
PT-Rand: Practical Mitigation of Data-only Attacks
against Page Tables

Lucas Davi,∗ David Gens,† Christopher Liebchen,† Ahmad-Reza Sadeghi†
∗University of Duisburg-Essen, Germany. lucas.davi@uni-due.de

†CYSEC/Technische Universität Darmstadt, Germany.
{david.gens,christopher.liebchen,ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract—Kernel exploits constitute a powerful attack class
allowing attackers to gain full control over a system. Various
kernel hardening solutions have been proposed or deployed in
practice to protect the kernel against code injection (e.g., DEP)
or code-reuse exploits (e.g., CFI). However, the security of all
these hardening techniques relies heavily on the assumption that
kernel page tables cannot be manipulated, e.g., by means of data-
only attacks. Ensuring kernel page tables integrity is not only
essential for kernel security but also a challenging task in practice
since existing solutions require hardware trust anchors, costly
hypervisors, or inefficient integrity checks.

In this paper, we first motivate the importance of protecting
kernel page tables by presenting a data-only attack against page
tables to bypass the recently released CFI-based (Linux) kernel
hardening technique RAP. Thereafter, we present the design and
implementation of PT-Rand, the first practical solution to protect
kernel page tables that does not suffer from the mentioned defi-
ciencies of previous proposals. PT-Rand randomizes the location
of page tables and tackles a number of challenges to ensure that
the location of page tables is not leaked. This effectively prevents
the attacker from manipulating access permissions of code pages,
thereby enabling secure enforcement of kernel exploit mitigation
technologies such as CFI. We extensively evaluate our prototype
implementation of PT-Rand for the current Linux kernel on the
popular Linux distribution Debian and report a low overhead
of 0.22% for common benchmarks. Moreover, we combine RAP
with PT-Rand to protect RAP against data-only attacks on kernel
page tables.

I. INTRODUCTION

Operating system kernels are essential components in mod-
ern computing platforms since they provide the interface be-
tween user applications and hardware. They also feature many
important services such as memory and disk management. Typ-
ically, the kernel is separated from user applications by means
of memory protection, i.e., less-privileged user applications can
only access the higher-privileged kernel through well-defined
interfaces, such as system calls. Attacks against kernels are
gaining more and more prominence for two reasons: first,
the kernel executes with high privileges, often allowing the
attacker to compromise the entire system based on a single

kernel exploit. Second, the kernel implements a major part of
the security subsystem. Hence, to escalate execution privileges
to root or escape from application sandboxes in browsers, it is
often inevitable to compromise the kernel. Kernel exploits are
leveraged in (i) all of the latest iOS jailbreaks, (ii) browser
sandbox exploits against Chrome [37], and (iii) large-scale
attacks by nation-state adversaries to obtain full control over
the targeted system, as in the infamous case of Stuxnet [42].

Typical means for program code exploitation are memory
corruption vulnerabilities. They allow attackers to alter control
and data structures in memory to execute (injected) malicious
code, or to launch code-reuse attacks using techniques such as
return-oriented programming [25, 46]. One of the main reasons
for the prevalence of memory corruption vulnerabilities is
that a vast amount of software is programmed in unsafe
languages such as C and C++. In particular, kernel code is
typically completely written in these languages for better per-
formance, legacy reasons, and hardware-close programming.
The monolithic design of the commodity kernels and numerous
device drivers increase the attack surface compared to user-
mode applications. For instance, over the last 17 years 1526
vulnerabilities have been documented in the Linux kernel [14].

Various solutions have been proposed or deployed in practice
to protect software systems against code-injection or code-
reuse exploits: modern kernel hardening solutions like Su-
pervisor Mode Execution Protection (SMEP) and Supervi-
sor Mode Access Protection (SMAP) [27] prevent access to
user-mode memory while the CPU executes code in kernel
mode [3, 27]. This prevents the attacker from executing code
with kernel privileges in user mode. The deployment of W⊕X
(Writable ⊕ Executable) prevents the adversary from executing
code in the data memory. Indeed, W⊕X has dramatically
reduced the threat of code-injection attacks. However, attackers
have already eluded to more sophisticated exploitation tech-
niques such as code reuse to bypass these measures and to
hijack the control flow of the targeted code. Mitigating control-
flow hijacking attacks is currently a hot topic of research [51].
The most promising and effective defenses at the time of
writing are control-flow integrity (CFI) [1], fine-grained code
randomization [31], and code-pointer integrity (CPI) [30].
However, all defenses against control-flow hijacking are based
on the following assumptions: firstly, they assume that code
pages cannot be manipulated. Otherwise, the adversary can re-
place existing code with malicious code or overwrite CFI/CPI
checks. Secondly, they assume that critical data structures
containing code pointers (e.g., the shadow stack for CFI, the
safe region for CPI) are isolated. Otherwise, the adversary can
manipulate them by overwriting code pointers.
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However, as observed by Ge et al. [19], defenses against
control-flow hijacking in the kernel additionally require the
protection of page tables against data-only attacks. Otherwise
the assumptions mentioned above will not hold and these
defenses can simply be bypassed by manipulating the page
tables.

Data-only attacks do not change the control flow of the
program. Instead they direct the control flow to certain nodes
within the control-flow graph (CFG) of the underlying program
by altering the input data. Hence, the executed path in the CFG
is indistinguishable from any other benign execution. Page
tables are data structures that map virtual addresses to physical
addresses. They define read-write-execute permissions for code
and data memory pages, where a page is simply a contiguous
4KB memory area. Hence, attackers can launch data-only
attacks (based on memory corruption vulnerabilities in the
kernel) to alter page tables, and consequently disable mem-
ory protection, manipulate code pages, and inject malicious
code [38]. Recently industry researchers have presented several
page-table based attacks [16] stressing that these attacks are
possible because the attacker can easily determine the location
of the page tables.

To tackle data-only attacks on page tables, previous work
suggested kernel instrumentation to mediate any access to
memory-management structures according to a security pol-
icy [4, 5, 13, 20, 43, 49]. However, as we elaborate on
related work in Section VIII, all these solutions suffer from
at least one of the following shortcomings: high performance
overhead, require additional and higher privileged execution
modes (e.g., hypervisors), or depend on architecture-specific
hardware features. Recently, Microsoft released a patch for
Windows 10 [28] that randomizes the base address used to
calculate the virtual address of page table entries. However, this
patch does not protect against crucial information disclosure
attacks that have been frequently shown to circumvent any
(even fine-grained) randomization scheme [15, 48].

Goal and Contributions. In this paper, we present the design
and implementation of a novel memory protection scheme, PT-
Rand, that prevents the attacker from manipulating page tables.
We highlight the importance of page table protection by im-
plementing a real-world exploit, based on a vulnerable kernel
driver (CVE-2013-2595), to directly manipulate the code of a
kernel function. Using this attack, we circumvent a recently
released CFI kernel hardening scheme, Linux RAP [52], and
execute arbitrary code with kernel privileges. In summary, our
contributions are as follows:

Page Table Protection: We present a practical and effective
protection of page tables against data-only attacks without
requiring additional hardware or a hypervisor. Rather than
applying expensive policy enforcement checks, we random-
ize page tables when they are allocated and ensure that
no information related to the location of page tables is
leaked. To achieve this, we need to tackle several challenges.
(1) There are many data pointers that the attacker can exploit
to locate page tables. (2) The physical memory (including
page tables) is usually mapped 1:1 into the virtual address
space. Hence, the attacker can easily locate and access
this section. (3) The kernel still needs to efficiently access
page tables, and distinguish between randomized and regular

memory pages. As we will show in Section V, PT-Rand
tackles all these challenges, while remaining compatible to
existing software, like kernel drivers.

Prototype Implementation: We provide a fully working
prototype implementation for a recent Linux kernel (v4.6).
We also combine Linux kernel CFI protection (RAP) with
PT-Rand to protect RAP against data-only attacks on page
tables.

Performance Evaluation: We provide an extensive security
and performance evaluation. In particular, we show that
the attacker cannot bypass the randomization by means
of guessing attacks. Our performance measurements for
popular benchmarking suites SPEC CPU2006, LMBench,
Phoronix, and Chromium browser benchmarks show that
PT-Rand incurs almost no measurable overhead (0.22% on
average for SPEC), successfully applies to many complex,
modern system configurations, and is highly practical as it
supports a variety of applications and kernel code.

PT-Rand effectively enables memory protection and paves the
way for secure deployment of defenses to thwart code-reuse
attacks on the kernel.

II. BACKGROUND: MEMORY PROTECTION AND PAGING

In this section, we recall the basic principles of memory
protection and paging that are needed for the understanding of
the following sections.

Memory protection ensures that (i) privileged kernel code is
isolated from less-privileged user code, (ii) one process cannot
access the memory space of another process, and (iii) read-only
data memory cannot be tampered with by unauthorized write
operations. To enforce memory protection, modern operating
systems leverage a widely-deployed CPU feature called pag-
ing. Although the implementation details vary among different
architectures, the basic principles are the same. Hence, without
loss of generality, we focus our discussion on paging for the
contemporary x86_64 architecture.

Paging creates an indirection layer to access physical
memory. Once enabled, the CPU will only operate on virtual
memory (VM), i.e., it can no longer access physical memory.
The advantage of paging is that processes start working with
large contiguous memory areas. However, physically, the mem-
ory areas are scattered throughout the RAM, or swapped out on
hard disk. As a consequence, each access to a virtual memory
address needs to be translated to a physical address. This
is achieved by a dedicated hardware engine called Memory
Management Unit (MMU). The translation is performed by
means of page tables that operate at the granularity of pages,
where a typical page size is 4KB. Specifically, the operating
system stores mapping information from virtual to physical
addresses into these page tables thereby enabling efficient
translation. To isolate processes from each other, the kernel
assigns each process to its own set of page tables. In addition,
page tables maintain read-write-execute permissions for each
memory page. These permissions are enforced at the time of
translation, e.g., allowing the operating system to prevent write
operations to code pages or executing data pages.

Figure 1 provides high-level insights into the translation
process. First, the memory subsystem of the CPU receives the
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Figure 1: Paging - translation of virtual addresses to physical
addresses.

access mode and a virtual memory address from the execution
unit as input 1 . To access the page tables, the MMU reads
out the pointer to the page table root which is always stored in
the third control register (CR3) on x86_64 2 . This pointer is
already a physical memory address pointing to the root of the
page table hierarchy 3 . That said, page tables are organized
in a tree-like hierarchy for space optimization reasons. The
MMU traverses the page table hierarchy until it reaches the
page table entry (PTE) which contains the physical address
for the given virtual memory address 4 . In addition, the PTE
holds the access permissions and ownership (user or kernel) of
the associated memory page. The memory subsystem leverages
this information to validate whether the target operation (read,
write, or execute) adheres to the permission set and ownership
of the page. If validation is successful, the translation informa-
tion is used to fetch the data from the physical memory slot
and stored into the cache 5 . Note that the cache internally
consists of a data and a instruction cache. For read and write
operations the fetched data is stored into the data cache. In
contrast, execute requests lead to a write of the fetched data to
the instruction cache. Finally, the fetched data is forwarded to
the execution unit of the CPU 6 . If the MMU either does not
find a valid mapping in the page table hierarchy or observes
an unauthorized access in 4 , the memory subsystem generates
an exception 6 .

It is important to note that the page tables only contain
physical addresses. This becomes a performance bottleneck
when the kernel aims at changing the page permissions. As the
kernel operates on virtual addresses, all the physical addresses
belonging to a page would need to be mapped to virtual
addresses dynamically before the permission update can be
performed. To tackle this bottleneck, the kernel maintains a
so-called 1:1 mapping which permanently maps the whole

physical memory to a fixed address into the virtual memory. To
quickly translate a physical to a virtual address, the kernel adds
the physical address to the start address of the 1:1 mapping,
and can then use the resulting virtual address to access the
memory.

III. ON THE NECESSITY OF PAGE TABLES PROTECTION

In the adversary setting of kernel exploits the attacker
has full control over the user mode, and hence, can execute
arbitrary code with user-mode privileges, and interact with the
kernel through system calls and driver APIs. The attacker’s
goal is to gain higher privilege level to be able to execute
arbitrary code with kernel-mode privileges. To do so, the
attacker needs to hijack a control-flow path of kernel code
by overwriting a kernel code pointer, e.g., a return address or
function pointer, using a memory-corruption vulnerability that
is exposed either through the kernel itself or one of the loaded
drivers.

In the following, we briefly provide an overview of the
main kernel-related exploitation techniques as well as the de-
fenses that are deployed or proposed against these attacks. To
mitigate kernel code-injection and kernel code-reuse attacks,
the kernel must be hardened with a variety of protection
measures such as W⊕X and Control-Flow Integrity (CFI),
fine-grained randomization or Code-Pointer Integrity (CPI).
However, as we elaborate in the following the security of all
these defenses relies on the integrity of page tables that can be
attacked by means of data-only attacks – We show this using a
real-world exploit that manipulates page tables against a kernel
CFI protection.

Traditional Kernel Attacks. To escalate the attacker’s privi-
leges to kernel privileges, a common exploitation technique
is as follows: first, the attacker allocates a new buffer in
memory, writes malicious code into this buffer, and sets the
memory page on which the buffer is located to executable.
The latter can be achieved by common user space library
functions such as mprotect() on Linux and VirtualProtect()
on Windows. Recall that these actions are possible because
the attacker has already gained control over the user space.
Second, the attacker overwrites a kernel code pointer with
the start address of the malicious code based on a memory
corruption vulnerability inside the kernel. These vulnerabilities
are typically triggered by abusing the kernel’s interfaces such
as system calls and driver APIs. Third, the attacker triggers
the execution of a function that executes a branch on the
corrupted kernel code pointer. As a result, the kernel’s internal
control flow will be dispatched to the previously injected,
malicious code. Although this code resides in user space, it
will be executed with kernel privileges because the control-
flow hijacking occurred in the kernel mode. In a similar vein,
the attacker can launch code-reuse attacks using the return-
oriented programming (ROP) [46] technique. These attacks
combine and chain short instruction sequences (called gadgets)
that end in an indirect branch instruction. They are typically
leveraged if the attacker cannot allocate new malicious code
on an executable page. Thus, the user-mode buffer will hold
a ROP payload consisting of code pointers to gadgets. Upon
corruption of the kernel pointer, the ROP gadget chain will be
executed under kernel privileges [18].
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Code-injection and Code-reuse Attacks. Modern CPUs fea-
ture hardware extensions Supervisor Mode Execution Protec-
tion (SMEP) and Supervisor Mode Access Protection (SMAP)
that prevent access to user-mode memory while the CPU
executes code in the kernel mode [3, 27]. Alternatively,
if these extensions are not present, the kernel can simply
unmap the entire user space memory when kernel code is
executed [34]. Such protections force the attacker to directly
inject malicious code or the ROP payload into the kernel’s
memory space which is a challenging task since the attacker
cannot directly write into kernel memory. However, several
kernel functions accept and process user-mode buffers. A
prominent example is the msgsnd() system call which allows
exchange of messages. The attacker can exploit this function
to cause the kernel to copy the user-mode exploit buffer
(the message) into kernel memory. By leveraging a memory
disclosure attack inside the kernel, the attacker can determine
the address where the buffer is located in kernel memory and
launch the exploit thereafter [40]. Several techniques are de-
ployed or proposed to harden the kernel against these attacks:
W⊕X (Writable ⊕ Executable) is leveraged by many modern
operating systems to prevent code to be executed from data
memory. Fine-grained code randomization diversifies the code
address layout to complicate code-reuse attacks [31]. Many
modern operating systems apply Kernel Address Space Layout
Randomization (KASLR) [17, 34]. Control-flow integrity (CFI)
mitigates control-flow hijacking attacks by validating that the
application’s control flow remains within a statically computed
control-flow graph [1]. CFI has been also adapted to kernel
code [13, 19]. Recently a CFI-based protection for Linux
kernel (RAP [52]) has been released. Code pointer integrity
(CPI) [30] prevents control-flow hijacking by ensuring the
integrity of code pointers.

Principally all these defenses significantly raise the bar.
However, as observed in [13, 19] these defenses heavily
rely on the assumption that the instrumented code cannot be
manipulated, i.e., the attacker cannot compromise integrity
checks or exploit information leakage against randomization
schemes, and replace existing code with malicious code. On
the other hand, this assumption is easily undermined by data-
only attacks that tamper with the page tables as we describe
next.

Data-only Attacks against Page Tables. In contrast to
control-flow hijacking attacks, data-only attacks abstain from
compromising code pointers. For example, the attacker can
overwrite the is_admin variable of an application at run-
time [10]. Although no code pointer has been compromised,
the attacker can now execute benign functionality with higher
privileges. In the context of the kernel, data-only attacks allow
code injection attacks by modifying page table entries (PTEs)
which we explained in Section II. To initiate data-only attacks,
the attacker first exploits a memory-corruption vulnerability in
the kernel or a device driver to gain read and write access to
kernel memory. Since kernel memory contains references to
page tables, the attacker can carefully read those references
and locate them [38]. In particular, the attacker can disclose
the virtual address of a PTE corresponding to a page that
encapsulates a kernel function which can be triggered from the
user space. Next, the attacker modifies the page permissions
to writable and executable. For instance, the entire code of the

kernel function could be replaced with malicious code. Finally,
the attacker triggers the kernel function from user space to
execute the injected code with kernel privileges.

Generic Bypass of Kernel CFI. To demonstrate the potential
of data-only attacks against page tables, we first hardened the
current Linux kernel with the open source version of RAP [52].
RAP is a state-of-the-art CFI implementation that instruments
the Linux kernel during compile-time to enforce fine-grained
CFI at run-time. In particular, RAP ensures that the attacker
cannot overwrite code pointers (used for indirect branches)
with arbitrary values. This is achieved by emitting CFI checks
before all indirect branches that validate whether the program
flow targets a valid destination. However, as mentioned before,
a fundamental assumption of RAP is the integrity of the kernel
code. If code integrity is not ensured, the attacker can simply
overwrite the CFI checks with NOP instructions or directly
overwrite existing kernel code with malicious code.

We undermine this assumption by using a data-only attack
to first modify the page tables and change the memory per-
mission of the kernel code to writable. Next, we overwrite an
existing system call with our attack payload which elevates
the privileges of the current process to root. After successfully
overwriting the kernel code, we invoke the modified system
call from user mode to eventually obtain root access. The
details of this exploit are described in Section VI-A. While the
impact of the attack itself is not surprising (CFI does not aim
to prevent code-injection attacks), it highlights the importance
of having an effective protection against data-only attacks that
target page tables. We note that this attack is not limited to
RAP but can also be applied to randomization or isolation-
based defenses (CPI) against code-reuse attacks.

Existing Kernel Page Tables Protections. As we discuss
in detail in the related work Section VIII, the existing pro-
posals for protecting kernel page tables suffer from various
shortcomings: they either require a hardware trust anchor, or
privileged software (e.g., hypervisor), or are costly due to
integrity checks.

Summary. All known exploit mitigation schemes strongly
depend on memory protection to prevent the attacker from
injecting code or corrupting existing code. Even with these
schemes in place, page tables managing memory permis-
sions can be compromised through data-only attacks. Hence,
designing a defense against data-only attacks is vital and
complements the existing mitigation technologies allowing
their secure deployment for kernel code.

IV. PT-RAND: DESIGN OF OUR PAGE TABLE PROTECTION

In this section, we present the adversarial model, ex-
plain the high-level design of our scheme, and elaborate on
challenges for implementing practical and secure page table
protection.

A. Adversary Model and Assumptions

The adversary setting for our protection scheme PT-Rand
against the corruption of page tables is based on the following
assumptions (which are along the lines of the assumptions of
related literature):

4



• Memory Corruption: There exists a memory corrup-
tion vulnerability in either the kernel or a driver. The
attacker can exploit this vulnerability to read and write
arbitrary memory (e.g., [38]).

• Controlling User Space: The attacker has full control
over the user space, and consequently can execute
arbitrary code in user space and call kernel API
functions.

• User Space Access: User-mode pages are not acces-
sible when the CPU is in the kernel mode. This is
enforced by modern CPU features such as SMAP/S-
MEP [3, 27] or by simply unmapping the user space
during kernel code execution [34].

• W⊕X: Kernel code pages are not per-se writable. This
is enforced by W⊕X protection inside the kernel. As
a consequence, the attacker needs to resort to a data-
only attack to manipulate code page permissions, and
inject code thereafter.

• Code-reuse Defense: A defense mechanism against
kernel-related code-reuse attacks is enforced, such
as control-flow integrity (CFI) [1, 19], fine-grained
code randomization [12, 31], or code-pointer integrity
(CPI) [30]. Specifically, our prototype implementation
of PT-Rand incorporates RAP [52], a public state-
of-the-art CFI implementation for the Linux kernel.
As mentioned before, existing defenses against code-
reuse attacks cannot prevent data-only attacks against
the page tables. (Our solution serves as a building
block to prevent these protection frameworks from
being undermined by data-only attacks against page
tables.)

• DMA Protection: Direct Memory Access (DMA) [44,
55] cannot be exploited to bypass virtual memory
permissions because an IOMMU [27] is configured
to prevent DMA to security-critical memory.

• Safe Initialization: The attacker cannot attack the
kernel prior the initialization of PT-Rand. This is not
a limitation because PT-Rand is initialized at the early
boot phase during which the attacker cannot interact
with the kernel.

• Source of randomness: A secure (hardware) random
number generator is available [3, 27, 53].

• Side-channels: Timing and cache side channel attacks
as well as hardware attacks, like rowhammer [29], are
orthogonal problems, and hence, beyond the scope of
this paper. Nevertheless, we discuss in Section VI-A
how we can adopt known techniques from Apple’s
iOS to prevent practical side-channel attacks.

B. Overview of PT-Rand

Our goal is to mitigate data-only attacks against the kernel
page tables in the adversary setting explained in Section
IV-A. To do so, we introduce the design and implementation
of a novel kernel extension called PT-Rand. The main idea
of PT-Rand is to (i) randomize the location of page tables
securely, i.e., prevent the leakage of the randomization secret,
and (ii) substitute pointers that reference page tables with
physical addresses to obfuscate these references and prevent
their leakage.

Figure 2 depicts the overall architecture and workflow of
PT-Rand. During the early boot phase, the kernel operates
only on physical memory. To guarantee a successful switch
to virtual memory, contemporary kernels allocate an initial set
of page tables at a constant and fixed address. These page
tables manage the kernel’s core functions as well as data
areas, and remain valid for the rest of the kernel’s life-time.
To prevent the attacker from tampering with page tables, PT-
Rand generates a randomization secret 1 , and randomizes the
location of the initial page tables 2 . The randomization secret
is stored in a privileged CPU register which is neither used
during normal operation of the kernel nor accessible from
user mode. Recall from Section IV-A that the attacker can
only access the kernel memory, but not the kernel’s registers.
The latter would require the attacker to either launch a code-
injection attack (prevented by W⊕X) or a code-reuse attack
(mitigated by CFI [1], code randomization [31] or CPI [30]).
After relocating the initial page tables to a random address,
the kernel can no longer access these page tables through the
1:1 mapping. In particular, PT-Rand relocates the initial page
tables in an unused memory region. As we will evaluate in
detail in Section VI-A, the entropy for this memory region
is reasonably high for contemporary 64-bit systems rendering
brute-force attacks infeasible A .

Note that the kernel features dedicated allocator functions
for page table memory. For PT-Rand, we instrument these
functions to (i) move the initial page tables to a random
address, and (ii) always return physical addresses for any page
table related memory allocation. In contrast, the default allo-
cators always return a virtual address as a reference to newly
allocated page table memory. This small adjustment allows
us to obfuscate the location of page tables from user-level
attackers, because the kernel code operates on virtual addresses
when accessing page tables. Hence, at this stage, neither the
attacker nor the kernel itself can access the page tables. In
order to allow benign kernel code to still access the page tables,
we modify all kernel functions that access page table memory:
for each of these functions we convert the physical address to
a virtual address based on the randomization secret generated
in 1 .

However, during the early boot phase, the kernel has
already saved references to the initial page tables in various
data structures. Since the initial tables were not allocated with
our modified allocator, the references contain obsolete virtual
addresses. To avoid a kernel crash, PT-Rand updates all these
references (virtual addresses) with the new physical address 3 .
To this end, every reference to page tables now contains
a physical address rather than a virtual address. Thus, the
attacker aiming to locate page tables by reading the designated
places of page table pointers [38] only retrieves physical
addresses. Since there is no direct correlation between physical
and virtual addresses, the attacker cannot use any leaked ref-
erences to infer the corresponding virtual address B . We also
implemented PT-Rand such that no intermediate computation
result that includes the randomization secret is ever written
into memory. Specifically, we instruct the compiler to keep
intermediate and the end result that include the randomization
secret in registers, and prevent them from getting spilled.

Our modified page table memory allocator also randomizes
any future page table allocations into the PT-Rand memory

5



Random 
Source Virtual Memory

PT-Rand Region

1:1 Mapping

Initial Page Tables 
(constant address)

Kernel Data
Physical Addresses

A

B

PT-Rand

Adversary

Generate Randomization Secret
Boot 
Time

Run 
Time

Relocate Existing Page Tables

Substitute Page Table Pointers

Allocate Page Table Memory

Access Page Tables

1

2

3

4

5

C

CPU
Priv-
Reg

Kernel

Figure 2: Overview of the different components of PT-Rand.

region 4 . Further, we ensure that every physical memory
page that contains page table entries is unmapped from the 1:1
mapping. Hence, if the attacker discloses a physical address
of a page table pointer, she cannot exploit the 1:1 mapping
to read out page tables C . Finally, PT-Rand provides an
interface for the kernel to access and manage page tables 5 .
In particular, PT-Rand translates the physical addresses of page
table pointers to virtual addresses based on the randomization
offset.

C. Challenges

To enable PT-Rand we had to tackle a number of challenges
as we explain in the following. In Section V, we describe in
detail how we address each challenge.

Page Table Allocation. Page tables are data objects that are
dynamically allocated in the kernel. These objects are created
by the page allocator, which is a central, low-level service
in the kernel that manages physical pages. To randomize
the memory pages where page tables are stored, we need to
determine and instrument all kernel functions that allocate page
tables.

Generating a Randomized Space. While the kernel needs
to be able to locate randomized pages for performing benign
changes, the attacker must not learn the new mapping. Con-
sequently, we need to provide high entropy to avoid simple
brute-force search. Furthermore, the new location of the page
tables must not collide with other existing mappings in the
virtual address space. This area must also be large enough to
hold the page tables of all the processes running on the system.

Page Table References. Memory disclosure vulnerabilities
allow the attacker to leak information about code and data
pointers. Even fine-grained randomization schemes can be
undermined if the attacker can map a single pointer to an
instruction [48]. Hence, one of the main challenges in our
design is to ensure that all references to page tables and the
base address of the PT-Rand region are not leaked to the
attacker. For this, we need to locate all page table references
and replace them with physical addresses ( 3 in Figure 2).
Furthermore, we need to carefully handle benign page table
changes by the kernel. Typically, the kernel processes page
table pointers using virtual addresses on the kernel’s stack.
Since the stack is readable by the attacker, we need to provide
a new mechanism to prevent leakage of these pointers.

Handling of 1:1 Mapping. As we discussed in Section II,
the kernel maintains a 1:1 mapping for fast translation from
virtual to physical addresses. 4 in Figure 2 removes the
page tables from this 1:1 mapping to prevent the attacker
from learning the page table location. However, removal of
page tables is not per-se possible. This is due to the fact that
the 1:1 mapping deploys so-called large pages of 2MB by
default. Hence, simply removing the page leads to deletion of
adjacent data not related to page tables. In addition, we need
to identify all functions that access page tables via the 1:1
mapping, and patch them to perform the translation based on
the randomization secret.

Translation of Physical Addresses. At run-time, the kernel
needs to repeatedly translate physical addresses to virtual
addresses, e.g., during a page walk or when creating a page
table entry. As we explained in Section II, this is efficiently
performed based on the 1:1 mapping. However, when PT-Rand
is in place, the kernel cannot use the 1:1 mapping anymore
to translate physical addresses of page tables, because PT-
Rand removed them from the 1:1 mapping. Consequently,
the kernel has to distinguish between physical addresses of
normal memory and physical addresses of page table memory
as each of them needs a different translation mechanism. This
distinction must be efficiently performed at run time to not
impede the system’s run-time performance.

V. IMPLEMENTATION

Our design as presented in Section IV-B requires low-level
system modifications to the operating system kernel. We de-
cided to prototype PT-Rand for the open-source Linux kernel.
However, the concepts underlying our work on PT-Rand can
be integrated into other contemporary operating systems. To
this end, our kernel patch is comprised of 1382 insertions and
15 deletions across 45 source files.

Figure 3 shows how we integrate PT-Rand into the Linux
kernel. We create wrapper functions for the page table allocator
to randomize the virtual address of pages that contain page
table entries. If the wrapper function is called to allocate
memory which will be used to store page table entries, it
allocates the memory at a random address in the PT-Rand
region. The virtual address, pointing to this region, can only be
computed by adding the randomization secret, which is stored
in the third debug register. Pages for regular memory are still
allocated in the 1:1 mapping and their virtual addresses within

6



CPU

DR3

Virtual Memory

PT-Rand Region

1:1 Mapping 
(physmap)

Linux Kernel

PT-Rand

Page Allocator

Memory Map

Virtual Memory Management

Regular Page

Page Table Page

Physical Address +
Base Address of 
physmap (constant)

Physical Address + 
DR3 (randomized)

Figure 3: We modify the virtual memory location of page
table pages by providing a randomization wrapper around
the standard page allocator in the kernel. While randomized
pages are removed from 1:1 mapping, regular page allocation
requests still fall within this region.

the 1:1 mapping are calculated by adding the base address
of the 1:1 mapping, called physmap in Linux, to the physical
address of the regular page.

We create wrapper functions for those kernel functions
that need to access page table memory. When the kernel
starts executing, the PT-Rand initialization function will first
generate the randomization secret based on the standard kernel
function get_random_bytes(). We enable the kernel to
use the hardware-based random number generator (HW-RNG)
to avoid low entropy during boot time. Note, that since version
3.16 the Linux kernel incorporates the output of HW-RNGs for
generating random numbers by default1.

In the following, we present the implementation details
of PT-Rand according to the challenges we outlined in Sec-
tion IV-C.

A. Page Table Allocations

The main task of PT-Rand is to map memory which
contains page tables to a random location within the PT-Rand
region. Page table allocation involves two steps: (i) random-
ization of the initial pages, and (ii) randomization of memory
allocations which are used to store newly created page tables.

To complete the first step, we need precise knowledge
of all existing references to the initial page tables, because
after randomization these references need to be updated. The
main challenge we faced is identifying all those references. To
tackle this challenge, we followed a pragmatic approach: we
reverse-engineered the kernel code execution after the location
of the initial page tables have been randomized. Since every
page table access based on an old reference leads to a kernel
crash, we could determine the point of execution and asso-
ciated kernel function which caused the crash. Thereafter, we
inspected the kernel’s source files and updated all references to
use our new base address. After updating all references, kernel

1 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
be4000

0x00000000000 47 Bits
Address Size

User Space
Purpose

hole caused by [48:63] sign extension
0xffff8000000 43 Bits Hypervisor

0xffffc800000 40 Bits PT-Rand (Hole)
0xffffc900000 45 Bits vmalloc/ioremap
0xffffe900000 40 Bits Hole
0xffffea00000 40 Bits Memory Map

unused hole
0xffffec00000 44 Bits Kasan

unused hole
0xffffff00000 39 Bits Fixup Stacks

unused hole
0xffffffff800 512M Kernel Text
0xffffffffa00 1525M Modules
0xffffffffff6 8M vsyscalls
0xffffffffffe 2M Hole

0xffff8800000 43 Bits 1:1 Mapping

Figure 4: The x86_64 virtual memory map for Linux with four
level page tables.

execution continued normally. In our extensive evaluation on
different suites of benchmarks and complex software such
as the Chrome browser (see Section VI-B) we have not
experienced any kernel crashes.

To handle the second step, we extend the page table
management functions in the kernel. Specifically, we create a
wrapper function around the memory allocator for page tables.
This allows us to modify their return values, i.e., they return
physical addresses as a reference to the allocated memory
rather than virtual addresses. Since there is no relation between
physical and virtual memory addresses, the attacker cannot
infer the location in the virtual memory by leaking the physical
address.

We also create wrapper functions for every other kernel
function that interacts with page tables to translate page table
references (physical addresses) to virtual memory addresses
before accessing the page tables.

B. Generating a Randomized Area

In order to provide sufficient protection against guessing
attacks we require a high randomization entropy. While 64 bit
architectures have a theoretical limit of 16EB of memory,
current hardware is limited to support 256TB resulting in 48 bit
randomization entropy.

The Linux kernel organizes the available virtual memory
into different regions. Figure 4 is taken from the Linux kernel
documentation [2] and reveals that the Linux kernel currently
does not use all of the available virtual memory. In particular,
we identified two memory holes of which each offers 1TB
(40 Bit) free memory. Our proof-of-concept implementation
of PT-Rand utilizes one of these holes for the PT-Rand region
to store the page tables. Note that such large holes will always
exist for 64 Bit systems due to the vast amount of available
virtual memory.
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C. Page Table References

As described in Section IV-A, the attacker can exploit
kernel vulnerabilities to read from and write to kernel memory.
However, these vulnerabilities do not allow the attacker to
access content stored in registers. Hence, we can securely
store the randomization secret into a dedicated register. For
our proof-of-concept, we chose the fourth debug register DR3.
We selected this register since it is only used for debugging

purposes. It is noteworthy to mention that application debug-
ging is still supported under PT-Rand. Typically, debuggers
can use software and hardware breakpoints. The former are
the default breakpoints and not affected by PT-Rand. For the
latter, we only use one of the four available hardware break-
points. Note that exploiting debugging facilities is a widely-
accepted strategy when building defenses, e.g., TRESOR [36]
or kBouncer [39]. Alternatively, we are currently exploring
the feasibility of deploying any of the so-called model-specific
registers (MSRs).

However, even though we store the base address in a
privileged register, certain events (e.g., function calls) can
spill temporary registers for several cycles to memory. As
recently shown, this short time window can be exploited to
undermine CFI checks [11]. PT-Rand tackles the attack by
instructing the compiler to never spill registers which contain
a randomized address. This is enabled by a GCC feature,
called explicit register variables, which will always keep local
variables in registers. However, given the complexity and many
optimization techniques deployed by modern compilers, we
can only guarantee that the above GCC compiler feature never
leaks accordingly flagged variables, but not any intermediate
calculation results. As a consequence, we are currently work-
ing on a GCC compiler extension that explicitly clears any
intermediate results held in other registers.

D. Handling of 1:1 Mapping

The typical page size is 4KB. However, the kernel also
supports page sizes of 2MB or 1GB. In particular, for the Linux
kernel, the 1:1 mapping is configured to use 2MB pages by
default.

In PT-Rand, we rely on unmapping memory that contains
page tables from the 1:1 mapping. This becomes challenging
when 2MB pages are used because the page might contain
other data than page table memory that should not be removed
from the 1:1 mapping. We tackle this challenge by reconfigur-
ing the page size to 4KB pages at run time. However, in order
to split a 2MB page into 4KB pages, we need to previously
allocate 512 (i.e., 2MB divided by 4KB) new page table entries
within the 1:1 mapping. Note that the 4KB split up only affects
memory that contains page tables. For other memory parts,
the kernel will continue to use large pages. Our performance
evaluation in Section VI-B indicates that this change has no
impact on the overall performance. Next, we configure each
entry to map the corresponding memory of the 2MB page, and
adopt the permissions and other metadata. Finally, we update
the page table hierarchy to use the 4KB page tables entries
instead of the one 2MB entry. After the conversion, we can
relocate and delete only those 4KB pages that contained page
table entries.

E. Translation of Physical Addresses

Since the page tables are relocated by PT-Rand, they
are no longer accessible through the 1:1 mapping. Hence,
as described in Section IV-C, the kernel has to utilize two
different mechanisms when translating physical addresses to
virtual addresses, namely one for physical addresses of pages
that contain page table entries, and another one to translate
physical addresses for non-page table related memory. Fortu-
nately, the kernel already keeps track of the properties of each
individual physical page in a dedicated data structure called
memory map. When we analyzed this structure, we noticed
that certain bits of the flag field are not used. This allows us
to quickly distinguish among the two different types of pages.
Specifically, we reserve one bit to mark if a physical page
has been removed from the 1:1 mapping by PT-Rand. In other
words, if the bit is set, the kernel knows that the requested
access is a page table related access which requires handling
based on the PT-Rand region.

At run-time, kernel functions that need to translate a phys-
ical to a virtual memory address will check the flag field of
the memory map. If the physical page is not accessible through
the 1:1 mapping, the kernel function will use the randomization
secret provided by PT-Rand to determine the virtual memory
address. Otherwise, the function uses the default translation
through the 1:1 mapping. Hence, PT-Rand preserves the high
efficiency for the majority of the page requests through the
1:1 mapping. In particular, we modified the __va macro to
perform the check on the flag field. This function is the
central point for translating physical to virtual addresses. PT-
Rand does not cause any problems for external drivers, since
external kernel drivers (e.g., graphic card drivers) are supposed
to use these kernel functions to translate addresses.

During the implementation, we encountered that modifying
__va raises another challenge: in the early boot phase, i.e.,
before PT-Rand relocates the initial page tables, a few kernel
functions already invoke the modified macro. However, at this
point of system state, the memory map is not yet initialized.
Hence, the macro cannot yet access the flag field. We solved
this problem by utilizing an unused macro called __boot_va
which performs the same operation as the uninstrumented
version of the __va macro. We patched all functions that
are executed before the memory map is initialized to use the
unmodified __boot_va macro.

VI. EVALUATION

In this section, we present the evaluation results for PT-
Rand. We first analyze security aspects such as randomization
entropy and leakage resilience. Thereafter, we present a thor-
ough investigation of the performance overhead incurred by
PT-Rand. For this, we conducted micro-benchmarks on hot
code paths, measure performance overhead based on SPEC
CPU industry benchmarks, and quantify the impact on complex
applications such as browsers.

A. Security Considerations

Our main goal is to prevent data-only attacks against
the kernel page tables at run time. For this, we random-
ize the location of page tables per boot. In general, any
randomization-based scheme must resist the following attack
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vectors: (i) guessing attacks, (ii) memory disclosure through
code and data pointers, and (iii) memory disclosure through
spilled registers. In the following, we discuss each attack vector
to demonstrate the effectiveness of PT-Rand. We also include
an exploit in our study to demonstrate that exploit hardening
mechanisms at the kernel-level can be bypassed when PT-Rand
is not applied.

Guessing Attacks. Low randomization entropy allows the
attacker to guess the randomization secret with high probabil-
ity [47]. The randomization entropy of PT-Rand depends on:
(1) the number of guesses, (2) the size of the region where the
page tables are allocated, and (3) the overall size of memory
that is required to store all page tables.

We limit the number of attacker’s guesses by configuring
the kernel to initiate a shutdown in case of an invalid memory
access in kernel memory. Note that this has no impact on
the kernel’s execution. In fact, this was the default behavior
of previous versions of the Linux kernel. As described in
Section V-B, we utilize an unused memory region of 1TB
(40 Bit) to randomize the memory allocations for the page
tables. However, the smallest memory unit in paging is a
4KB (12 Bit) page. This means when one page table entry
is placed randomly into the PT-Rand region, 4KB of memory
become readable. Hence, the attacker does not have to guess
the correct address of a particular page table entry but only
the start address of the page which contains the entry. As a
consequence, the total randomization entropy available for PT-
Rand is 28 Bit.

For a deterministic attack, the attacker has to manipulate a
specific page table entry S that protects a specific function
of the kernel. Alternatively, it might be sufficient for the
attacker to corrupt an arbitrary valid entry A of the page table.
However, it is not guaranteed that this modification will allow
the attacker to compromise the kernel, thus, the attack success
is probabilistic. Hence, we calculate the success probability
that the attacker can correctly guess the address of the page
which contains S. We denote this probability with p(x) which
depends on the number of pages, denoted by x that contain
page table entries.

We can reduce the problem of calculating the success
probability sp(x) to a classical urn experiment without re-
placement and with three different colored balls: black, red,
and green. The black balls represent the unmapped pages. The
attacker loses the experiment by drawing a black ball (because
accessing an unmapped page crashes the operating system).
The red balls represent the valid pages, however, they do not
contain the attacker’s target page table entry S. The attacker
is allowed to continue and draw another ball, as long as the
attacker draws a red ball (access to a valid page). A green ball
represents the page containing the page table entry S that the
attacker aims to modify. With SG we denote the event that
the attacker draws the green ball eventually without drawing a
black ball (guessing the correct address of S without accessing
an unmapped page). Hence, the probability of SG is the sum
of the probabilities that the attacker draws the green ball in the
first try plus the probability that the attacker draws the green
ball after drawing the i-th red ball where i ≥ 1. The resulting
probability of SG is computed as follows:
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Figure 5: Probability for guessing attacks based on the number
of mapped pages in the PT-Rand region.
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Figure 5 plots the probability that the attacker can succeed
in guessing a specific page table entry if up to 216 memory
pages for page tables are allocated. The graph shows that even
if a high number of page table entries (PTEs) are allocated,
the attacker’s success probability is still very low ranging from
3.725∗10−9 to 3.726∗10−9. We measured the number of page
tables for a variety of different systems and configurations.
For a normal desktop system, we observed that between 2,000
and 4,000 PTE pages were allocated. If we start a virtual
machine up to 16,000 pages for PTEs are allocated. Lastly, our
server (24 cores and 64GB RAM) running 9 virtual machines
in parallel allocates up to 33,000 pages for PTEs. As shown
in Figure 5, the probability grows linearly. Therefore, even
if the attacker attempts to decrease the entropy by forcing the
operating system to allocate more pages that contain page table
entries2 the attacker’s success probability is very low. Further,
PT-Rand can prevent attacks on the entropy by limiting the
amount of page tables to a number that will guarantee a user
configurable amount of entropy.

For this reason, even if the attacker tries to decrease
the randomization entropy by forcing PT-Rand to allocate a
large amount of memory within the PT-Rand region, e.g.,
by spawning new processes, the success probability will not
increase significantly before such an attack can be detected,
e.g., by only allowing a fixed number of allocated pages.

Memory References. Memory disclosure is another severe
threat to any kind of randomization scheme. For PT-Rand, we
assume that the attacker can disclose any kernel data structure,
and therefore, possible references to page tables. Hence, we
obfuscate the references to page tables in all kernel data
structures by substituting the virtual addresses with physical

2the attacker can force the operating system to create new page table entries
by starting new processes.
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addresses. Note, there is no correlation between virtual and
physical addresses. Therefore, the attacker does not gain any
information about the real location of the page tables by
disclosing obfuscated addresses. Since our modified memory
allocator for page-table memory only returns obfuscated ref-
erences, the attacker cannot access page tables by reading
those pointers. The remaining potential source of leakage are
functions that did not use our modified allocator. Recall, all
functions that access the page tables now expect a physical
address. Hence, if these functions receive a virtual memory
address of a page table entry, they will automatically try to
translate them using the randomization secret. The result is
very likely an invalid address which will lead to a kernel crash.

Spilled Registers. As recently demonstrated in [11], even
temporarily spilled registers which contain a security-critical
value can compromise PT-Rand. To prevent any access to the
debug register (DR3) that contains the randomization secret, we
patched the Linux kernel code to never access DR3, i.e., DR3
cannot be accessed through any kernel API. Note that the CPU
does not spill debug registers during interrupts [27]. Further,
we prevent the compiler from writing the randomization secret
to the stack by performing all computations in registers and
never save or spill the result to memory. However, there might
be cases, where a register that contains an intermediate value
is spilled on the stack due to a hardware interrupt. In contrast
to software interrupts, which we disable during page walks,
hardware interrupts cannot be disabled. This opens a very small
time window that may enable the attacker to use a concurrent
thread to disclose register values, and potentially recover
parts of the randomization secret. We performed preliminary
experiments with a setting that favors the attacker to implement
this attack, and did not succeed. Nevertheless, we are currently
exploring two different strategies to mitigate such attacks. The
first strategy is to further decrease the already small time
window where register values could potentially be leaked. In
particular, we envision to instrument the page table reads,
by rewriting them with inline assembly, such that the de-
obfuscated address is only present in the register for a couple
of instructions. After accessing the page-table memory all reg-
isters that contain (intermediate values of) the randomization
secret are set to zero. Alternatively, the second strategy ensures
that the attacker cannot use a concurrent thread to access the
stack of a victim thread that got interrupted and whose registers
got temporarily spilled to memory. This can be achieved by
using different page tables per kernel thread. Specifically, this
allows us to assign stack memory per kernel thread which
cannot be accessed by other (concurrent) threads. Therefore,
even if intermediate values are spilled to memory, the attacker
cannot leak them using concurrent threads. A simpler version
of this technique, where the kernel uses a different page table
per CPU, is already deployed in the grsecurity patch [50].

Real-world Exploit. We evaluated the effectiveness of PT-
Rand against a set of real-world vulnerabilities. In particular,
we use an information disclosure vulnerability in the Linux
kernel to bypass KASLR3, and a vulnerable driver which
does not sanitize pointers provided by a user-mode application
(CVE-2013-2595) to read and write arbitrary kernel memory.

3. This vulnerability was silently fixed by the Linux kernel maintainers
which is why there was no official CVE number assigned: https://git.kernel.
org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b2f739

Based on these attack primitives, we develop an attack which
allows us to execute arbitrary code in the kernel, despite having
the kernel protected with state-of-the-art CFI for the kernel.
The goal of our attack is to (i) change the memory permissions
of a page that contains the code of a pre-defined kernel function
to writable, (ii) overwrite the function with our shellcode, and
(iii) finally trigger the execution of this function to instruct the
kernel to execute our shellcode with kernel privileges.

To retrieve the KASLR offset, we use the aforementioned
information disclosure vulnerability. The vulnerability allows
the attacker to disclose the absolute address of a kernel
function. Since we can determine the relative offset of this
function to the start address of the kernel code section, we
can compute the absolute address of the kernel after KASLR.
Based on this address, we can compute the address of every
function or global variable of the kernel since KASLR only
shifts the whole kernel by a randomized offset during boot.
In an offline analysis of the kernel image, we discovered a
global variable that holds a reference to the task_struct
of the initial process. The task_struct is a kernel data
structure in which the kernel maintains information about
each process, like id, name and assigned virtual memory.
Specifically, it contains a pointer to the mm_struct which
maintains information about the memory that is assigned to the
process. Within this structure, we discovered a virtual memory
pointer to the root of the page table of the corresponding
process.

Using the arbitrary read capability and the 1:1 mapping,
we traverse the page table to the entry that maintains the
permissions for the system call sys_setns. Next, we set this
page to writable and overwrite the beginning of sys_setns
with our shellcode. In our proof-of-concept exploit, we re-
write the function to elevate the current process’ privileges
to root. Naturally, other payloads are possible as well, like
installing a kernel rootkit. After we modified the system call
function, we set the corresponding page table entry again back
to readable and executable, and invoke the system call to
trigger the execution of our shellcode.

As explained in detail, this attack does not involve changing
any code pointer. Hence, it resembles a data-only attack that
cannot be mitigated by defenses against control-flow hijacking.
However, after hardening the kernel with PT-Rand, this attack
fails since we cannot reliably locate the correct page table entry
for system call task_struct.

Side-channel Attacks. As stated in Section IV-A, preventing
side-channel attacks is beyond the scope of this paper. How-
ever, since side-channel attacks have the potential to undermine
the security guarantees of PT-Rand, we will shortly discuss
how these attacks work and how the kernel could be extended
to prevent them.

Through side channels the attacker can disclose informa-
tion about the kernel memory layout. In particular, the attacker
discloses whether a kernel memory page is mapped. Hence, the
attacker, in user mode, will attempt to read or write to a kernel
memory page. Since kernel memory cannot be accessed by the
user-mode programs such an attempt will result in an access
violation. However, the time elapsing between the attempted
access and the access violation depends on whether the page
is mapped. Hund et al. [26] first demonstrated the feasibility
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of this attack by measuring the different timings the page fault
handler needs to deliver an exception to the user mode to
bypass kernel ASLR. Wojtczuk [56] improved this attack by
using Intel’s Transactional Synchronization Extensions (TSX)
which provides new instructions for hardware-aided transac-
tional memory. The advantage of using TSX instructions to
access kernel memory is that the faulting access does not
invoke the page fault handler, and hence, allows to execute the
previous attack of Hund et al. faster and with higher precision.

These timing-side channels exist because the user and
kernel mode share the same address space, i.e., they use the
same page tables. Hence, we can prevent such attacks by
ensuring that the user and kernel mode use different page tables
similar to Apple’s iOS [34].

Code-reuse attacks. PT-Rand is complementary to defenses
against code-reuse attacks, like CFI [1, 19], CPI [30], or fine-
grained randomization [12, 31]. We applied the open-source
version of the CFI kernel protection for Linux RAP [52] to
prevent the attacker from hijacking the control flow. Hence,
the attacker cannot use code-reuse attacks like ROP to leak
the randomization secret.

B. Performance

We measured the performance overhead incurred by PT-
Rand based on SPEC CPU2006, LMBench, Phoronix, and
Chromium benchmarks. All measurements are taken on an
Intel Core i7-4790 CPU running at 3.60GHz with 8 GB RAM
using Debian 8.2 with a recent Linux kernel, version 4.6.

SPEC CPU 2006. The SPEC CPU 2006 benchmarks measure
the performance impact of PT-Rand on CPU-intensive applica-
tions. We executed the entire benchmark suite with the default
parameters for reference tests: three iterations with reference
input. We did neither encounter any problems during the
execution (i.e., crashes) nor strong deviations in the results of
the benchmarks. Figure 6 summarizes the performance impact
of PT-Rand compared to a non-modified kernel. The average
performance overhead of PT-Rand is only 0.22% with worst-
case overhead of only 1.7%. This confirms the high efficiency
and practicality of PT-Rand for contemporary systems.

Note that a few benchmarks perform marginally better
when PT-Rand is applied. Such deviations have been also
observed in prior work, and can be attributed to negligible
measurement variances.

LMBench. Most of our modifications affect the launch and
termination phase of an application’s lifecycle. This is due to
the fact that PT-Rand needs to randomize the page tables at
program start and remove them from the 1:1 mapping. When
an application terminates, PT-Rand needs to de-randomize its
page tables and make this memory again accessible through the
1:1 mapping. Hence, we additionally tested our approach using
the popular LMBench micro benchmark suite [35] to assess
the overhead for these critical phases. Specifically, LMBench
collects timing information for process launch, fork, and exit.
We measured an absolute overhead of less than 0.1 ms on
average which is hardly noticeable to the end-user of a PT-
Rand-hardened system

Benchmark Name Relative Overhead

IOZone 1.0%
PostMark 1.8%
OpenSSL -2%
PyBench -0.9%
PHPBench -0.2%
Apache 0.8%

Table I: Phoronix benchmark results.

LMBench also includes other benchmarks, e.g., perfor-
mance impact on memory accesses, system calls or floating
point operations. We successfully executed all benchmarks and
observed no measurable impact on the performance.

Phoronix. Besides SPEC CPU2006 and LMBench we mea-
sured the performance impact of PT-Rand with the Phoronix
benchmark suite [41] which is widely used to benchmark
the performance of operating systems. Table I4 summarizes
the results which are consistent with the results of the SPEC
CPU2006 benchmarks.

Chromium. Finally, we measured the performance overhead
for Google’s Chromium in two scenarios: 1) we ran the popular
browser benchmarking frameworks JetStream, Octane, and
Kraken, to measure the run-time overhead for daily usage, and
2) we modified Chromium such that it terminates directly after
loading to measure the load-time overhead. We repeated both
experiments three times and determined the median to account
for small variances.

For the Chromium web browser, we report a run-time
overhead of -0.294% and a load-time overhead of 9.1%. The
run-time overhead represents the arithmetic mean of 0.76% for
JetStream, 1.183% for Kraken, and -2.825% for Octane.

The browser frameworks measure browser engine latency
and load, with a focus on JavaScript execution. While these
tests do not accurately measure the direct performance over-
head of PT-Rand, they provide a first estimation of the per-
formance impact on the popular end-user applications such
as a web browser. Given only -0.294% overhead, we confirm
that PT-Rand does not negatively impact performance of user
applications.

To measure the load-time overhead, we simply added a
return instruction in the main function of Chromium. This
ensures that Chromium immediately terminates after it is
completely loaded. We measured the elapsed time based on
the Unix tool time. With less than 1 ms load-time overhead
we assert that PT-Rand does not impair the user experience.
We find these results to be in line with our LMBench test
results for process creation and termination.

C. Robustness

To evaluate the robustness of PT-Rand we executed a
large number of popular user-mode applications, and the three
aforementioned benchmarking suites. We did not encounter

4 Note that we excluded some of the benchmarks because we got errors
when executing them on a vanilla system.
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Figure 6: Overhead of page table randomization on SPEC CPU2006

any crashes during these tests, and all applications behaved as
expected. To further stress test our implementation we executed
the Linux Test Project (LTP) [32]. The LTP is comprised
of different stress tests that can be used to evaluate the
robustness and stability of the Linux kernel. We executed the
most important tests under PT-Rand, and did not encounter
any deviation in the behavior compared to the vanilla kernel.
Finally, we did not encounter any compatibility issues or
crashes when combining PT-Rand with RAP [52].

VII. DISCUSSION

Choice of 64-bit. The choice of 64 bit architectures is not
a conceptual limitation. PT-Rand can be ported to 32 bit
architectures. However, similar to ASLR, PT-Rand relies on
the available randomization entropy which is known to be
low for 32 bit systems [47]. Hence, we focused our efforts
on hardening 64 bit-based architectures because nearly all
commodity desktops and servers feature 64 bit CPUs. Even
mobile devices are increasingly deploying 64 bit CPUs. As
of 2013, Apple’s iPhone embeds a 64 bit processor and iOS 9
runs exclusively on 64 bit processors. In a similar vein, Google
runs 64 bit processors for their latest Nexus smartphone.

Malicious Drivers. Our threat model does not consider in-
jection of malicious drivers. These would allow the attacker
to execute arbitrary code in kernel mode without requiring
exploitation of a memory corruption vulnerability. As such,
malicious drivers could access and leak the randomization se-
cret. However, note that all modern operating systems support
driver signing to prevent the loading of such malicious drivers
thereby ensuring that the randomization secret is not leaked to
the attacker.

Physical Attacks. Similar to previous work [13], the main
focus of this work is to prevent remote attacks against the
kernel. As a result, attacks that rely on physical access to
the victim system are beyond the scope of this work. For
instance, several attacks in the past utilized special hardware
(e.g., FireWire [44]) to create a snapshot of the physical
memory [22]. Such snapshots can be analyzed by means of

forensic tools to identify critical data structures such as the
page tables in the case of PT-Rand. However, they require
physical access to the RAM. Creating a memory snapshot
remotely to detect the location of page tables is not feasible
because the remote attacker has only access to virtual memory,
i.e., linearly scanning virtual memory will eventually lead to a
system crash since we move the page tables to a memory re-
gion where the majority of surrounding pages are not mapped.

No Disturbance of Workflow. As described in Section V, we
use a debug register to store the randomization secret. This
prevents the attacker from leaking the secret by means of a
memory disclosure. As a consequence, the chosen debug reg-
ister is no longer available for debugging purposes. However,
debug registers (DR0-DR2) are still available. Furthermore,
these debug registers are only used for hardware breakpoints.
Software breakpoints, which are far more common during
debugging, are not affected by our change.

Lastly, it is noteworthy to mention that PT-Rand does not
depend on any specific operating system features and can be
ported to other operating systems.

VIII. RELATED WORK

A. Data-only Attack and Defenses

Chen et al. [10] demonstrated the effectiveness of data-only
attacks against server applications. In particular, they showed
how to bypass authentication checks, and escalate privileges
to root without the need to hijack the application’s control
flow. Hu et al. [23] created FLOWSTITCH to automatically
generate such data-only attacks. This is achieved by first ana-
lyzing the execution flow that leads to the memory-corruption
vulnerability, and then exploring how this vulnerability can be
exploited to manipulating existing data flows of the application
to leak sensitive information or escalate privileges. In a follow-
up work, Hu et al. [24] introduced the notion of data-oriented
programming (DOP) which extends these attacks to a Turing-
complete machine.

To mitigate data-only attacks a number of data-
randomization approaches have been proposed. Cadar et al. [9]
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and Bhatkar et al. [7] apply static analysis to divide data
accesses into equivalence classes. Next, they instrument all
data accesses to use a xor key per equivalence-classes for
reading and writing data from/to memory. This prevents the
attacker to exploit a memory-corruption vulnerability to access
arbitrary data. However, the instrumentation of data accesses
is expensive with up to 30% run-time overhead.

Giuffrida et al. constantly re-randomize the addresses of
data at run-time [21]. They implemented a live randomization
system for Minix3 and report a modest overhead of 5%.
However, between each randomization the attacker has a small
time window where the attacker can leak the address, and
manipulate content of the targeted data. Bigelow et al. [8]
avoid this time windows in the context of server applications
by re-randomizing the address space after the data was sent
over the network. Hence, all potentially leaked information are
re-randomized when they reach the attacker.

B. Register-based Information Hiding

Many defenses rely on a secret value that should not be
disclosed to the attacker. To do so, one possibility is to store the
secret value in a register. TRESOR [36] uses a debug register
of x86 to hide an AES key from attackers. Similar to PT-
Rand, Oxymoron [6], Code-Pointer Integrity [30], and ASLR-
Guard [33] use a register to hide the base address of a memory
region that contains sensitive data. In particular, these defenses
use a segmentation register to hide their trusted computing base
from the attacker.

C. Kernel and Page Table Protection

Several kernel defenses have been proposed that also
protect the page table against malicious manipulations [4,
13, 20, 45, 54]. In general, existing approaches are based
on a dedicated kernel monitor that enforces a set of pre-
defined policies at run time, including integrity policies for
page tables. To the best of our knowledge, PT-Rand is the
first approach which follows a randomization-based approach
to defend against data-only attacks against page tables.

SecVisor [45] and HyperSafe [54] follow a hypervisor-
based approach. SecVisor enforces W⊕X for the kernel space
to ensure the integrity of the kernel code. This is done by using
memory virtualization to allow only certain physical pages to
be executable. SecVisor provides an interface to the kernel to
allow new physical pages to be marked as executable. These
requests are checked against a user-provided policy which is
not further specified. HyperSafe protects its page tables by
marking them read-only, and checks before updating the page
tables if the update conforms to a immutable set of policies
which should prevent malicious changes of page tables. Since
the hypervisor maintains its own memory domain, virtualized
guests cannot compromise its integrity by means of data-only
attacks. However, the page tables maintained in the hypervisor
itself can be compromised by the attacker. For instance,
evasion attacks can be deployed to attack the hypervisor from a
virtualized guest system [55]. Another practical shortcoming of
hypervisor approaches is the incurred performance overhead.
SecVisor reports 14.58% average overhead (SPECInt) and
HyperSafe 5% overhead (custom benchmarks). In contrast, PT-
Rand only incurs 0.22% for SPEC CPU benchmarks. Some of

the extra overhead of SecVisor and HyperSafe can be attributed
to additional checks that go beyond table protection. However,
the hypervisor itself will always add some extra execution
overhead. In addition, these approaches rely on extra hardware
features such as virtualization extensions.

Another recent example for a hypervisor-based approach
is KCoFI [13] which enables full-system CFI enforcement
for an operating system kernel. It also securely stores the
policies for safeguarding its virtualized guests inside a memory
region that is only accessible by the hypervisor. However, this
solution also comes with significant overhead of up to 200%,
and suffers from the constraints mentioned already above,
i.e., requiring virtualization extensions and deployment of a
hypervisor.

SPROBES and TZ-RKP both leverage hardware trust an-
chors [5, 20]. In particular, both issue run-time checks for
the kernel’s memory management functions. These checks
are executed inside the hardware-enabled secure environment
ARM TrustZone. This secure environment cannot be tampered
with by any other software. The overhead of TZ-RKP is up
to 7.56%. In addition to the higher overhead, SPROBES and
TZ-RKP rely on dedicated hardware trust anchors to protect
page tables.

SKEE implements similar run-time checks to SPROBES
and TZ-RKP [4]. It utilizes the fact that ARM provides two
registers for paging. This enables SKEE to isolate the run-time
checks from the kernel. The overhead for protecting memory
management varies between 3% and 15%.

Policy-based approaches like HyperSafe [54] and
SPROBES/TZ-RKP [5, 20] mark pages that contain the
page table structures as read-only to prevent malicious
modifications. However, when the operating system needs to
update the page tables these defenses mark the corresponding
pages temporarily writable which opens a time window in
which the attacker can concurrently modify page tables entries
on the same page.

PaX/Grsecurity [50] provide a patch with various tech-
niques to further harden the Linux kernel. Amongst others
the patch aims to prevent information leaks, and randomizes
important data structures at compile time. However, it does not
deploy any techniques to explicitly prevent data-only attacks
against the page table.

Windows 10 [28] recently released an update to randomize
the base address which is used to compute the address of
page table entries. However, the randomized base address is
not protected against information disclosure attacks which is
why the attack we implemented in Section VI-A will also
work against Windows 10. In contrast, PT-Rand mitigates
information-disclosure attacks by keeping the randomization
secret in a register, which cannot be accessed by the attacker,
and by obfuscating all pointers to the page tables.

IX. CONCLUSION

Exploitation of software is a pre-dominant attack vector
against modern computing platforms. In particular, exploits
against the kernel are highly dangerous as they allow the
attacker to execute malicious code with operating system
privileges. The research community has introduced several

13



classes of exploit mitigation techniques that significantly raise
the bar of such attacks. However, these defenses build on the
assumption that the attacker cannot alter the kernel’s page
tables which is the main place to manage access permissions
of code and data memory. For the first time, we introduce a
highly-efficient randomization technique that enables effective
protection against page table corruption attacks for a contem-
porary Linux-based system. Our open-source solution, called
PT-Rand, randomizes the location of all page tables, and obfus-
cates all references to the page tables without requiring extra
hardware, costly hypervisors, or inefficient integrity checks.
PT-Rand is a practical and necessary extension to complement
existing mitigation technologies such as control-flow integrity,
code randomization, and code pointer integrity.
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