
Dynamic Virtual Address Range Adjustment
for Intra-Level Privilege Separation on ARM

Yeongpil Cho, Donghyun Kown, Hayoon Yi, and Yunheung Paek
ECE and ISRC, Seoul National University

{ypcho, dhkwon, hyyi}@sor.snu.ac.kr, ypaek@snu.ac.kr

Abstract—Privilege separation has long been considered as a
fundamental principle in software design to mitigate the potential
damage of a security attack. Much effort has been given to
develop various privilege separation schemes where a monolithic
OS or hypervisor is divided into two privilege domains where
one domain is logically more privileged than the other even
if both run at an identical processor privilege level. We say
that privilege separation is intra-level if it is implemented for
software of a certain privilege level without any involvement
or assistance of more privileged software. In general, realizing
intra-level privilege separation mandates developers to rely on
certain security features of the underlying hardware. So far,
such development efforts however have been much less focused
on ARM architectures than on the Intel x86 family mainly
because the architectural provision of ARM security features
was relatively insufficient. Unlike on x86, as a result, there exists
no full intra-level scheme that can be universally applied to any
privilege level on ARM. However, as malware and attacks increase
against virtually every level of privileged software including
an OS, a hypervisor and even the highest privileged software
armored by TrustZone, we have been motivated to develop a
technique, named as Hilps, to realize true intra-level privilege
separation in all these levels of privileged software on ARM.
Pivotal to the success of Hilps is the support from a new hardware
feature of ARM’s latest 64-bit architecture, called TxSZ, which
we manipulate to elastically adjust the accessible virtual address
range for a program. In our experiments, we have applied Hilps
to retrofit the core software mechanisms for privilege separation
into existing system software and evaluated the performance of
the resulting system. According to the experimental results, the
system incurs on average just less than 1 % overhead; hence, we
conclude that Hilps is quite promising for practical use in real
deployments.

I. INTRODUCTION

A variety of system software such as an operating system
(OS) and hypervisor has a monolithic design, which integrates
its core services into one huge code base, thereby encompass-
ing them all in a single address space and executing them in
the same processor privilege level (i.e., ring 0 and VMX-root
modes in Intel x86 or svc and hyp modes in ARM). Therefore,
bugs, errors and vulnerabilities residing in a fraction of system
software can be easily exploited to subvert other parts of or the

entire system [12], [21], [49]. Privilege separation stemming
from the work of Saltzer and Schroeder [33], [34] has been
considered as a fundamental principle in software design that
can mitigate such a security concern. To enforce this security
principle in the design, one intuitive scheme has been isolating
critical parts of system software inside another software with
higher privilege. However, there are several problems with this
scheme. First of all, it conflicts with the common tendency
that, in many cases, system software already runs with the
highest privilege level in the system. Also, the mandatory
involvement of more privileged software in its design usually
entails frequent switching between different privilege levels for
the security enforcement, which will become a definite cause
of the overall system performance degradation. Therefore, to
cure these problems, there has been active research on intra-
level schemes [15], [46], [4] whose aim is to enforce privilege
separation without any reliance on or involvement of other
privileged levels. In these schemes, system software is broken
into typically two domains: the inner and outer. Since these
domains are split from one monolithic body, they are running
in the same processor privilege level, but logically graded in a
way that the inner domain becomes more privileged than the
outer one. In most cases, the inner domain occupies just a small
fraction of the original system software, with (logically) higher
privilege, and owns exclusive control authority over sensitive
system resources, i.e., page tables and system control registers,
that are critical to security. Thus, as a trusted computing base,
the inner domain can defend the system software from being
subverted entirely even if the outer domain is under control of
attackers.

For protection of the inner domain, the first requirement is
to guarantee that the memory region of one domain is isolated
from the other in the same privilege level. To efficiently and
completely fulfill this requirement for intra-level isolation, one
must somehow rely on a special hardware facility that can
apply different memory protection policies respectively to both
the domains even if they share the same privilege to access
the memory space. For memory protection, the conventional
hardware support from the memory management unit (MMU)
can no longer be expected because the MMU specializes
only in enforcing access permissions according to processor
privilege levels. In view of this observation, researchers, in
their efforts to develop intra-level isolation mechanisms, had to
find alternative hardware facilities for memory protection. As
examples, there are several seminal studies [15], [46] that rely
on the write protection feature of the x86 family architecture
to implement their isolation mechanisms. The x86 processor
has a special bit, called the write-protection (WP) bit, which
is, in general, turned on or off in order to restrict or permit

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23024

write access to specific memory regions. In those studies, they
make use of the WP bit in a way that they modify page tables
to configure the memory regions for the inner domain to be
write-protected by the bit. Now when the bit is on, the outer
domain, even if it belongs to the same privilege level with
the inner domain, cannot tamper with the inner one. Along
with the isolation mechanism based on the WP bit, they have
also devised an additional mechanism to properly manipulate
the bit when the control switches between the two domains.
This domain switching mechanism works follows. When the
control is transferred to the inner domain, the bit is reset (WP
= 0), which subsequently allows the inner domain to perform
memory operations normally. After which, the bit will be set
on when the control returns back to the outer domain in order
to protect the inner domain again.

The greatest strength of the WP bit for privilege separation
is that it can provide the same write protection for virtually
all privilege levels and types of system software on the x86
processor. In modern software architectures, it is by no means
unusual for more than one levels of system software to coexist
in a system so as to provide versatile services for its users. The
most familiar case found in a real system would be that an OS
is installed together with a hypervisor. In these systems, as will
be discussed in Section II, the attackers aiming to manipulate
system resources and take over the control of a system have
been able to compromise each and every level of system
software. As a means to counteract such potential threats, the
WP bit serves by capitalizing on its all-across-level memory
protection capabilities. In fact, its versatile capabilities have
already been actively used by researchers to diversify their
intra-level privilege separation solutions for different levels of
privileged software on x86 machines like those for an OS [15]
and for a hypervisor [46].

Sadly on the other hand, such active research work has
not been conducted for ARM-based machines whose security
concerns are of utmost importance in today’s mobile market.
We ascribe this mainly to want of the ample architectural
provision of ARM’s security features for memory protection.
More specifically, ARM traditionally had no security hardware
functionally equivalent to the WP bit. Partially because of
this, it was not until recently that some efforts to develop
privilege separation solutions for ARM are reported in the
literature [4]. But these solutions still have several limitations.
Most of all, they are not truly intra-level schemes. For instance,
when they design a privilege separation solution for the OS
on ARM, they need to depend on more privileged software
(i.e., a hypervisor). This is obviously for lack of due hardware
to support intra-level isolation in ARM devices, as described
above. This results in another limitation that their design to
mandate the reliance on the hypervisor in the solution for the
OS is no longer viable to solutions for the hypervisor itself or a
TrustZone secure OS. Not surprisingly, their existing solutions
are all targeting the normal OSes running on several variations
of ARM architectures. As malware and attacks on ARM
devices increase against virtually every level of privileged
software including not a normal OS but also a hypervisor
and even a secure OS armored by TrustZone, it is essential to
develop a powerful solution that can be used to fully enforce
privilege separation at the same time in any level or type of
software on the devices.

In this paper, we introduce a novel technique, named as
Hilps, to implement intra-level privilege separation in every
level of privileged software on ARM. At the center of Hilps,
there is a hardware field, called TxSZ, which has been first in-
troduced in ARM’s latest 64-bit architecture (a.k.a AArch64).
Particularly noteworthy is the fact that we could tailor TxSZ
to function for memory protection on ARM similarly to the
WP bit on x86. For general purpose, we manipulate the values
of TxSZ in order to expand or reduce the range of the
valid (or accessible) virtual address space dynamically. To
realize the two core mechanisms for privilege separation (i.e.,
intra-level isolation and domain switching), Hilps exploits this
hardware function of TxSZ for dynamic virtual address range
adjustment, as will be explained in Section IV. In short, for
intra-level isolation, Hilps initially allocates the inner domain
region separately from the memory region reachable from the
outer domain. Later when the outer domain takes execution
control, Hilps reduces the valid virtual address range so as to
leave out the inner domain region, effectively rendering the
inner domain unreadable from the outer domain. When the
control is transferred to the inner domain, the valid virtual
address range is expanded so as to cover the inner domain
region again, which will allow the inner domain to operate
normally with full access permissions on the entire memory
region for both the domains. The ultimate objective of Hilps is
to grant these domains asymmetric memory access permissions
such that the inner domain in effect becomes more privileged
than its counterpart. It is hereby worth empathizing that our
TxSZ-based mechanisms can be universally applied to system
software regardless of its privilege level. Therefore, we claim
that Hilps achieves full intra-level privilege separation on
AArch64 at all privilege levels of system software.

To test the feasibility of Hilps for intra-level privilege sep-
aration, we have retrofitted both the TxSZ-based isolation and
domain switching mechanisms into existing system software
running on AArch64, as exhibited in Section IV. Now if devel-
opers want to deploy their security applications in our security-
enhanced system, they can deploy the applications simply in
a protected region of the inner domain. As a result, residing
in the secure execution environment, the applications would
safely handle their secure transactions or monitor the poten-
tially compromised outer domain. For our experiments, we
have implemented intra-level privilege separation in existing
system software running on the versatile express V2M-Juno
r1 platform [6]. Our experiments (see Section VI) reveal that
our TxSZ-based mechanisms for privilege separation are quite
efficient in terms of performance, which we credit primarily to
the efficacious memory protection support from the underlying
TxSZ hardware. The bare system, which is augmented just
with our privilege separation mechanisms and yet without any
installed security applications, incurs on average less than
1 % overhead for the overall system. Of course, as more
security applications are installed, the overhead should increase
proportionally. However the experiments also show that it
remains reasonably small with normal application loads.

The limitation of our TxSZ-based strategy for intra-level
privilege separation is that it cannot be applied to the tradi-
tional ARM 32-bit architecture since the TxSZ field is newly
equipped in ARM’s latest 64-bit architecture. Nevertheless, we
still believe that this limitation does not significantly devalue
the technical contributions of our research because from the

2

fact that AArch64 is rapidly becoming the norm for the newest
line of ARM processors, it is evident that our solution can be
applied to not only today’s but also tomorrow’s ARM-based
computing systems in the market. The technical contributions
that we claim in this paper are listed below.

• An introduction of a novel technique, Hilps, that can
implement intra-level privilege separation on AArch64
in a variety of system software with different processor
privilege levels, such as a normal OS, a hypervisor and
a secure OS.

• An intra-level isolation mechanism that protects the
inner domain from the outer domain by elastically
adjusting the virtual address range.

• A light-weight mechanism that ensures secure switch-
ings between the inner and outer domains.

• A complete realization of Hilps that demonstrates the
feasibility of our proposed isolation and switching
mechanisms for AArch64 machines.

II. THREAT MODEL AND RELATED WORK

In this section, we motivate the need for our approach. For
this, we begin by defining the threat model, which shapes the
subsequent discussion on the comparison with related work.

A. Threat Model

1) System Software and Security Threats: ARM processors
have recently added two hardware extensions for the sake
of strengthening support for virtualization and security. The
virtualization extension enables to install and take advantage
of a hypervisor, which, as a mediator located between an
OS and the underlying hardware, facilitates the system to run
multiple OSes by controlling interactions passing through it.
The security extension, also known as TrustZone, partitions
system resources into two worlds: the normal world and
the secure world. In the normal world, which corresponds
to a conventional execution environment, a normal OS and
hypervisor are installed to execute ordinary applications and
handle interactions with users. In the secure world, on the
other hand, a secure OS is installed to build a trusted execution
environment and to securely execute trusted applications that
deal with sensitive data.

In summary, different levels of system software, such as a
normal OS, hypervisor and secure OS, can coexist in ARM-
based systems. This enriches the functionality of the system,
but it also increases security risk as it introduces additional
attack surface. For example, to subvert the system, attackers
may try to compromise a normal OS, which has control au-
thority over system resources. However, in a coexistent system,
attackers could achieve the same objective by compromising a
hypervisor or a secure OS. Which would be far more fatal
because those types of system software run with a higher
privilege level than a normal OS. Unfortunately, ensuring the
security of system software is an arduous problem, considering
that even carefully designed code inevitably contains bugs and
vulnerabilities in proportion to its size [28], [10], [29]. In fact,
normal OSes have been known to have a number of vulnerabil-
ities [1] and other levels of system software are no exception.
Hypervisors have been examined to have vulnerabilities [2],

struct tag_TC_NS_SMC_CMD {
…
unsigned int operation_phys;
…

};

int get_sys_time() {
….
// v2 and v3 are holding time values from get_time()
(int)(cmd->operation_phys + 4) = v2;
(int)(cmd->operation_phys + 4) = 1000 * v3;

}

Fig. 1. CVE-2015-4422. An example vulnerability of the secure OS.

Normal World Secure World

Outer
domain

Inner
domain

Pr
iv

ile
g
e

Le
ve

l

Outer
domain

Inner
domain

Outer
domain

Inner
domain

Normal OS

Hypervisor

Secure OS

Fig. 2. Full intra-level privilege separation.

[23], and, recently, it was shown that even secure OSes can
be compromised by exploitable vulnerabilities [38], [31], [43],
[32].

For example, Figure 1 describes the pseudo-code of the
vulnerability, CVE-2015-4422 [38], that can be used to com-
promise the secure OS of the Huawei Hisilicon Kirin 925
processor. Note that, generally, a normal OS can communi-
cate with a secure OS through a narrow interface based on
the SMC (Secure Monitor Call) instruction. In the example
system, the normal OS sends the secure OS a command
with the tag_TC_NS_SMC_CMD structure, which is allocated
in the normal OS. If the secure OS receives a command,
then it handles the command and returns a result to the
normal OS. In this case, the get_sys_time() function
of the secure OS returns the current time of the secure
world to the normal OS. However, the get_sys_time()
function does not check the validity of a destination address
(tag_TC_NS_SMC_CMD::operation_phys) where the
time value will be stored. Therefore, attackers in the
normal OS can manipulate arbitrary memory locations
of the secure OS by sending commands with a crafted
tag_TC_NS_SMC_CMD::operation_phys.

2) The Ability of Attackers: We assume that all software
attacks that would compromise system software can be carried
out. By exploiting vulnerabilities, attackers may attempt to do
anything allowed within the privilege level of the victim system
software. Specifically, they may exploit arbitrary memory read
capabilities to disclose secrets in system software. They may
also leverage arbitrary memory write capabilities to manipulate
control data (return addresses or function pointers) and non-
control data to subvert system software. In many cases, their
attacks involve tampering with system resources, such as page
tables and system control registers, in order to facilitate further
attacks by incapacitating protection capabilities of the system.

However, we assume that attackers do not mount side-
channel attacks to reveal secrecy of system software. They
are also assumed not to launch any types of hardware attacks.
Therefore, memory attacks, such as cold boot attacks and

3

TABLE I. COMPARISON OF HARDWARE-ASSISTED SECURITY SOLUTIONS FOR PRIVILEGED SYSTEM SOFTWARE.

Solution Need for Higher Priv. Layer Architecture Key Hardware Feature Normal OS Hypervisor Secure OS (TrustZone)
SecVisor [36] Yes x86 32/64-bit Extended Paging Support Not Support -
SIM [37] Yes x86 32/64-bit Extended Paging, CR3-Target-List Support Not Support -
SecPod [45] Yes x86 32/64-bit Extended Paging, CR3-Target-List Support Not Support -
HyperSentry [8] Yes x86 32/64-bit System Management Mode Support Support -
TZ-RKP [7] Yes ARM 32/64-bit TrustZone Support Support Not Support
SPROBES [19] Yes ARM 32/64-bit TrustZone Support Support Not Support
Nested Kernel [15] No x86 64-bit Write-Protection Support Support -
HyperSafe [46] No x86 64-bit Write-Protection Support Support -
SKEE [4] No ARM 32-bit TTBCR Support Not Support Support
SKEE [4] Yes ARM 64-bit Extended Paging Support Not Support Not Support
Hilps No ARM 64-bit TxSZ Support Support Support

bus monitoring attacks, are beyond the scope of this paper.
Similarly, JTAG attacks are not considered either.

3) Security Guarantee: Hilps implements privilege sepa-
ration to increase the security level of system software by
isolating the inner, secure domain from the outer domain. To
defend the outer domain, which potentially be under control
of attackers, against corrupting the inner domain region, we
ensure the integrity of its TxSZ-based mechanisms for intra-
level isolation and domain switching. As a result, the code and
data (i.e., sensitive system resources and security applications)
residing in the inner domain are isolated and protected from the
outer domain. Recall that multi levels of system software may
run in a single machine. Hilps covers this typical situation by
supporting full intra-level privilege separation. Therefore, even
if different levels of system software simultaneously operate
in the system, Hilps can be applied separately and offer each
of them certain security advantage with privilege separation as
described in Figure 2.

4) Trusted Computing Base: Hilps is designed to operate
based on salient hardware features provided by AArch64.
Therefore, we assume that all hardware components do not
contain any bugs or vulnerabilities, such as RowHammer
bug [22]. We assume that the integrity of the code base
belonging to privilege separation mechanisms implemented by
Hilps is formally verifiable. That is, there is no exploitable
vulnerability in them, and this assumption is not violated
during the boot sequence because we also assume that system
software that applies our technique is loaded intact with a
secure boot mechanism such as AEGIS [41] or UEFI [44].

B. Related Work

By abandoning the monolithic design and modularizing
core services, the micro-kernel design [25], [24] can prevent
damage of a fraction of the OS kernel from spreading across
the whole kernel. Similar attempts have been made on different
system software [47], [40]. Through in-depth study [24], [47],
the performance of these schemes is almost comparable to
current monolithic system software. Nevertheless, the micro-
kernel design has been deemed unrealistic in that it usually
necessitates a complete remodeling of the current system
software architecture. Considering practicality, many research
efforts have struggled to enhance the security of the monolithic
system software without major modification.

As a more realistic design to strengthen system software
security, researchers turn their focus onto an additional security
layer in the system, such as a hypervisor [36], [37], [39], [45],
SMM of Intel [20], [8], [51], [9], DRTM of Intel TXT [27] or
TrustZone of ARM [19], [7], which has a higher privilege over

the software they intend to protect. This more privileged layer
may own exclusive capability of monitoring and controlling
system resources such that it can safely guard sensitive system
resources against potential attacks. A clear advantage of this
design is that it does not entail substantial changes in the
current software architecture. However, earlier studies have
commonly agreed that this is inferior majorly in two aspects
to the intra-level privilege separation solutions introduced in
Section I. One is that it always tends to put its trust on
more privileged software for its solution to work, hence being
infeasible to solve security problems for the most privileged
software. The other is that it suffers from a longer latency,
possibly reaching up to thousands of CPU cycles [7], in
switching between two different privilege layers.

In light of analysis on other security solutions, a growing
number of studies have proposed various intra-level privilege
separation schemes attempting to provide alternative solutions.
Software Fault Isolation (SFI) [13], [26], [16], [14], one of
such schemes, is realized by integrating a number of in-lined
reference monitors [35] into system software for exhaustive ac-
cess control enforcement. SFI boasts its excellent applicability
thanks to its hardware independent design, but it has a serious
drawback that the system performance degrades proportionally
to the amount of instrumented code. To minimize performance
degradation, other research has exerted effort to attain high
efficiency by taking full advantage of underlying hardware
supports in their schemes. To this end, some researchers
strive to utilize hardware features for their hardware-assisted
memory protection capabilities. As representative examples,
Nested Kernel [15] and HyperSafe [46] have successfully
evinced the effectiveness of their hardware-assisted privilege
separation schemes in terms of performance as well as secu-
rity. In particular, as explained in Section I, their underlying
hardware feature, the WP bit, makes their solutions for privilege
separation applicable to both an OS and a hypervisor.

Due primarily to the relatively abundant hardware support
for security, a majority of privilege separation schemes have
been centered on Intel x86 architectures. To the best of our
knowledge, SKEE [4] is the only and most notable work to
realize privilege separation on ARM’s commodity processors
today. This is in fact, in our view, the closest work to
ours in that our goal is also to find a doable solution for
privilege separation on ARM. However, due to the lack of
the availability of key hardware features, SKEE can only be
applied to limited levels of system software in comparison
with Hilps. First, targeting ARM’s 32-bit architecture, SKEE
capitalizes mainly on Translation Table Base Control Register
(TTBCR) for dynamic page table activation and successfully
implements the two essential mechanisms for isolation and

4

EL0

Normal World Secure World

EL0

EL1 EL1

EL2

EL3

Fig. 3. Exception Levels of AArch64

switching described in Section I. To be more specific, SKEE
creates separate page tables for the inner domain and activates
them in a timely manner by modifying the N field of TTBCR
only when the inner domain is in control. However, as this
hardware feature is only defined in the kernel privilege level
on AArch32, SKEE is not commonly applicable to different
levels of system software, such as hypervisors.

Unfortunately, SKEE faces a similar limitation on ARM’s
64-bit architecture. As ARM has abandoned the original
TTBCR feature in this new line of processors, SKEE opts for
the software-based page table swap technique introduced by
Nooks [42]. Recall that this swap technique has an intrinsic
security loophole [39], [37] in that attackers can exploit it
to load a maliciously crafted page table. To resolve the
problem, SKEE resorts to an additional method that hardens
the technique in a way to operate deterministically. For this, it
is compelled to rely on a complementary technique, called
extended paging, which must be supported and controlled
by a hypervisor. Despite the lack of due hardware support,
the solution manages to achieve remarkable performance. It,
however, also comes with a major limitation. The mandatory
involvement of a hypervisor for extended paging manifests its
limitation that the same solution is not viable for privilege
separation on the hypervisor itself or secure OS. In contrast,
owing to the availability of TxSZ at all levels of system
software on AArch64, Hilps can be equally applied to any
types of system software.

Table I summarizes the comparison of Hilps and other
hardware-assisted security solutions for system software. To
compare the coverage of each solution, we deemed that a
solution supports a specific type of system software if its key
hardware features are available on the privilege level where
the system software runs. For example, the TrustZone-based
approach of TZ-RKP [7] can be adopted to not only a normal
OS but also a hypervisor. Therefore, even if authors of TZ-RKP
did not handle a hypervisor in their paper, we considered that
TZ-RKP can support a hypervisor as well. Such a comparison
clearly shows two advantage of Hilps. First, Hilps does not
require the help of higher privileged software such that it does
not unnecessarily bloat the size of trusted computing base.
Second, Hilps relies on TxSZ, which commonly exists in all
processor privilege levels of AArch64, such that it facilitates
the enforcement of intra-level privilege separation in all levels
of privileged system software.

III. BACKGROUND

In this section, we provide the background information
relevant to our target 64-bit architecture, AArch64.

TTBR1_EL1 region

TTBR0_ELx region

Never mapped

V
ir
tu

al
 A

d
d
re

ss
 S

p
ac

e

0xFFFF_FFFF_FFFF_FFFF

0x0

264-2(64-TCR_EL1.T1SZ)

0xFFFF_0000_0000_0000
(Boundary, when TCR_EL1.T1SZ = 16)

0x0000_FFFF_FFFF_FFFF
(Boundary, when TCR_ELx.T0SZ = 16)

2(64-TCR_ELx.T0SZ)-1

Fig. 4. The change of the virtual address range depending on TCR ELx.TxSZ

A. Exception Level

In AArch64, the processor privilege levels of AArch32
are mapped onto the exception levels (ELx). As described in
Figure 3, four exception levels are defined in AArch64 and
an exception level with a larger number x corresponds to a
higher privilege level. Generally, each exception level is used
to execute different levels of software as follows:
• EL0: Applications
• EL1: Normal OSes and Secure OSes
• EL2: Hypervisors
• EL3: Secure monitors1

B. Virtual Address Range

At every exception level, AArch64 provides two types of
core registers for the virtual address translation management.
As the first type, Translation Table Base Registers (TTBRs)
hold the base physical address of the current page table for
mapping between virtual and physical addresses. At level
1, there are two registers, TTBR0_EL1 and TTBR1_EL1,
provided for applications and the OS, respectively. At all
the other levels, AArch64 supports only one register, that is,
TTBR0 EL2 at EL2 and TTBR0 EL3 at EL3. As displayed in
Figure 4, TTBR0_ELx is used to translate the virtual address
space starting from the bottom (0x0), and TTBR1_EL1 is used
to translate the virtual address space starting from the top
(0xFFFF FFFF FFFF FFFF). The registers of the second type
are Translation Control Registers (TCR_ELx) that determine
various features related to address translation at each exception
level, such as translation granule size, cacheability and share-
ability. In particular, the two fields T0SZ and T1SZ within
TCR_ELx are used to define the valid virtual address ranges
that are allowed for virtual-to-physical address translation. Fig-
ure 4 depicts how virtual address ranges vary with the values
of TCR_ELx.T0SZ and TCR_EL1.T1SZ. Since the current
version of AArch64 supports the maximum virtual address
range of 48-bit (256 TB) for each TTBR, the virtual address
range reaches the boundary when TxSZ is 16, and it varies
in inverse proportion to TxSZ. In the current AArch64 Linux,
the default value of the TxSZ is 25, indicating that the 39-
bit (512 GB) virtual address range is available in each kernel
and user space. Once TxSZ is programmed, any memory
access exceeding the virtual address range is forbidden, and
the system generates a translation fault if violated.

1Generally, secure monitors act as a mediator that performs a context switch
between the normal and secure worlds.

5

Outer Domain Inner Domain

Security Application

System Control Register
Configuration

Page Table
Management

hook

hook

hook

Outer Domain
Region

Inner Domain
Region

Valid Virtual Address Range

Intra-level Isolation
Mechanism

Outer Domain
Region

Inner Domain
Region

Valid Virtual Address Range

Domain Switching
Mechanism

Interface

Fig. 5. The overview of our technique that implements intra-level privilege
separation, Hilps divides system software into the inner domain (more privi-
leged) and the outer domain (less privileged) by using the intra-level isolation
and domain switching mechanisms.

C. Translation Lookaside Buffer

A Translation Lookaside Buffer (TLB) is a hardware com-
ponent that aims to reduce the overhead of address translation
by caching recently used virtual-to-physical address mappings.
In the situation that multiple tasks run in a system concurrently,
cached TLB entries must be flushed at every context switch
between tasks in order to prevent them from being exploited
by others. However, such frequent flush would induce a
substantial increase of TLB miss rates. To eliminate such
redundant TLB flushes, therefore, AArch64 supports Address
Space Identifier (ASID) at EL0 and EL12. By adding the ASID
field to TLB entries, it permits a task to use certain TLB
entries holding the same ASID with the current. On AArch64,
the current ASID is defined by TTBR. Recall hereby that
two registers TTBR0_EL1 and TTBR1_EL1 are involved in
address translation at EL1. Therefore at this level, AArch64
lets TCR_EL1.A1 decide which ASID of these registers
becomes the current ASID.

However, adopting ASID has its drawbacks as well. In
the case of widely shared system resources, such as the OS
kernel code and data, caching them in the TLB with multiple
ASIDs might degrade performance because it increases TLB
pressure. To mitigate this problem, AArch64 presents the non-
Global (nG) flag in the page table descriptor. By clearing the
flag, the corresponding pages come to be seen from every task
regardless of their ASID values.

IV. DESIGN

In this section, we present the design and implementation
details of Hilps, focusing on the two core mechanisms of priv-
ilege separation, i.e., the intra-level isolation and the domain
switching.

A. Overview of Hilps

Figure 5 describes our technique that we use to implement
the two core mechanisms of privilege separation. We divide
system software into the inner and outer domains, adhering to

2EL2 and EL3 do not support ASID.

Outer Domain Code
(perm: rx)

Outer Domain Data
(perm: rw)

Page Table
(perm: r)

Inner Domain Code
(Not accessible)

Inner Domain Data
(Not accessible)

Outer Domain Code
(perm: rx)

Outer Domain Data
(perm: rw)

Page Table
(perm: rw)

Inner Domain Code
(perm: rx)

Inner Domain Data
(perm: rw)

Outer Domain View Inner Domain View

Fig. 6. Address space layout of the inner and outer domains with assigned
permissions. Character r, w and x mean read, write and execution, respectively.

the principle of privilege separation. We implement the intra-
level isolation mechanism to protect the inner domain. By
dynamically adjusting the range of virtual address space, this
mechanism enables the isolation and concealment of memory
for the inner domain. This operates in close interaction with
the domain switching mechanism whose primary role is to
securely transfer control between the two domains. At every
moment of control transfer, the former is controlled by the
latter in a way to reveal or hide the inner domain accordingly
in a timely manner. Basically, the key purpose of these
mechanisms is to make the two domains have asymmetric
views on the memory address space. For this, as displayed
in Figure 6, each domain is assigned different access permis-
sions for memory blocks such that the inner domain obtains
unrestricted permissions to access the whole memory region
whereas the outer one has more restricted accesses, particularly
to the region for the inner domain.

A pivotal condition for the success of this strategy is that
the outer domain must not be allowed to manipulate any
security-sensitive system resources, such as page tables and
system control registers, that may be used to invalidate our
core mechanisms. To meet this condition, the outer domain
is deprived of control authority over security-sensitive system
resources. Instead, the outer domain is only allowed to send
requests through a specified interface to the inner domain for
controlling these resources. Upon receiving such a request, the
inner domain determines whether to accept or reject it. In the
sense that a secure entity possesses exclusive control authority
over sensitive resources, our intra-level privilege separation
technique is as powerful in terms of security strength as
a conventional virtualization-based security solution relying
on trap-and-emulation. Consequently, if there are security
applications demanding a secure environment for execution,
the system software redesigned by our technique can offer
them protection and monitoring capabilities comparable to the
Virtual Machine Introspection (VMI) research [18].

B. Intra-Level Isolation Mechanism

Figure 7 illustrates how we realize the intra-level isolation
mechanism based on the dynamic virtual address range adjust-
ment. By either reducing or expanding the range of the valid
address space at runtime, Hilps blocks or allows access to the
memory region of the inner domain depending on which of the

6

Outer Domain

TTBR1_EL1
(TCR_EL1.T1SZ=27)

128 Entries
VA[36:30]

Outer Domain

TTBR1_EL1
(TCR_EL1.T1SZ=25)

512 Entries
VA[38:30]

0

127

0

384

Inner Domain

Outer Domain
(Not used)

Virtual Address Space

383

128
127

511

Outer Domain Code

Outer Domain Data

Inner Domain Code

0xFFFF_FFE0_0000_0000

0xFFFF_FFFFF_FFFF_FFFF

0xFFFF_FFDF_FFFF_FFFF

0xFFFF_FFA0_0000_0000

Shadow Mappings
of Page Tables

(perm: rw)

Inner Domain Data

Inner Domain
(Not available)

Outer Domain
(Not available)

1st-Level Page Table Entries
in Outer Domain

boundary

boundary

1st-Level Page Table Entries
in Inner Domain

Outer Domain

(37-bit, TCR_ELx.T0SZ=27)
or

(37-bit, TCR_EL1.T1SZ=27)

Inner Domain

(38-bit, TCR_ELx.T0SZ=26)
or

(39-bit, TCR_EL1.T1SZ=25)

Outer Domain

(37-bit, TCR_ELx.T0SZ=27)
or

(37-bit, TCR_EL1.T1SZ=27)
Time

Inner Domain

(38-bit, TCR_ELx.T0SZ=26)
orr

(39-bit, TCR_EL1.T1SZ=25)

(b) The address mapping strategy when system software uses TTBR1

(c) Timeline of virtual address range adjustment

Outer Domain

TTBR0_ELx
(TCR_ELx.T0SZ=27)

128 Entries
VA[36:30]

TTBR0_ELx
(TCR_ELx.T0SZ=26)

256 Entries
VA[37:30]

0

127

0

Inner Domain

Outer Domain

Virtual Address Space

255

128
127

Inner Domain Code

Inner Domain Data

Outer Domain Code

0x0000_0020_0000_0000

0x0000_003F_FFFF_FFFF

0x0000_001F_FFFF_FFFF

0x0000_0000_0000_0000

Outer Domain Data

Inner Domain
(Not available)

1st-Level Page Table Entries
in Outer Domain

boundary

boundary

1st-Level Page Table Entries
in Inner Domain

(a) The address mapping strategy when system software uses TTBR0

Page Tables
(perm: r)

Shadow Mappings
of Page Tables

(perm: rw)

Page Tables
(perm: r)

Fig. 7. The virtual address mapping strategies for isolating the inner domain from the outer domain. A hypervisor and a secure monitor running at EL2 and
EL3, respectively, use the mapping strategy (a), and a normal OS and a secure OS running at EL1 use the mapping strategy (b).

7

1st-Level Page Table Entries

Outer Domain Entries
(in Inner Domain)

Inner Domain Entries

Outer Domain Entries
(in Outer Domain)

Outer Domain
Entries

Inner Domain
Entries

2nd-Level Page Table Entries

0

384
383

128
127

511

Fig. 8. The linkage between the first-level and second-level page table entries
at EL1.

two domains is currently in control. When the outer domain
seizes execution control, Hilps leaves the inner domain region
out of the valid virtual address range, thereby preventing the
inner domain from being exposed and possibly exploited. On
the other hand, while the inner domain holds execution control,
the valid virtual address range is expanded to cover both the
inner and outer domain regions, implying that the inner domain
owns a full access coverage reaching the entire memory space.

1) Intra-Level Isolation with TTBR0: Figure 7.(a) describes
our general address mapping strategy used to carry out intra-
level isolation that can be applied for any system software
running with TTBR0_ELx at all exception levels ELx, such
as a hypervisor (EL2) and secure monitor (EL3). Note that
as the two domains share the same page table, the value of
TTBR0_ELx remains constant whether either the inner or
outer domain is in control. While the outer domain has control,
its valid virtual address range is restricted to 37-bits3 (128
GB) by setting TCR_ELx.T0SZ to 27. By doing this, all 128
first-level entries of the current page table, indicated by the
upper seven bits of the virtual address (VA[36:30]), are used
to map the outer domain. In this case, the outer domain cannot
access the inner domain because there are no valid entries
associated with the memory region of the inner one. On the
other hand, when the inner domain has control, the valid virtual
address range is expanded to 38-bits (256 GB) by changing
TCR_ELx.T0SZ to 26. As a result, the number of valid first-
level entries of the current page table increases to 256 from
128, and the upper eight bits of the virtual address (VA[37:30])
indicate associated entries. In this case, the original 128 entries
still correspond to the memory region of the outer domain, and
the expanded 128 entries are used for the inner domain, located
outside of the outer domain. Therefore, the inner domain can
access the entire memory regions of both domains without
restrictions.

2) Intra-Level Isolation with TTBR1: A normal OS and
secure OS, which typically run at EL1, adopt TTBR1_EL1
for address translation on AArch64. Unfortunately, for
OSes, we cannot use the general isolation mechanism de-
signed for other system software adopting TTBR0_ELx,
described in Section IV-B1. That is because the transla-
tion style with TTBR1_EL1 somewhat differs from that
with TTBR0_ELx. To explain this in more detail, recall
our remarks in Section III-B that the virtual address space

337-bits refers to a quarter of the default virtual address range setting of
Linux, but we believe it would be enough for mobile devices.

translated by TTBR1_EL1 expands in the opposite direc-
tion to that by TTBR0_ELx. This means that when Hilps
increases or decreases the value of TCR_EL1.T1SZ, the
valid virtual address range and the valid first-level entries
of the current page table change in the opposite direction.
For example, when TCR_EL1.T1SZ is 27, the address
0xFFFF FFE0 0000 0000 is linked to the 0th first-level entry
(see VA[36:30] is 0). Whereas, when TCR_EL1.T1SZ is
changed to 26, the same virtual address is linked to the
256th entry (see VA[37:30] is 256), and instead, the address
0xFFFF FFC0 0000 0000 is linked to the 0th entry (see
VA[37:30] is 0). Such a discrepancy in the linkage between
the virtual addresses and the first-level page entries would lead
the same virtual addresses of the inner and outer domains to
be mapped to different physical addresses.

To resolve the problem, Hilps introduces an alternative
address mapping strategy illustrated in Figure 7.(b). In this
case, the valid virtual address range of the inner domain
(39-bit, 512 GB) is four times larger than that of the outer
domain through a change of TCR_EL1.T1SZ to 25 from
27; accordingly, the number of the first-level entries of the
current page table increases to 512 from 128. Hilps uses 256
entries in the middle (from the 128th to the 383rd) to map
the inner domain region. Note that, even if the bottom 128
entries (from the 0th to the 127th) are originally used to map
the outer domain region, Hilps, in the inner domain, does not
use these entries to map the outer domain region due to the
aforementioned discrepancy problem. Instead, Hilps uses the
top 128 entries (from the 384th to the 511st) for this purpose,
as, in the inner domain, these entries correspond to the virtual
address space of the outer domain region. To do this, Hilps
copies the contents of the bottom 128 entries to the top 128
entries, thereby configuring the top first-level entries to point
to the same second-level entries that are pointed to by the
bottom first-level entries as described in Figure 8. As a result,
Hilps can let the inner domain access the outer domain region
without the discrepancy problem because the virtual address
space of the outer domain region remains the same between
the inner and outer domains. Lastly, as the inner domain must
be able to maintain a synchronized address view of the outer
domain, if the bottom 128 entries of the current page table
are populated or modified, Hilps repeats the same operations
onto the top 128 entries. This synchronization method does
not incur any noticeable overhead as the first-level entries are
rarely modified after initial set-up.

3) Shadow Mappings of Page Tables: To prevent the outer
domain from modifying the contents of page tables, the
memory regions of page tables are configured as read-only.
However, as the inner and outer domains share the same
page tables, the inner domain also can be hindered by such a
restriction. To address this problem, Hilps creates the shadow
mappings of the page tables that are configured as not only
readable but also writable and locates them by adding a fixed
offset in the virtual address space of the inner domain as
described in Figure 7. Therefore, the inner domain can update
the contents of the page tables through the shadow mappings.

4) Page Table Integrity: To maintain the validity of the
intra-level isolation mechanism, Hilps must ensure that the
page tables satisfy the following constraints: (1) no part of the
inner domain can be mapped to the memory region of the outer

8

domain, (2) the outer domain code must be configured as read-
only, and (3) privileged instructions that can configure system
control registers must not be executable in writable memory
regions or in less privileged software’s memory regions4. To
achieve this, Hilps adopts the paging delegation technique used
in previous work [7], [45], [15], [4]. Hilps allows only the inner
domain to conduct page table modifications after verifying
that each modification adheres to these constraints. In order
to accomplish this, Hilps initially configures page tables as
read-only to prevent the outer domain from modifying them.
In addition, it instruments the outer domain code to route all
page table modification operations to the inner domain. The
inner domain then checks the constraints and performs those
operations for the outer domain. Although the page tables
are configured as read-only, the inner domain can modify
the contents of the page tables through the shadow mapping
described in Section IV-B3.

5) Control Authority for System Control Registers: Even
if the integrity of the page tables is preserved, our isolation
mechanism can still be incapacitated through exploiting system
control registers. For example, the outer domain could modify
SCTLR to remove memory protection by disabling the MMU
or TCR to enlarge its virtual address range and access the
inner domain region. Therefore, Hilps must deprive the outer
domain of control authority over system control registers. For
this, similar to past research [7], [15], [4], Hilps replaces
privileged instructions that control such sensitive registers in
the outer domain with hooks so as to verify and emulate
them in the inner domain. We can ensure the validity of this
method because, first, as instruction opcodes have a fixed
length and are aligned on AArch64, Hilps can exhaustively
identify privileged instructions. Second, due to the constraints
enforced on the page tables mentioned in Section IV-B4,
attackers cannot execute any privileged instruction in the outer
domain.

6) Support for Multi-core Environment: Our intra-level iso-
lation mechanism relies on the dynamic virtual address range
adjustment based on TxSZ. Fortunately, as TCR containing
the TxSZ field exists per processor core, Hilps can enforce
the intra-level isolation to each core separately by controlling
each TxSZ of cores. That is, the outer domain is banned from
accessing the inner domain region, even if the inner and outer
domains simultaneously run on different cores.

7) Support for Loadable Module: Loadable modules,
sometimes, can be added to the outer domain to extend
functionality (particularly, in a normal OS). However, it can
provide attackers with room to compromise the inner domain
by inserting privileged instructions relevant to system control
registers into the outer domain. To address this problem, if
Hilps detects any populations of new code pages or any
modifications of code pages from the outer domain, it scans
the corresponding pages to confirm whether or not they include
privileged instructions and to enforce the protection policy
described in Section IV-B5.

8) Restriction on DMA: To improve the performance, pe-
ripherals can access DRAM through Direct Memory Access
(DMA) without the mediation of the CPU. Unfortunately, it is

4This can be achieved by setting the XN (eXecute-Never) and PXN (Privi-
leged eXecute-Never) bit on the corresponding page table descriptors.

well known that attackers exploit DMA to avoid the monitoring
of a security entity residing in CPU [11], [30]. In the same way,
attackers would be able to evade monitors residing in the inner
domain.

As a means of thwarting DMA attacks, leveraging IOMMU
[3] has been popularly used on x86 systems. On ARM, Hilps
can use the System MMU [5] as the counterpart of IOMMU.
To accomplish this, Hilps prevents the outer domain from
modifying the page tables of the System MMU. Then when
a request comes from the outer domain, the inner domain
modifies the tables and allows DMA only after ensuring that
there is no page table entry pointing to an inner domain region.

However, not all peripherals can take advantage of the
System MMU. Even in this case, Hilps needs to restrict
the outer domain from controlling DMA directly. On ARM,
peripherals can perform DMA with their own custom DMA
controller or with the general-purpose DMA controller of the
SoC. In either case, the outer domain can only control DMA
through memory-mapped control registers. Therefore, similar
to DMA protection with the System MMU, Hilps can restrict
DMA by only allowing the inner domain to write to regions
corresponding to DMA control registers.

C. Domain Switching Mechanism

To transfer control between execution environments with
different privilege levels, special instructions, i.e., SVC, HVC
or SMC, have been utilized. However, Hilps cannot use this
traditional method, as the inner and outer domains run at an
identical privilege level. Therefore, Hilps needs to design and
implement its own mechanism that performs domain switching
by executing a series of ordinary instructions. To achieve
this, we create an interface function, IDC, which stands for
Inner Domain Call. The IDC performs the control switching
operation between the inner and outer domains, acting as
a wrapper function for a handler which processes incoming
requests in the inner domain. It provides the outer domain
with a unique way to enter the inner domain. In addition,
IDCs are implanted across the outer domain and are invoked
with specific parameters in order to handle sensitive resources
by sending relevant requests to the inner domain (refer to
Section IV-B4 and IV-B5).

Figure 9 describes the details of the IDC. Although this
particular implementation is intended to operate at EL1, it
is generally applicable to other ELs with slight modifications
described in Section IV-C5. The IDC is divided into the entry
and exit gates. If the IDC is invoked in the outer domain,
the entry gate disables interrupts, expands the virtual address
range, switches to the inner domain stack, and then jumps to
the inner domain handler. After the inner domain finishes its
work and returns from the handler, the exit gate executes the
sequenced tasks of the entry gate in the opposite direction.

1) Virtual Address Range Adjustment: The key role of the
IDC is to control the valid virtual address range to reveal or
conceal the inner domain region depending on the direction of
the domain switch. Hence, the entry and exit gates expand
and reduce the valid virtual address range by modifying
TCR_ELx.TxSZ.

The outer domain has no means to modify the value of TCR
by the restriction described in Section IV-B5. To expose the

9

1 /**
* Inner Domain Call (IDC)
*
* @param cmd a command
* @param [arg0-arg3] four parameters
* /

2
3
4
5
6
7 .global IDC
8 IDC:
9

10 /* The entry gate */
11 mrs x5, DAIF Read interrupt status
12 stp x30, x5, [sp, #-16]! Save interrupt status
13 msr DAIFset, 0x3 Disable interrupts
14 1:
15 mrs x5, tcr_el1 Read the current TCR
16 and x5, x5, #0xfffffffffffdffff ; Set TCR.T1SZ to 25
17 orr x5, x5, #0x400000 ; Set TCR.A1
18 msr tcr_el1, x5 Configure TCR
19 isb Instruction synchronization barrier
20
21 mov x6, #0xc03f Check the value of TCR
22 mov x7, #0x1b ; TCR.T1SZ = 25 (39-bit address space)
23 movk x6, #0xc07f, lsl #16 ; TCR.T0SZ = 27 (37-bit address space)
24 movk x7, #0x8059, lsl #16 ; TCR.TG1 = 0b10 (4KB page size)
25 and x5, x5, x6 ; TCR.TG0 = 0b00 (4KB page size)
26 cmp x5, x7 ; TCR.A1 = 1 (Use TTBR1.ASID)
27 b.ne 1b If not correct, configure TCR again
28
29 mrs x6, mpidr_el1 Get number of the current core [0-n]
30 ubfx x5, x6, #8, #4
31 and x6, x6, #0xf
32 orr x6, x6, r5, lsl #2
33 add x6, x6, #1 Add 1 to the core number

34 adrp x5, InnerDomain_stack Get the base address of the inner domain stack
35 add x5, x5, x6, lsl #12 Get the inner domain stack of the current core
36 mov x6, sp Get the outer domain stack
37 mov sp, x5 Switch to the inner domain stack
38 str x6, [sp, #-8]! Save the outer domain stack
39
40 adrp x5, InnerDomain_handler Get the address of the inner domain handler
41 blr x5 Jump to the inner domain handler
42
43
44
45 /* The exit gate */
46 ldp x6, [sp], #8 Restore the outer domain stack
47 mov sp, x6 Switch to the outer domain stack
48 2:
49 mrs x5, tcr_el1 Read the current TCR
50 and x5, x5, #0xffffffffffbfffff ; Set TCR.T1SZ to 27
51 orr x5, x5, #0x20000 ; Clear TCR.A1
52 msr tcr_el1, x5 Configure TCR
53
54 mov x6, #0xc03f Check the value of TCR
55 mov x7, #0x1b ; TCR.T1SZ = 27 (37-bit address space)
56 movk x6, #0xc07f, lsl #16 ; TCR.T0SZ = 27 (37-bit address space)
57 movk x7, #0x801b, lsl #16 ; TCR.TG1 = 0b10 (4KB page size)
58 and x5, x5, x6 ; TCR.TG0 = 0b00 (4KB page size)
59 cmp x5, x7 ; TCR.A1 = 0 (Use TTBR0.ASID)
60 b.ne 2b If not correct, configure TCR again
61
62 ldp x30, x5, [sp], #16 Restore interrupt status
63 msr DAIF, x5 Enable interrupts
64 isb Instruction synchronization barrier
65
66 ret Return to the outer domain

Fig. 9. The detailed implementation of an IDC (Inner Domain Call) at EL1. The IDC consists of the entry gate that expands the valid virtual address range
to reveal and enter the inner domain and the exit gate that reduces the valid virtual address range to hide the inner domain and return to the outer domain.

inner domain, therefore, attackers residing in the outer domain
may attempt to manipulate TCR by jumping to the TCR control
instructions (Line 18 and 52) in the gates. This could be more
fatal because TCR consists of several fields having a direct
bearing on the security of the inner domain, i.e., TxSZ, Ax and
TGx that control the address translation system. Fortunately,
all fields of TCR just hold constant values after they are set
up at system boot-up. Therefore, even if attackers succeed
to manipulate TCR, we can prevent them from accessing the
inner domain by not allowing the outer domain to run with
a modified TCR. To do this, we insert simple code snippets
confirming the correctness of the value of TCR behind TCR
control instructions, as seen in Line 21-27 and 54-60 of the
IDC code.

2) Interrupt Disabling: The IDC disables interrupts at the
entry gate to ensure the atomicity of the gates. It may simply
harden our TxSZ-based privilege separation mechanisms by
preventing control from being intercepted by the outer domain
when the control is in the gates or in the inner domain.
However, this can be bypassed if attackers bend the control-
flow to skip the interrupt-disabling instructions (Line 11-13)
in the entry gate. Attackers then can maliciously generate
interrupts to get control (1) immediately after modifying TCR
in the entry gate or (2) while the execution of the inner domain.
Figure 10 describes how we thwart this attack. We add another
code snippet, similar to Line 54-60 of the IDC code, before
the interrupt handler. The code snippet checks the value of
TCR, and if TCR does not have the value corresponding to
the outer domain (that is, interrupts are occurred in the inner
domain or in the middle of the IDC), then it halts the system.
Additionally, through the method explained in Section IV-B5,
we prohibit attackers from modifying VBAR to relocate the
interrupt handler, thereby preventing them from evading the
explained verification process for TCR.

The overall performance impact of disabling interrupts
is limited under the assumption that the inner domain does
not run time-consuming security applications. Our evaluation
results show that this assumption does not undermine the
value of Hilps. Nonetheless, supporting more complex security
applications by allowing interrupts remains as one of our goals
for future work.

3) ASID Assignment: After control returns back from the
inner domain to the outer domain, attackers in the outer domain
may be able to eavesdrop on the inner domain region through
cached TLB entries storing address mappings of the inner
domain. To resolve this problem, the IDC needs to invalidate
all TLB entries associated with the inner domain in the exit
gate before returning to the outer domain, but this solution is
likely to degrade performance as it increases the TLB miss rate.
Fortunately, AArch64 features ASID at EL1. Therefore, we
can eliminate such expensive TLB invalidations when system
software runs at EL1. To achieve this, we configure the address
space of the inner domain as non-global and assign a unique
ASID to the inner domain. Then the outer domain having a
different ASID is restricted from accessing the inner domain
through cached TLB entries due to the mis-match of the ASID.

To implement this, Hilps must change the current ASID
while switching domains. Considering that, at EL1, ASID is
defined by TTBRx_EL1, Hilps needs to change the current
ASID by updating the value of TTBRx_EL1. However, per-
forming this in the IDC may weaken the security level of
Hilps, as it may expose a sensitive TTBR update instruction
to attackers. Therefore, Hilps uses TCR_EL1.A1 to change
the current ASID. According to the default setting of AArch64
Linux, TCR_EL1.A1 is 0; i.e., TTBR0_EL1 determines the
current ASID. Hilps leaves the outer domain to follow the
setting of Linux, but in the inner domain, it lets TTBR1_EL1
determine the current ASID by toggling TCR_EL1.A1 during

10

Interrupt disabling

TCR configuration

Verification of TCR

…

Inner Domain

Jump

Interrupt

Jump

Interrupt

Interrupt Interrupt Handler

Interrupt Vector Table

Yes

at EL1:
if TCR_EL1.T1SZ == 27

at EL2 or EL3:
if TCR_ELx.T0SZ == 27

Halting the system
No

Subverting control-flow

Entry gate of IDC

…

TCR configuration

Verification of TCR

Interrupt enabling

Exit gate of IDC

Fig. 10. A defense mechanism for protecting the atomicity of the switching mechanism against control-flow hijacking attacks, initiated from the outer domain.

the domain switching. Recall that TTBRs are managed by the
inner domain; thus, Hilps can assign a unique ASID to the in-
ner domain by (1) writing a unique ASID to TTBR1_EL1 and
(2) avoiding the assignment of the same ASID to TTBR0_EL1.

4) Inner Domain Stack: The stack is frequently used as a
means of attacks, such as code reuse attacks; moreover, many
types of critical data are temporally stored in the stack. Thus,
the inner domain should use its own stack, separate from the
outer domain. Therefore, the entry gate of the IDC switches
the value of the stack pointer to a preallocated stack in the
inner domain (Line 29-38), and the exit gate restores the stack
pointer to that of the original one (Line 46-47). Note that, as
Hilps supports multi-core environments, the inner domain of
each core has its own stack.

5) Port to Different Exception Levels: When we incorpo-
rate Hilps into a normal OS or a secure OS running at EL1, we
can use the IDC as described in Figure 9. However, if Hilps
is applied to other levels of system software running at EL2
or EL3, such as a hypervisor and a secure monitor, the IDC
needs to be modified slightly. Note that the ASID feature is
not supported at EL2 and EL3; thus, the IDC must perform
the TLB invalidation to prevent the inner domain from being
revealed to the outer domain. More specifically, in the code
of IDC, TCR control instructions (Line 18 and 52) do not
have to change the value of TCR.A1 and a TLB invalidation
instruction (TLBI*) must be inserted in Line 61 of the exit
gate. Subsequently, according to Section IV-B1, the IDC needs
to set TxSZ to 26 instead of 25 when entering the inner domain
(However, this is not mandatory if the inner domain requires
a much larger address space).

D. Monitoring Capability

Our intra-level privilege separation technique can make
the inner domain provide sufficient monitoring capabilities to
security applications residing in the inner domain region. The
inner domain initially provides unrestricted memory access
for security applications. In addition, it can enable security
applications to monitor system behaviors by mimicking the
trap-and-emulation technique, widely used in virtualization
environments. To achieve this, our technique may employ

code instrumentation. By instrumenting the outer domain with
IDCs, the inner domain can accumulate the behavior of
the outer domain, such as system call invocations or system
resource accesses, and pass them to security applications for
monitoring. Second, as the inner domain has exclusive control
authority over page tables, it can enforce access-policies over
specific regions of the outer domain. The inner domain can
also detect access-policy violations by inserting IDCs into the
exception handler of the outer domain and can then let security
applications inspect these violations.

V. IMPLEMENTATION

In this section, we explain how we implemented a pro-
totype of Hilps to demonstrate the feasibility. The prototype
is incorporated into AArch64 Linux Kernel 3.10 of Android
5.1.1

For a prototype implementation, the kernel corresponding
to the outer domain should be modified to be deprived of
control capabilities for sensitive system resources. For this, we
substituted IDCs for privileged instructions of the kernel that
modify the contents of page tables and sensitive system control
registers, such as TCR, TTBR0_EL1, TTBR1_EL1, VBAR and
SCTLR, which can affect the safety of the inner domain. We
also modified the kernel to configure all page tables as read-
only by setting access permission bits of specific page table
entries mapping the memory regions of the page tables. This is
necessary to prevent the page tables from being compromised
by attackers, but entails a problem in implementation. Actually,
as there are mixed-pages containing both page tables and
kernel data objects, an access permission modification to the
mixed-pages would disturb benign memory operations for the
kernel data objects and cause the kernel to crash. To address
this problem, we eliminated such mixed-pages by reserving
read-only memory regions and allocating page tables from
these regions.

TABLE II. ROUND-TRIP CYCLES (RTC)

Big core Little core
w/ ASID w/ TI w/ ASID w/ TI

RTC 424 832 210 249

11

TABLE III. LMBENCH RESULTS

Big core Little core

Test Native Hilps Overhead Native Hilps Overhead
w/ ASID w/ TI w/ ASID w/ TI w/ ASID w/ TI w/ ASID w/ TI

null syscall 0.44 0.44 0.44 0.00 % 0.00 % 0.43 0.44 0.44 2.33 % 2.33 %
open/close 6.37 6.35 6.44 -0.31 % 1.10 % 12.65 12.67 12.74 0.16 % 0.71 %
stat 2.65 2.64 2.66 -0.38 % 0.38 % 5.06 5.11 5.14 0.99 % 1.58 %
sig. handler inst 0.68 0.68 0.69 0.00 % 1.47 % 0.91 0.91 0.91 0.00 % 0.00 %
sig. handler ovh 3.26 3.27 3.32 0.31 % 1.84 % 5.98 5.94 5.97 -0.67 % -0.17 %
pipe latency 12.81 14.27 18.38 11.40 % 43.48 % 26.70 28.54 31.80 6.89 % 19.10 %
page fault 1.88 2.40 3.80 27.66 % 102.13 % 2.81 3.69 5.52 31.32 % 96.44 %
fork+exit 148.36 176.84 240.18 19.20 % 61.89 % 255.05 292.21 369.69 14.57 % 44.95 %
fork+execv 163.58 195.35 254.10 19.42 % 55.34 % 279.70 314.50 396.36 12.44 % 41.71 %
mmap 2323.00 2796.00 3992.00 20.36 % 71.85 % 4654.00 5187.00 6718.00 11.45 % 44.35 %

TABLE IV. SYNTHETIC BENCHMARK RESULTS

Test Native Hilps Overhead
w/ ASID w/TI w/ ASID (σ) w/ TI (σ)

CF-Bench 42243.5 41111.8 36770.4 2.68 % (11.00) 12.96 % (13.58)

GeekBench single core 842.6 844.4 840.0 -0.21 % (0.93) 0.31 % (0.97)
multi core 1891.6 1880.5 1886.0 0.59 % (0.98) 0.30 % (1.64)

Quadrant 8137.9 8092.7 8139.2 0.56 % (1.48) -0.02 % (1.47)

Smartbench productivity 4382.3 4291.8 4494.5 2.07 % (10.80) -2.56 % (4.26)
gaming 2597.7 2552.4 2563.4 1.74 % (13.45) 1.32 % (9.29)

Vellamo browser 2895.1 2893.2 2862.6 0.07 % (2.03) 1.12 % (2.63)
metal 1350.9 1352.6 1348.9 -0.13 % (0.47) 0.15 % (0.57)

Antutu 41033.9 40964.3 40298.7 0.17 % (2.22) 1.79 % (1.83)

To retrofit our technique into the kernel, additional modi-
fications are needed. We defined memory regions for the page
tables and the inner domain’s code and data by modifying
the linker script of the kernel. In the early boot-up sequence
(before enabling the MMU), kernel page tables are initialized
to map these memory regions following our mapping strategy
described in Figure 7. Page table regions are mapped in the
outer domain with read-only permission. The inner domain
regions are mapped out of the valid address space of the outer
domain. Subsequently, the outer domain transfers control to
the inner domain by invoking an IDC. The inner domain
then initializes its data structures and creates the shadow
mappings of the page tables to be able to perform page table
managements instead of the outer domain. Next, it enables the
MMU by configuring SCTLR and returns to the outer domain.

Note that the protection scheme for DMA attacks is not
considered. However, we do not believe that this will damage
the accuracy of the performance evaluation in the next section,
as IDC invocations for DMA protection would only account
for a small portion in the whole execution time.

VI. EVALUATION

In this section, we evaluate our intra-level isolation tech-
nique by performing a case study for measuring the per-
formance overhead of the prototype of Hilps, described in
Section V. Experiments have been conducted on the versatile
express V2M-Juno r1 platform [6], which ships with Cortex-
A57 1.15 GHz dual-core processor and Cortex-A53 650 MHz
quad-core processor in a big.LITTLE design and 2 GB of
DRAM.

Experimental Group. In the case study, as the prototype
runs at EL1 by default, our privilege separation technique can
benefit from the ASID feature. On the other hand, in the case
that the prototype does not run at EL1, the technique needs to
rely on TLB invalidation to protect the inner domain, as it can
no longer use the ASID feature. In our experiments, therefore,
we evaluate both variations of the prototype that operate with

ASID and TLB invalidation to help reasonable performance
prediction when our privilege separation technique is incorpo-
rated into different levels of system software.

A. Switching Overhead

The major portion of overhead of our privilege separation
mechanisms is from the transitions between the inner and outer
domains by IDCs. To investigate the overhead imposed by
each IDC, we invoked a null IDC, which does not perform
any operation, and measured the elapsed time using the per-
formance monitor supported by AArch64. In addition, as the
big.LITTLE is a prevalent feature in recent ARM-based mobile
devices, we performed experiments separately in big and little
cores. The experiment was repeated 100 times and the average
results are reported in Table II.

The result shows the lightweightness of the IDC. Even
though big cores operate with about two times faster clock
speed, we can see that the IDC using ASID consumes near
constant time regardless of types of cores. However, the same
tendency is not found when the IDC invalidates TLB entries.
This result is attributed to the different TLB structure of big
and little cores.

B. Micro Benchmarks

As the prototype is targetting the normal OS, it could
impose a performance penalty on system calls. To measure
such overhead, we performed experiments using the LMBench
test suite. Similar to the case of measuring RTC of the IDC,
experiments are done in consideration of the big.LITTLE
feature. Table III reports the results for two versions of the
prototype together. It shows that the prototype does not slow
down null, open/close, stat and signal handling system calls
because they do not touch sensitive resources that are managed
in the inner domain. Contrarily, the prototype degrades the
performance of other system calls that are related to memory
management. For example, to handle a page fault (by copy-
on-write or demand paging), the outer domain has to modify

12

TABLE V. LMBENCH RESULTS WITH A SECURITY APPLICATION

Big core Little core

Test Native Hilps Overhead Native Hilps Overhead
w/ ASID w/ TI w/ ASID w/ TI w/ ASID w/ TI w/ ASID w/ TI

null syscall 0.44 0.81 1.28 84.09 % 190.91 % 0.43 1.01 1.66 134.88 % 286.05 %
open/close 6.37 7.28 8.73 14.29 % 37.05 % 12.65 13.82 16.09 9.25 % 27.19 %
stat 2.65 3.09 3.78 16.60 % 42.64 % 5.06 5.79 6.84 14.43 % 35.18 %
sig. handler inst 0.68 1.09 1.64 60.29 % 141.18 % 0.91 1.49 2.19 63.74 % 140.66 %
sig. handler ovh 3.26 3.68 4.44 12.88 % 36.20 % 5.98 6.55 7.45 9.53 % 24.58 %
pipe latency 12.81 19.86 27.84 55.04 % 117.33 % 26.70 40.44 50.04 51.46 % 87.42 %
page fault 1.88 2.38 3.74 26.60 % 98.94 % 2.81 3.73 5.48 32.74 % 95.02 %
fork+exit 148.36 182.54 237.13 23.04 % 59.83 % 255.05 292.61 374.27 14.73 % 46.74 %
fork+execv 163.58 195.19 257.85 19.32 % 57.63 % 279.70 322.22 404.57 15.20 % 44.64 %
mmap 2323.00 2786.00 3878.00 19.93 % 66.94 % 4654.00 5148.00 6641.00 10.61 % 42.69 %

TABLE VI. SYNTHETIC BENCHMARK RESULTS WITH A SECURITY APPLICATION

Test Native Hilps Overhead
w/ ASID w/TI w/ ASID (σ) w/ TI (σ)

CF-Bench 42243.5 36218.1 33107.9 14.26 % (5.00) 21.63 % (4.37)

GeekBench single core 842.6 842.0 839.2 0.07 % (0.54) 0.40 % (1.04)
multi core 1891.6 1890.6 1882.3 0.05 % (1.11) 0.49 % (1.59)

Quadrant 8137.9 8032.8 8056.8 1.29 % (1.88) 1.00 % (2.28)

Smartbench productivity 4863.8 4738.4 4253.8 2.58 % (4.60) 12.54 % (6.54)
gaming 2649.9 2434.2 2613.4 8.14 % (9.58) 1.38 % (12.18)

Vellamo browser 2895.1 2892.2 2807.2 0.10 % (2.10) 3.04 % (2.32)
metal 1350.9 1341.7 1341.8 0.68 % (0.65) 0.67 % (0.67)

Antutu 41033.9 40861.1 40307.9 0.42 % (1.92) 1.77 % (2.58)

certain bits of the corresponding page table entries by invoking
IDCs. The test results also show that the performance impact
of TLB invalidations to be more significant, even considering
its relatively long RTC. This is attributed to TLB invalidations
increasing the TLB miss rate. In summary, the prototype using
ASID and TLB invalidation introduce about 8.9 % and 29.5 %
performance overhead on average, respectively.

C. Macro Benchmarks

To evaluate the performance impact of the prototype on the
overall system, we experimented with six different synthetic
benchmark applications that can be publicly downloaded from
the Google Play Store: CF-Bench 1.3, GeekBench 3.4.1,
Quardrant 2.1.1, Smartbench 1.0.0, Vellamo 3.2 and Antutu
6.0.1. We repeated each benchmark 10 times, and the results
are reported in Table IV with a standard deviation. In conclu-
sion, the final benchmark scores reflecting real-world scenarios
exhibit the feasibility of the prototype with 0.97 % (when using
ASID) and 2.42 % (when using TLB invalidation) performance
overhead on average.

D. Security Application Benchmark

If system software adopts our intra-level privilege sepa-
ration technique, developers can deploy various security ap-
plications to monitor the system. It is difficult to determinis-
tically measure or estimate the amount of influence security
applications may have on performance. Therefore, instead
of struggling to provide general information, we build, as
an example, a security application performing system call
examination and present its performance impact.

The example security application was created based on the
idea of Forrest [17]. It intercepts system calls and extracts
high-level information from them. This is relatively simple to
implement in our technique, but it provides a useful means for
monitoring the system behavior. For example, Aurasium [48]
shows that examining the system call data enables a more fine-
grained policy enforcement than that of the default permission

system of Android. Therefore, our security application mimics
Aurasium to monitor the behavior of applications. Specifically,
we first inserted IDCs in system call handlers to pass system
call numbers and arguments to the security application in
the inner domain. The transferred data are stored in a ring
buffer that are allocated in the inner domain for each core.
Then, the security application parses the data to understand
the corresponding behavior of applications. For example, by
monitoring a system call, sys_connect, and its argument,
the security application can identify the IP address and port
number of a network connection being established, thereby
denying applications access to banned websites. Moreover,
by monitoring another system call, sys_ioctl, and argu-
ments, we can track the binder, which provides an inter-
process communication capability to applications. In particular,
as applications use the binder to communicate with other
applications and service processes, by inspecting established
bind connections, the security application can monitor whether
applications comply with given access policies for services and
resources.

To measure the performance degradation when the security
application is installed, we experimented with the same micro
and macro benchmarks. The results of Table V show that this
security application incurs certain overhead in system calls
due to the number of intercepts and parsing operations, but
the overhead could be considered negligible in the case of
time-consuming system calls such as mmap. Table VI shows
that the amount of performance overhead imposed by the
example security application is acceptable. In conclusion, the
performance overhead increases to 3.07 % (when using ASID)
and 4.77 % (when using TLB invalidation) on average.

VII. DISCUSSION

In this section, we discuss remaining issues and possible
future extensions for Hilps.

Porting Effort. In order to logically deprivilege the outer
domain, Hilps entrusts the inner domain with exclusive control

13

authorities for privileged registers and page tables. We achieve
this by adopting a code instrumentation technique that incurs
porting cost. For example, we modified about 1800 SLOC
of the AArch64 Linux kernel to apply Hilps. According
to previous works using this technique [15], [4], [7], [19],
such a porting effort is commonly considered reasonable and
acceptable.

Vulnerable Security Applications. Attackers may tamper
with both the inner and outer domains by exploiting vulnera-
bilities of security applications. In Hilps, however, it would be
extremely difficult to manipulate security applications in such
a fashion. One reason is that the outer domain communicates
with a security application in the inner domain through a
very narrow interface. Another is that only authorized security
applications are included in the binary of system software,
and they are loaded intact into the system alongside Hilps via
a pre-verified secure boot sequence.

On-demand Installation of Security Applications. To
cope with attacks which cannot be handled by the security
applications existing in the inner domain, installing a new
security application would be preferred. In Hilps, updating a
firmware image is the only available means for this purpose.
However, as it adversely affects the flexibility, we consider
allowing security applications to be installed on demand. To
enable this, we plan to extend Hilps with two kinds of inter-
faces respectively supporting the development and installation
of security applications. In this case, however, Hilps itself
would be threatened if malicious security applications are
installed. To relieve this problem, we may need to strongly
isolate each security applications to inhibit their influence by
using sandbox solutions like NaCl [50].

VIII. CONCLUSION

Privilege separation has been a popular security principle
in the software design that can enhance the security level of
monolithic system software. This paper introduces our tech-
nique, Hilps, that has been developed to enforce this security
principle in system software running on ARM-based machines.
The major novelty of Hilps lies in its unique implementation
scheme for two underpinning mechanisms, domain switching
and intra-level isolation, based on the TxSZ hardware field
for dynamically adjusting virtual address ranges of running
software. Thanks to ARM’s new salient hardware support,
Hilps has been used to securely incorporate various security
solutions for the first time into all levels of privileged software
on AArch64, including a normal OS, a hypervisor and even
an ARM TrustZone secure OS. In addition, the paper argues
for practical use of our technique in real deployments by
presenting our experimental evidence that the extra runtime
overhead incurred by Hilps is acceptably small. Considering
that AArch64 is the standard architecture for ARM’s new gen-
eration 64-bit processors, we suggest that our technique would
be a viable tool to efficiently enforce privilege separation on
commodity mobile devices in the future as well as the present.

ACKNOWLEDGMENT

We thank anonymous reviewers for the support and in-
sightful remarks that improved the paper. This work was
partly supported by Institute for Information & communica-
tions Technology Promotion(IITP) grant funded by the Korea

government(MSIP) (No. R0190-16-2010, Development on the
SW/HW modules of Processor Monitor for System Intrusion
Detection) and (No. R-20160222-002755, Cloud based Secu-
rity Intelligence Technology Development for the Customized
Security Service Provisioning), the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government
(MSIP) (No. 2014R1A2A1A10051792), and the Brain Korea
21 Plus Project in 2017.

REFERENCES

[1] “Linux kernel vulnerabilities,” http://www.cvedetails.com/product/47/
Linux-Linux-Kernel.html?vendor id=33.

[2] “Xen: Vulnerability statistics,” http://www.cvedetails.com/vendor/6276/
XEN.html.

[3] D. Abramson, “Intel virtualization technology for directed i/o,” Intel
technology journal, 2006.

[4] R. B. J. M. W. S. R. W. Ahmed M. Azab, 1 Kirk Swidowski and
P. Ning, “Skee: A lightweight secure kernel-level execution environment
for arm,” in Proceedings of the Network and Distributed System Security
Symposium, 2016.

[5] ARM, “System memory management unit (smmu),” http://www.arm.
com/products/system-ip/controllers/system-mmu.php.

[6] ——, “Versatile express juno r1 development platform,” in ARM
100122 0100 00 en, 2015.

[7] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 21st ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[8] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“Hypersentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM conference on Computer
and communications security, 2010.

[9] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM Conference on Computer and Communica-
tions Security, 2011.

[10] V. R. Basili and B. T. Perricone, “Software errors and complexity: an
empirical investigation,” Communications of the ACM, 1984.

[11] M. Becher, M. Dornseif, and C. N. Klein, “Firewire: all your memory
are belong to us,” Proceedings of CanSecWest, 2005.

[12] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode,
“Rootkits on smart phones: attacks, implications and opportunities,”
in Proceedings of the 11th workshop on mobile computing systems &
applications, 2010.

[13] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Don-
nelly, P. Barham, and R. Black, “Fast byte-granularity software fault
isolation,” in Proceedings of the 22nd ACM SIGOPS symposium on
Operating systems principles, 2009.

[14] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting
applications from hostile operating systems,” Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[15] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested kernel: An operating system architecture for intra-kernel priv-
ilege separation,” in Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015.

[16] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:
Software guards for system address spaces,” in Proceedings of the 7th
symposium on Operating systems design and implementation, 2006.

[17] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proceedings of the 17th IEEE Symposium
on Security and Privacy, 1996.

[18] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection
based architecture for intrusion detection,” in Proceedings of the Net-
work and Distributed System Security Symposium, 2003.

[19] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” 2014.

14

[20] Intel, “Trusted execution technology: Software development guide,”
2008.

[21] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in Proceedings of the 23rd USENIX
Security Symposium, 2014.

[22] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in Proceeding of
the 41st Annual International Symposium on Computer Architecuture,
2014.

[23] S. T. King and P. M. Chen, “Subvirt: Implementing malware with virtual
machines,” in Proceedings of the 27th IEEE Symposium on Security and
Privacy, 2006.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in Proceedings of the 22nd ACM
SIGOPS symposium on Operating systems principles, 2009.

[25] J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th
ACM Symposium on Operating Systems Principles, 1995.

[26] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with api integrity and multi-principal mod-
ules,” in Proceedings of the 23rd ACM SIGOPS Symposium on Oper-
ating Systems Principles, 2011.

[27] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for TCB minimization,” in Pro-
ceedings of the ACM European Conference in Computer Systems, 2008.

[28] S. C. Misra and V. C. Bhavsar, “Relationships between selected software
measures and latent bug-density: Guidelines for improving quality,” in
Computational Science and Its ApplicationsICCSA, 2003.

[29] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” in ACM SIGSOFT Software Engineering
Notes, 2002.

[30] D. R. Piegdon and L. Pimenidis, “hacking in physically address-
able memory,” in Seminar of Advanced Exploitation Techniques, WS
2006/2007, 2007.

[31] D. Rosenberg, “Qsee trustzone kernel integer overflow,” in Black Hat
USA, 2014.

[32] T. Roth, “Next generation mobile rootkits,” in Hack In Paris, 2013.

[33] J. H. Saltzer, “Protection and the control of information sharing in
multics,” Communications of the ACM, 1974.

[34] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, 1975.

[35] F. B. Schneider, G. Morrisett, and R. Harper, “A language-based
approach to security,” in Informatics, 2001.

[36] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in Pro-
ceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles, 2007.

[37] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitor-
ing using hardware virtualization,” in Proceedings of the 16th ACM
conference on Computer and communications security, 2009.

[38] D. Shen, “Attacking your trusted core: Exploiting trustzone on android,”
in Black Hat USA, 2015.

[39] A. Srivastava and J. T. Giffin, “Efficient monitoring of untrusted kernel-
mode execution,” in Proceedings of the Network and Distributed System
Security Symposium, 2011.

[40] U. Steinberg and B. Kauer, “Nova: a microhypervisor-based secure vir-
tualization architecture,” in Proceedings of the 5th European conference
on Computer systems, 2010.

[41] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“Aegis: architecture for tamper-evident and tamper-resistant process-
ing,” in Proceedings of the 17th annual international conference on
Supercomputing, 2003.

[42] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[43] J. Thomas and N. Keltner, “Here be dragons,” in RECON Canada, 2014.

[44] E. Unified, “Inc. unified extensible firmware interface specification,”
2014.

[45] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou, “Secpod: a framework
for virtualization-based security systems,” in USENIX Annual Technical
Conference, 2015.

[46] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proceedings of the 31st
IEEE Symposium on Security and Privacy, 2010.

[47] C. Wu, Z. Wang, and X. Jiang, “Taming hosted hypervisors with
(mostly) deprivileged execution.” in Proceedings of the Network and
Distributed System Security Symposium, 2013.

[48] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications,” in Proceedings of the 21st USENIX
Security Symposium, 2012.

[49] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

[50] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in Proceedings of the 30th IEEE
Symposium on Security and Privacy, 2009.

[51] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A hardware-
assisted integrity monitor,” Dependable and Secure Computing, IEEE
Transactions on, 2014.

15

