessed: Dec 19, 2016.

[12] ——, “Attorney General Kamala D. Harris launches new tool to help
consumers report violations of California Online Privacy Protection Act
(CalOPPA),” https://oag.ca.gov/news/press-releases/attorney-general-kamala-d-ha
rris-launches-new-tool-help-consumers-report, Oct. 2016, accessed: Dec 19, 2016.

[13] P. Chundi and P. M. Subramaniam, “An Approach to Analyze Web Privacy Policy
Documents,” inKDD Workshop on Data Mining for Social Good, 2014.

[14] E. Costante, J. den Hartog, and M. Petkovic, “What websites know about you:
Privacy policy analysis using information extraction,” inData Privacy Management
’13. Springer.

[15] E. Costante, Y. Sun, M. Petković, and J. den Hartog, “A machine learning solution
to assess privacy policy completeness,” inWPES ’12. ACM.

[16] L. F. Cranor, K. Idouchi, P. G. Leon, M. Sleeper, and B. Ur, “Are they actually
any different? comparing thousands of financial institutions’ privacy practices,” in
WEIS ’13.

[17] L. F. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. M.
Reagle, “The Platform for Privacy Preferences 1.0 (P3P1.0) specification,” World
Wide Web Consortium, Recommendation REC-P3P-20020416, April 2002.

[18] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. Gunter, “Free for all!
assessing user data exposure to advertising libraries on android,” inNDSS ’16.
ISOC.

[19] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iRiS: Vetting privateapi abuse
in iOS applications,” inCCS ’15. ACM.

[20] A. Desnos, “Androguard,” http://doc.androguard.re/html/index.html, accessed:
Dec 19, 2016.

[21] G. Dumpleton, “Modwsgi,” https://modwsgi.readthedocs.io/en/develop/, accessed:
Dec 19, 2016.

[22] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, andA. N. Sheth,
“TaintDroid: An information-flow tracking system for realtime privacy monitoring
on smartphones,” inOSDI ’10. USENIX Assoc.

[23] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android
application security,” inUSENIX Security ’11. USENIX Assoc.

[24] ESRB, “ESRB ratings guide,” http://www.esrb.org/ratings/ratingsguide.aspx, ac-
cessed: Dec 19, 2016.

[25] Facebook, “Permissions reference - Facebook login,” https://developers.facebook.
com/docs/facebook-login/permissions, accessed: Dec 19, 2016.

[26] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” inCCS ’11. ACM.

[27] FTC, “Privacy online: A report to congress,” https://www.ftc.gov/reports/privacy-
online-report-congress, Jun. 1998, accessed: Dec 19, 2016.

[28] ——, “Mobile apps for kids: Current privacy disclosures are disappointing,” h
ttp://www.ftc.gov/os/2012/02/120216mobileapps kids.pdf, Feb. 2012, accessed:
Dec 19, 2016.

[29] ——, “Mobile apps for kids: Disclosures still not making the grade,” https://ww
w.ftc.gov/reports/mobile-apps-kids-disclosures-still-not-making-grade, Dec. 2012,
accessed: Dec 19, 2016.

[30] ——, “Mobile privacy disclosures,” www.ftc.gov/os/2013/02/130201mobileprivac
yreport.pdf, Feb. 2013, accessed: Dec 19, 2016.

[31] ——, “FTC warns children’s app maker BabyBus about potential COPPA viola-
tions,” https://www.ftc.gov/news-events/press-releases/2014/12/ftc-warns-children
s-app-maker-babybus-about-potential-coppa, Dec. 2014, accessed: Dec 19, 2016.

[32] ——, “What’s the deal? a federal trade commission study on mobile shop-
ping apps,” https://www.ftc.gov/reports/whats-deal-federal-trade-commission-stud
y-mobile-shopping-apps-august-2014, Aug. 2014, accessed: Dec 19, 2016.

[33] ——, “Kids’ apps disclosures revisited,” https://www.ftc.gov/news-events/blogs/b
usiness-blog/2015/09/kids-apps-disclosures-revisited, Sep. 2015.

14

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://www.appbrain.com/stats/libraries/
http://docs.celeryproject.org/en/latest/
http://docs.celeryproject.org/en/latest/
http://www.oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-secures-global-agreement-strengthen-privacy
http://www.oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-secures-global-agreement-strengthen-privacy
https://oag.ca.gov/sites/all/files/agweb/pdfs/cybersecurity/making_your_privacy_practices_public.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/cybersecurity/making_your_privacy_practices_public.pdf
https://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-launches-new-tool-help-consumers-report
https://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-launches-new-tool-help-consumers-report
http://doc.androguard.re/html/index.html
https://modwsgi.readthedocs.io/en/develop/
http://www.esrb.org/ratings/ratings_guide.aspx
https://developers.facebook.com/docs/facebook-login/permissions
https://developers.facebook.com/docs/facebook-login/permissions
https://www.ftc.gov/reports/privacy-online-report-congress
https://www.ftc.gov/reports/privacy-online-report-congress
http://www.ftc.gov/os/2012/02/120216mobile_apps_kids.pdf
http://www.ftc.gov/os/2012/02/120216mobile_apps_kids.pdf
https://www.ftc.gov/reports/mobile-apps-kids-disclosures-still-not-making-grade
https://www.ftc.gov/reports/mobile-apps-kids-disclosures-still-not-making-grade
www.ftc.gov/os/2013/02/130201mobileprivacyreport.pdf
www.ftc.gov/os/2013/02/130201mobileprivacyreport.pdf
https://www.ftc.gov/news-events/press-releases/2014/12/ftc-warns-childrens-app-maker-babybus-about-potential-coppa
https://www.ftc.gov/news-events/press-releases/2014/12/ftc-warns-childrens-app-maker-babybus-about-potential-coppa
https://www.ftc.gov/reports/whats-deal-federal-trade-commission-study-mobile-shopping-apps-august-2014
https://www.ftc.gov/reports/whats-deal-federal-trade-commission-study-mobile-shopping-apps-august-2014
https://www.ftc.gov/news-events/blogs/business-blog/2015/09/kids-apps-disclosures-revisited
https://www.ftc.gov/news-events/blogs/business-blog/2015/09/kids-apps-disclosures-revisited

[34] K. Ghazinour, M. Majedi, and K. Barker, “A model for privacy policy visualiza-
tion,” in COMPSAC ’09. IEEE.

[35] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Automatically
detecting potential privacy leaks in android applications on a large scale,” inTRUST
’12. Springer.

[36] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information-flow analysis of Android applications in DroidSafe,” inNDSS ’15.
ISOC.

[37] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior against
app descriptions,” inICSE ’14. ACM.

[38] GPEN, “2014 annual report,” https://www.privacyenforcement.net/node/513, Mar.
2015, accessed: Dec 19, 2016.

[39] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis
of mobile in-app advertisements,” inWISEC ’12. ACM.

[40] C. Hoke, L. Cranor, P. Leon, and A. Au, “Are They Worth Reading? An In-Depth
Analysis of Online Trackers Privacy Policies,”I/S : A Journal of Law and Policy
for the Information Society, Apr. 2015.

[41] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting
stealthy behaviors in android applications by user interface and program behavior
contradiction,” inICSE ’14. ACM.

[42] D. Kong, L. Cen, and H. Jin, “AUTOREB: Automatically understandingthe review-
to-behavior fidelity in android applications,” inCCS ’15. ACM.

[43] A. Kurtz, A. Weinlein, C. Settgast, and F. Freiling, “DiOS: Dynamic privacy
analysis of ios applications,” Friedrich-Alexander-Universität Erlangen-N̈urnberg,
Dept. of Computer Science, Tech. Rep. CS-2014-03, Jun. 2014.

[44] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users’ mobile app privacy
preferences: Restoring usability in a sea of permission settings,” inSOUPS ’14.
USENIX Assoc.

[45] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-escalation for ad
libraries in mobile apps,” inMobiSys ’15. ACM.

[46] F. Liu, R. Ramanath, N. Sadeh, and N. A. Smith, “A step towards usable privacy
policy: Automatic alignment of privacy statements,” inCOLING ’14.

[47] C. D. Manning, P. Raghavan, and H. Schütze,Introduction to Information Retrieval.
Cambridge University Press, 2008.

[48] A. K. Massey, J. Eisenstein, A. I. Antón, and P. P. Swire, “Automated text mining
for requirements analysis of policy documents,” inRE ’13.

[49] K. Olmstead and M. Atkinson, “Apps permissions in the Google Play
store,” http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-pl
ay-store/, Nov. 2015, accessed: Dec 19, 2016.

[50] Onyxbits, “Raccoon - apk downloader,” http://www.onyxbits.de/raccoon, accessed:
Dec 19, 2016.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,”Journal of Machine Learning Research, 2011.

[52] Pivotal Software, Inc, “Rabbitmq,” https://www.rabbitmq.com/, accessed:
Dec 19, 2016.

[53] ponty, “Pyvirtualdisplay,” https://pypi.python.org/pypi/PyVirtualDisplay, accessed:
Dec 19, 2016.

[54] Progress Software Corporation, “Fiddler,” http://www.telerik.com/fiddler, ac-
cessed: Dec 19, 2016.

[55] R. Ramanath, F. Liu, N. Sadeh, and N. A. Smith, “Unsupervised alignmentof
privacy policies using hidden markov models,” inACL ’14.

[56] J. R. Reidenberg, T. Breaux, L. F. Cranor, B. French, A. Grannis, J. T. Graves,
F. Liu, A. McDonald, T. B. Norton, R. Ramanath, N. C. Russell, N. Sadeh, and
F. Schaub, “Disagreeable privacy policies: Mismatches between meaning and users’
understanding,”Berkeley Technology Law Journal, vol. 30, no. 1, pp. 39–88, 2015.

[57] D. Reidsma and J. Carletta, “Reliability measurement without limits,”Comput.
Linguist., vol. 34, no. 3, pp. 319–326, Sep. 2008.

[58] A. Ronacher, “Flask,” http://flask.pocoo.org/, accessed: Dec 19, 2016.

[59] N. Sadeh, A. Acquisti, T. D. Breaux, L. F. Cranor, A. M. McDonald, J. R.
Reidenberg, N. A. Smith, F. Liu, N. C. Russell, F. Schaub, and S. Wilson, “The
usable privacy policy project,” Carnegie Mellon University, Tech. report CMU-
ISR-13-119, 2013.

[60] Selenium project, “Selenium,” http://www.seleniumhq.org/, accessed:
Dec 19, 2016.

[61] S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Tsai, and J. M. Wing, “Bootstrapping
privacy compliance in big data systems,” inSP ’14.

[62] R. Slavin, X. Wang, M. Hosseini, W. Hester, R. Krishnan, J. Bhatia,T. Breaux,
and J. Niu, “Toward a framework for detecting privacy policy violation in android
application code,” inICSE ’16. ACM.

[63] J. W. Stamey and R. A. Rossi, “Automatically identifying relations in privacy
policies.” in SIGDOC ’09. ACM.

[64] The Apache Software Foundation, “Apache,” http://httpd.apache.org/,accessed:
Dec 19, 2016.

[65] C. Tumbleson and R. Wiśniewski, “Apktool,” https://ibotpeaches.github.io/Apktoo
l/, accessed: Dec 19, 2016.

[66] T. Watanabe, M. Akiyama, T. Sakai, and T. Mori, “Understanding the inconsisten-
cies between text descriptions and the use of privacy-sensitive resources of mobile
apps,” inSOUPS ’15. USENIX Assoc.

[67] S. Wilson, F. Schaub, A. A. Dara, F. Liu, S. Cherivirala, P. G. Leon, M. S.
Andersen, S. Zimmeck, K. M. Sathyendra, N. C. Russell, T. B. Norton, E. Hovy,
J. Reidenberg, and N. Sadeh, “The creation and analysis of a website privacy policy
corpus,” inACL ’16. ACL.

[68] S. Wilson, F. Schaub, R. Ramanath, N. Sadeh, F. Liu, N. A. Smith, andF. Liu,
“Crowdsourcing annotations for websites’ privacy policies: Can it really work?”
in WWW ’16.

[69] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policiesof android
apps?” inDSN ’16.

[70] L. Yu, T. Zhang, X. Luo, and L. Xue, “AutoPPG: Towards automatic generation
of privacy policy for android applications,” inSPSM ’15. ACM.

[71] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic generation of
security-centric descriptions for android apps,” inCCS ’15. ACM.

[72] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for automatically
analyzing web privacy policies,” inUSENIX Security ’14. USENIX Assoc.

APPENDIX A
POLICY AND APPDATASETS

1) Full App Set — Total Apps Collected from the Google
Play Store (n=17,991)

2) Full Policy Set — Total Policies Collected for Apps in
the Full App Set via Google Play Store Links (n=9,295)

3) Full App/Policy Set — Total App/Policy Pairs from the
Full App and Full Policy Sets adjusted for Links not
actually leading to a Policy (n=9,050)

4) Policy Test Set — Random Policies from the OPP-115
Corpus [67] (n=40)

5) App Test Set — Random Apps Associated with the
Policies in the Policy Test Set (n=40)

6) App/Policy Test Set — App/Policy Pairs from the App
and Policy Test Sets (n=40)

7) Cal AG App/Policy Set — Random Popular Apps and
Associated Policies from the Google Play Store (n=20)

APPENDIX B
EVALUATING POTENTIAL INCONSISTENCIES

Statistic Policy and App Classification
TP Policy=0 correct and App=1 correct
FP Policy=0 incorrect and App=1 correct, or

Policy=0 correct and App=1 incorrect, or
Policy=0 incorrect and App=1 incorrect

FN Policy=1 incorrect and App=0 incorrect, or
Policy=1 incorrect and App=1 correct, or
Policy=0 correct and App=0 incorrect

TN All remaining combinations

TABLE VIII: Evaluating potential inconsistencies. For ex-
ample, a false positive can be the result of a policy being
incorrectly classified as not covering a practice (Policy=0)
while the practice actually occurs in the corresponding app
(App=1), which was correctly identified.

15

https://www.privacyenforcement.net/node/513
http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/
http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/
http://www.onyxbits.de/raccoon
https://www.rabbitmq.com/
https://pypi.python.org/pypi/PyVirtualDisplay
http://www.telerik.com/fiddler
http://flask.pocoo.org/
http://www.seleniumhq.org/
http://httpd.apache.org/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

	Introduction
	Related Work
	Privacy Policy Analysis
	Mobile App Analysis
	Potential Privacy Requirement Inconsistencies

	Privacy Policy Analysis
	Privacy Notice and Choice
	Privacy Policy Requirement
	Privacy Policy Content
	Inter-annotator Agreement
	Feature Selection
	Classification

	Mobile App Analysis
	App Analysis System Design
	App Analysis Results

	Identifying Potential Inconsistencies
	Potential Inconsistencies in Individual App/Policy Pairs
	Potential Inconsistencies for Groups of App/Policy Pairs

	Case Study: Evaluating our System for Use by the Cal AG
	System Implementation
	Additional Functionality
	System Performance

	Future Directions
	References
	Appendix A: Policy and App Datasets
	Appendix B: Evaluating Potential Inconsistencies

