TenantGuard: Scalable Runtime Verification of
Cloud-Wide VM-Level Network Isolation

Yushun Wang, Taous Madi, Suryadipta Majumdar Yosr Jarrays,
Amir Alimohammadifat, Makan Pourzandij Lingyu Wang and Mourad Debbabi
*CIISE, Concordia University, Canada
Email: {yus wang, t madi, sumajum, amialim, wang, debbaB@encs.concordia.ca
TEricsson Security Research, Ericsson Canada
Email: {yosr.jarraya, makan.pourzand®ericsson.com

Abstract—Multi-tenancy in the cloud usually leads to security
concerns over network isolation around each cloud tenant’s
virtual resources. However, verifying network isolation in cloud
virtual networks poses several unique challenges. The sheer size
of virtual networks implies a prohibitive complexity, whereas
the constant changes in virtual resources demand a short re-
sponse time. To make things worse, such networks typically
allow fine-grained (e.g., VM-level) and distributed (e.g., security
groups) network access control. Those challenges can either
invalidate existing approaches or cause an unacceptable delay
which prevents runtime applications. In this paper, we present
TenantGuard, a scalable system for verifying cloud-wide, VM-
level network isolation at runtime. We take advantage of the
hierarchical nature of virtual networks, efficient data structures,
incremental verification, and parallel computation to reduce the
performance overhead of security verification. We implement our
approach based on OpenStack and evaluate its performance both
in-house and on Amazon EC2, which confirms its scalability and
efficiency (13 seconds for verifying 168 millions of VM pairs).
We further integrate TenantGuard with Congress, an OpenStack
policy service, to verify compliance with respect to isolation
requirements based on tenant-specific high-level security policies.

. INTRODUCTION
The widespread adoption of cloud is still being hindered

by security and privacy concerns, especially the lack of trans-

parency, accountability, and auditability] [1]. Particularly, in
a multi-tenant cloud environment, virtualization allows opti-

mal and cost-effective sharing of physical resources, such as
computing and networking services, among multiple tenants.
On the other hand, multi-tenancy is also a double-edged
sword that often leads cloud tenants to raise questions like:

“Are my virtual machines (VMs) properly isolated from other
tenants, especially my competitors?” In fact, network isolation
is among the foremost security concerns for most cloud
tenantsl[[2],[[8], and cloud providers often have an obligation to
provide clear evidences for sufficient network isolation [4], [5],

either as part of the service level agreements, or to demonstrate

Permissionto freely reproduceall or part of this paperfor noncommercial
purposess grantedprovidedthat copiesbearthis notice and the full citation
on the first page.Reproductionfor commercialpurposess strictly prohibited
without the prior written consenbf the InternetSociety,the first-namedauthor
(for reproductionof an entire paperonly), and the author’'s employerif the
paperwas preparedwithin the scopeof employment.

NDSS’17, 26 February- 1 March 2017, SanDiego, CA, USA

Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23365

compliance with security standards (e.g., ISO 27002/27017 [6],
[7] and CCM 3.0.1[]8]).

Verifying network isolation potentially requires checking

that VMs are either reachable or isolated from each other
exactly as specified in cloud tenants’ security policies. In
contrast to traditional networks, virtual networks pose unique
challenges to the verification of network isolation.

- First, the sheer size of virtual networks inside a cloud
implies a prohibitive complexity. For example, a decent-
size cloud is said to have around 1,000 tenants and
100,000 users, with 17 percent of users having more than
1,000 VMs [9], [10]. Performing a cloud-wide verification
of network isolation at the VM-level for such a cloud
with potentially millions of active VM pairs using existing
approaches results in a significant delay (e.g., Plotkin et
al. [11] take 2 hours to verify 100k VMs). Most existing
techniques in physical networks are not designed for such
a scale, and will naturally suffer from scalability issues
(a detailed review of related work is given in Sectigh II)
and quantitative comparison with state-of-the-art work is
provided in Section V1.

- Second, the self-service nature of a cloud means virtual
resources in a cloud (e.g., VMs and virtual routers or
firewalls) can be added, deleted, or migrated at any
time by cloud tenants themselves. Consequently, tenants
may want to verify the network isolation repeatedly or
periodically at runtime, instead of performing it only
once and offline. Moreover, since any verification result
will likely have a much shorter lifespan under such a
constantly changing environment, tenants would naturally
expect the results to be returned in seconds, instead of
minutes or hours demanded by existing approaches [11].

- Third, a unique feature of virtual networks, quite unlike
that in traditional networks, is the fine-grained and dis-
tributed nature of network access control mechanisms. For
example, instead of only determined by a few physical
routers and firewalls, the fate of a packet traversing virtual
networks will also depend on the forwarding and filtering
rules of all the virtual routers, distributed firewalls (e.g.,
security groups in OpenStadk [12]), and network address
translation (NAT), which are commonly deployed in a
very fine-grained manner, such as on individual VMs.
Unfortunately, most existing works fail to reach such a
granularity since they are mostly designed for (physical)

network-level verification (i.e., between IP prefixes) in-
stead of VM-level verification with distributed firewalls.

Motivating Example. Figure[1 shows the simplified view of
a multi-tenant cloud environmehihe solid line boxes depict
the physical machinesM compute nodes and one network
node) inside which are the VMs, distributed firewalls (ségur
groups), and virtual routers or switches. The virtual resesi
of different tenants (e.gyM_A1 of Alice, andVM B2 of Bob)
are depicted by different filling patterns.

performed every five minutes and is expecting to see the
results within a few seconds, since she knows the result
may only be valid until the next change is made to the
virtual networks (e.g., adding a port by Bob). Finally, to
perform the verification, Alice must collect information
from heterogeneous data sources scattered at different
locations (e.g., routing and NAT rules in virtual routers,
host routes of subnets, and firewall rules implementing
tenant security groups).

% Alice’s resources "l”" Bob’s resources

([Jwm

Compute node 1

Compute node N

<> Security group O Virtual router

External Network

Network node

VM_AL
Priv: 10.0.0.12

VLAN 200
‘ VLAN 103
1

VLAN 100
|

VM_B2

Priv: 19.0.0.30
Pub: 1.10.1.12

VLAN 300

’ VLAN 103
\

te Alloyv src
1.19.0.75
VLAN 201
|

Virtual Switch

Virtual Switch

Virtual Switch

Virtual Switch

* I

[VNefI0T

Nef TT0

Ay
1

oo
T

Nef 200

Fig. 1. An Example of a Multi-Tenant Cloud

In this paper, we presefienantGuarda scalable system
for verifying cloud-wide, VM-level network isolation at nd
time, while considering the unique features of virtual rates,
such as distributed firewalls. To address the aforemerdione
challenges, our main ideas are as follows. First, TenantGua
takes advantage of the hierarchical structure found in most
virtual networks (e.g., OpenStack includes several attibra
layers organized in a hierarchical manner, including VM
ports, subnets, router interfaces, routers, router gaevwand
external networks) to reduce the performance overhead of
verification. Second, TenantGuard adopts a top-down approa
by first performing the verification at the (private and paplP
prefix level, and then propagating the partial verificatiesults
down to the VM-level through efficient data structures with
constant search time, such as radix binary tries [15] and X-
fast binary tries[[16]. Third, TenantGuard supports inczatal
verification by examining only parts of the virtual networks

- Network isolation may be compromised through eij- affected by a _configuration_change_. Finally, Tena_ntGuard
ther unintentional misconfigurations or malicious attacksl€verages existing cloud policy services to check isofatio

exploiting implementation flaws. For example, assumeesults against tenant-specific high-level security pesicThe
the current security policies of tenants Alice and Bobfollowing summarizes our main contributions:

allow their VMs VM A1 and VM B2 to be reach-
able from each other, as reflected by the two secu-
rity group rulesal | ow src 1.10.1.12 andal | ow
src 1.10.0.75. Now suppose Alice would like to
stop accesses to her VWM A1, and therefore she deletes
theruleal | ow src 1. 10. 1. 12 and updates her high
level defined security policy accordingly. However, Alice
is not aware of an OpenStack vulnerability OSSA 2015-
021 [13], which causes such a security group change to
silently fail to be applied to the already running VM
VM Al. At the same time, a malicious user of tenant
Bob exploits another vulnerability OSSA 2014-0081[14]
by which OpenStack (Neutron) fails to perform proper
authorization checks, allowing the user to create a port
on Alice’s virtual routerR_A3 and subsequently bridges
that port to his own routeR_B1. Consequently, Alice’s
VM, VM A1, will remain to be accessible by Bob, which
is a breach of network isolation.

- To detect promptly such a breach of network isolation, the
challenge Alice faces is again threefold. First, assume the
cloud has25,000 active VMs among which Alice owns
2,000. Since all those VMs may potentially be the source
of a breach, and each VM may have both a private IP and
a dynamically allocated public IP, Alice potentially has to
verify the isolation betweeg5,000 x 2,000 x 2 = 100
millions of VM pairs. Second, despite such a high com-

1To make our discussions more concrete, the examples wiltlyrnos based
on OpenStack, and Sectipn VIl discusses the applicabifityuo approach to
other cloud platforms.

We propose an efficient cloud-wide VM-level verification
approach of network isolation with a practical delay for
runtime applications 13 seconds for verifying25, 246
VMs and 168 millions of VM pairs, as detailed in

Section V).

We devise a hierarchical model for virtual networks

along with a packet forwarding and filtering function to

capture various components of a virtual network (e.g.,
security groups, subnets, and virtual routers) and their
relationships.

We design algorithms that leverage efficient data struc-
tures, incremental verification, and an open source péaralle
computation platform to reduce the verification delay.

We implement and integrate our approach into Open-
Stack [12], a widely deployed open source cloud man-
agement system. We evaluate the scalability and efficiency
of our approach by conducting experiments both in-house
and on Amazon EC2.

We further integrate TenantGuard into Congress [17], an
OpenStack policy checking service, in order to check the
compliance of isolation results against tenants’ preddfine
high-level security policies.

; : L The remainder of this paper is organized as follows.
plexity, Alice wants to schedule the verification t0 be gection) reviews the related work. Sectipn Il describes t

threat model and virtual network model. Section 1V discesse
our system design and implementation. Secfidn V provides
details on TenantGuard’s integration into OpenStack ared Se

tion [VI] gives experimental results. Sectibn M1l discusses t nodes. In order to cover all-pairs, the total number of qeeri
adaptability and integrity preservation. Section Vllldisses would grow significantly. This hinders the scalability okte
limitations, provides future directions, and concludesphper. approaches to tackle large cloud data centers. Furthermore
most of these works consider routers/switches as the source
. RELATED WORK and destination nodes for their verification. NetPlumbed an
VeriFlow offer similar runtime performance. For a network
Tablell summarizes the comparison between existing worksf 52 nodes, Netplumbei [19] checks all-pairs reachability
on network reachability verification and TenantGuard. Trs fi in 60 seconds, whereas a single-machine implementation of
column divides existing works into two categories based orTenantGuard takes only 4.6 seconds to verify a network of
the targeted environments, i.e., either cloud-based mesaar 4,300 nodes (see Figufel10). Libria][23] uses a divide and
non-cloud networks. The second and third columns list egst conquer technique to verify forwarding tables in large reks
works and indicate their verification methods, respecfivEhe for subnet-level reachability failures. While Libra redien the
next column compares those works to TenantGuard accordirgssumption that rules in switches consist of prefixes aggre-
to various features, e.g., the support of parallel implegaen gating many subnets, we additionally deal with more specific
tion, incremental verification, NAT, and all pairs reachi#@pi rules (longer prefixes) by running the preorder traversahen
verification (which is the main target of TenantGuard). Theradix binary tries.
next two columns respectively compare the scope of those
works, i.e., whether the work is designed for physical otuat
networks, and whether it addresses control or data plane i
such networks. Note that a L3 network is composed of
control plane for building the network typology and the iogt
tables based on various routing protocols (e.g., OSPF, BGP

and_a data plane for handling packets according_ to the_ buietwork Verification for Cloud Deployments. There are
routing tables. The last two columns show the size of inputgyeral works (e.9. 1271 TL1] 311 [82] [33][28]) ver
and verification time, respectively, as reported in thoSEBPR ifying the virtualized infrastructure in the cloud. Most of

In summary, TenantGuard mainly differs from the state-those solutions focus on verifying configuration correstne
of-the-art works as follows. First, TenantGuard perforras v of virtualization infrastructures in terms of structuraiop-
ification at a different granularity level (i.e., all-pairm erties (e.g., Cloud Radar [28]), which is different from the
level vs single-pair router-level). Second, TenantGuantiore ~ Properties targeted by TenantGuard. NoD![27], SecGuri [34]
scalable (e.g., verifying 100k VMs within 17mins). Finally and their successor (Plotkin et dl. [11]) are the closesksvor
TenantGuard employs custom algorithms instead of relymg o0 TenantGuard, as they can check all-pairs reachability in
existing verification tools (e.g.[[11] [27]-[29]. [28]jvhich Physical networks for large cloud data centers. NoD is a
enables TenantGuard to more efficiently deal with compyexit l0gic-based verification engine that has been designed for
factors specific to the cloud network infrastructure suctaas checking reachability policies using Datalog definitiomsda

large number of VMs, longer routing paths (number of hops)dueries. Plotkin et al_[11] improve the response time of NoD
and increased number of security rules. by exploiting the regularities existing in data centerssées

the verification overhead using bi-simulation and modaidog
Non-Cloud Network Verification. In non-cloud networks, The experimental results reported in Sectiod VI show that
several works (e.g./ [30]/ [20]/ [18][21][[19][[22] [p3 TenantGuard outperforms those tools.
propose data plane analysis approaches, while others ggopo
control plane analysis (e.gl,_[25], [24], |26]). Some e&rigt
works (e.g.,[[30],[[20],[[18]) address non-virtualized phoal
networks. Specifically, Xie et all [30] propose an automate
static reachability analysis of physical IP networks based
graph model. Anteatef [20] and Hassel|[18] detect violation
of network invariants such as absent forwarding loops. &/hil

those works are successful for verifying enterprise andoem o .inct tenants’ security policies defined in Congressti@ec
networks, they cannot address challenges of large scalelir V). Additionally, by integrating TenantGuard to Congress,

networks deployed in the cloud with hundreds of thousand?\/e augmented Congress capabilities to support reaclyabilit

of nodes. For instance, Hassél [18] needs 151 seconds Qlated policies as NoD without modifving Datalog-based
compress forwarding tables before spending an additios@l 5 policy Iagguage provided by Congress. ying 9

seconds in verifying loop-absence for a topology with 26
nodes.

Works designed for control plane verification in physical
etworks like ARC[[24], Batfish [25] and ERA [26], if applied
0 the cloud, would face the difficulty that (unlike physical
networks) routing rules and ACLs for tenants’ private \aitu
51etworks are not generated by the control plane.

Congress/[35], is an open project for OpenStack platforms.
It enforces policies expressed by tenants and then monitors
he state of the cloud to check its compliance. However,
eachability requires recursive Datalog queriesl [35], clhi
are difficult to solve and are not supported by Congress.
Therefore, we integrated TenantGuard into Congress inrorde
to check network isolation results provided by TenantGuard

I1l. M ODELS
Other works (e.g.,[121],[119],L.122]) propose approaches
for virtualized networks. VeriFlow[[21], NetPlumbef _[19]
(extension of [[1B]), and AP verifief_[22] outperform previ-
ous works by proposing a near real-time verification, where, Threat Model
network events are monitored for configuration changes, ané'
verification is performed only on the impacted part of the Our threat model is based on two facts. First, our auditing
network. Those works propose query-based network inviariansolution focuses on verifying the security properties spec
verification between a specific pair of source and destinatiofied by cloud tenants, instead of detecting specific attacks

In this section, we describe the threat model and propose
a hierarchical model for cloud virtual networks.

Features P.h ysical vs Control vs Size of input Verif
Network Proposals Methods Virtual net. Data plane Timé
Paral. | Incr. | NAT élé ;;lrs Phys. | Virt. Ctr. | Data | VMs Routers Rules
Hassell[18] Custom algorithms ° ° ° 26 756.5k -
NetPlumber[[10] Graph-theoretic ° ° ° ° ° ° 52 143k 60
Anteater [[20] SAT solver) .)) 178 1,627 -
Veriflow [21] Graph-theoretic 0 ° 0 172 5,000k
Non- AP verifier [27] Custom algorithms 0 ° ° 0 58 3,605
Cloud Libra [23] Graph-theoretic ° ° ° ° ° 11,260 2,650k
ARC |24] Graph-theoretic ° ° - few tens - -
Batfish [25] SMT Solver . . . 21 - 86,400
ERA [26] Custom Algorithms 0 ° - over 1,600 - -
NoD [27] SMT Solver 100k - 820k 471,600
Cloud Plotkin et al. [11] SMT Solver ° ° 0 0 100k - 820k 7,200
Cloud Radar([28] Graph-theoretic ° 30k - - -
Probst et al.[[29] Graph-theoretic ° ° ° 23 - - -
TenantGuard Custom algorithms ° ° . . . ° 100k 1,200 850k 1,055.88
TABLE I. COMPARING FEATURES AND PERFORMANCE OF DIFFERENT EXISTING SOTIONS WITH TENANTGUARD. THE SYMBOL () INDICATES THAT

THE PROPOSAL OFFERS THE CORRESPONDING FEATURALL VERIFICATION TIME MEASUREMENTS ARE REPORTED IN SECONDS

or vulnerabilities (which is the responsibility of IDSes or networks (not shown in the figure) may exist, where each,(e.qg.
vulnerability scanners). Second, the correctness of aditing ~ Ext Net _1) can have a routable public IP address block (e.g.,
results depends on correct input data extracted from logs ariL. 10. 0. 0/ 22). For inter-tenant traffic, at least one router
databases. Since an attack may or may not violate the securifrom each tenant must be involved and the traffic generally
properties specified by the tenant, and logs or databases magverses external networks. For any communication going
potentially be tampered with by attackers, our auditingiites through external networks, a public IP address is allocperd
can only signal an attack in some cases. Specifically, th&M (e.g.,VP_AL. Publ i c_| P=1. 10. 0. 75) depending on
in-scope threats of our solution are attacks that violate thwhich external network (e.gfxt Net 1) connects to the
specified security properties and at the same time lead tsubnet of the VM (e.gSN_A2). The mapping between private
logged events. The out-of-scope threats include attacks thand public IP addresses is maintained through NAT rules at
do not violate the specified security properties, attacks norouters.
captured in the logs or databases, and attacks through which

the attackers may remove or tamper with their own logged .-

events. We assume each cloud tenant has defined its own “‘1“°~
security policies on network isolation in terms of reacligbi — ;

. rules
between VMs. We focus on the virtual network layer (layer ‘rouingrues | ®-A2 RAl

IF_A31

3) in this paper, and our work is complementary to existing 2
solutions at other layers (e.g., verification in physicaivoeks @En2D FEAD TEAID AL

or isolation w.r.t. to covert channels caused by co-resigien e WG N BT i
more detalls are glven in Sectl ”) Flna"y’ we assume the 10.0.2.0/24 10,0,0.2/24 10.0.1.0/24 19.0.1.0/24 19.0.0.“0/24
verification results (e.g., which VMs may connect to a tehant Security groups ﬁ A N %
do not disclose sensitive information about other tenants a Private IP:10.00.12 Private IP.100.122 | Private IP.19.0.1.15 _ Private IP:19.0.0.30

1 1 i Public IP:1.10.0.75 Public IP:1.10.1.9 Public IP:1.10.0.8 Public IP:1.10.1.12
regard potential privacy issues as a future work. o Al public 1
B. Virtual Network Model St [\ sune

Router Router /N VMport --=% Forwarding path

Gateway Interface

Here, we define a hierarchical model to capture various
components of a virtual network and their logical relatiips. Fig. 2. An Example of the Virtual Network Model
The following example provides intuitions on the model we

propose. More generally, Figur€]l2 may be abstracted as an undi-

rected graph with typed nodes, as defined in the following.
Example 1:Figure(2 illustrates an instance of our model Definition 1: A virtual network model is an undirected
that captures the virtual netwo_rks pf tenants Alice and Bobgraph G — (V, E), where V is a set of typed nodes
I:?gg\?gnge\?;rgleﬁ&peltes ?QOSVKIH A'H 219 duSrE;]\l 1A2E§fgnt§2)ar}§ CaMeach of which is associated with a set of attributes=
subnet (e.g.SN_A2) is generally associated with a CIDR (e.g., gld’ tenant_id,]—;ublzbc_lf, Prw?te_IP, tyfe’ T.UZQS}’ W?ere
10. 0. 0. 0/ 24) and a set of forwarding rules (host routes) ype € Evm—tp o, Suome Z[-U—T%LMW’ v—tmu ETth ’ v—rtou er—t
specifying the default gateway (e.qg., router interfa€e A11). -ng[} ’fex ¢ },; repr?sen g d Q[or X fu r;e i rkou ef, router
A newly created VM (e.g.VM _Al, not shown here) will be Interace, rou efr gaoﬁway, gn dex erna’ network, reﬁpxeilgtl ical
attached to a virtual port (e.g¥P_Al) on a subnet (e.g., E is a set of un Lrecte € gelz(s representing the logica
SN_A2) and associated with a private IP (e.gQ. 0. 0. 12). connectivity among those network components.
Ingress and egress security groups are associated with the A virtual network modelG can usually be decomposed
virtual ports of VMs and act as virtual firewalls. Routersinto a set of maximally connected sub-graphs| [36] (denoted
(e.g.,R_A1l) interconnect different subnets to route intra-tenanty C; = (V;, E;) in later discussions) by removing all
(e.g., betweenSN_A2 and SN_A3) and inter-tenant traffic edges between router gateways and external networks. Those
and connect them to external networks (ekxt Net 1) via subgraphs represent different tenants’ private virtuahvaeks,
router gateways (e.gRG_A1). Several interconnected external which are connected to external networks via the removed

4

edges. We will leverage this characteristic later in Sediid - A forwarding path for packep from nodewu to node

to tackle the complexity issues. v is a sequence of forwarding statés, (null,u))---
(¥, (v, null)).
C. Forwarding and Filtering Model As a convention, we will usew!! in forwarding states to

) . denote a forwarding state where the symbolic packet has been
In the following, we first model how packets may traversedropped (e.g.(null, (w, null))), a packet initially placed on
a virtual network, and then formalize the network isolationa nodev (e.g., (p, (nuil,v))), or a packet received by after
property that we aim to verify. the last hop (e.g.(p, (w, null))).

Forwarding and Filtering. Network packets traversing virtual Network Isolation. With the virtual network model and for-
networks are typically governed by both filtering (securitywarding and filtering function just defined, we can formally
group rules) and forwarding (routing) rules, as demonsttat model network isolation and related properties as follows.

in the following example. Definition 3: Given a virtual network modely = (V, E),

Example 2:Figure[2 shows a dotted line representing the
sequence of edges traversed by a set of packets ¥fidnAl
to VM B2, which represents the forwarding path controlled
by different nodes between both corresponding virtual ort

- for any u,v € V, we sayu andv are reachable if there
exists a packep € P and a forwarding path fop from
u to v. Otherwise, we say. andv are isolated.

Packets sent to the virtual port (e.§/P_Al) are processed - A forwarding loop exists between € V andv € V if
by the egress security group rules then either dropped or there existsp € P destined tov and w,w’ € V such
forwarded to the subnet nod8N_A2. According to host that (p, (w,w’)) is a reachable forwarding state and that

routes associated witlsN A2 and the destination address fda((p, (w,w'))) = (p, (W', w)).

(i.e., VM_B2. Publ i c_I P), packets are either dropped or , ,
forwarded to the default gateway, which is the router irateef - A blackhole exists betweem € V andv € V if

| F_A11 of the routerR_Al. At the router node, packets’ there existsp € P destined tov and w,w' € V
headers are matched with the routing rules, and are eitner fo ~ Such that(p, (}va) is a reaf:hable forwarding state and
warded toRG_Al and then to the associated external network fda((p, (w,w'))) = (null, (w', null)).

Ext Net _1, or dropped. Packets destined\tbl B2 are then
forwarded byExt Net _1 to the routerRG_B1. If matching
forwarding rules for these packets are found at ndi®sB1,

R _B1 andSN_ B2, then the edges betwe®s Bl andVP_B2

are traversed. AVP_B2, only packets matching the ingress
security group rules are forwarded to their destinationteNo
that at the level oR_Al (resp.R_B1), packets are transformed
using NAT rules by replacing the source (resp. destination
private (resp. public) IP oM Al (resp.VM B2) with the
corresponding public (resp. private) IP.

The properties given in Definitioh] 3 can serve as the
building blocks of any network isolation policies specified
by a cloud tenant. The specific forms in which such security
policies are given are not important, as long as such pslicie
can unambiguously determine whether two nodes should be
reachable or isolated. Therefore, our main goal in vergyin
g tenant’s security policies regarding network isolatisrnta

nsure any two nodes are reachable (resp. isolated) if dgd on
if this is specified in such policies. In addition, our verdion
algorithms introduced in SectignlV can also identify forda

More generally, the following definition models the way iNd loops and blackholes as anomalies in virtual networks.
packets traverse virtual networks using a forwarding and
filtering function capturing respectively routing and seyu IV. TENANTGUARD DESIGN AND IMPLEMENTATION

group rules. In this section, we first provide an overview of our ap-

Definition 2: Forwarding and Filtering Function. Given Proach and then introduce the data structures and the werific
a virtual network modet = (V, E), tion algorthims in details.

- let p € P be a symbolic packet (similarly as in"[37]) A. Overview
consisting of a set of header fields (e.g., source and
destination IPs) and their corresponding values()'nl}L
such thatl is the length of the field’s value, and

Due to the sheer size of a cloud, verifying separately each
pair of VMs (query-based approach) or directly computirg al
possible forwarding paths for all pairs of VMs (henceforth
- let (p, (u,v)) be aforwarding statewhere @,v) is the pair called thebaseline algorithpwould result in an unaccepta_ble
of nodes inG representing respectively the previous hop'€Sponse time, and not scale to large clouds, as will be
node (i.e., the sender node) and the current node (i.e., tHi€monstrated through experiments in Sedfioh VI. Also, #e u

nodewv where the packet is located in the current state).Of (Possibly overlapping) private IPs and dynamically eéited
public IPs in the cloud can make things even worse. To address

- The forwarding and filtering functiorfds returns the those issues, TenantGuard leverages the hierarchicalalirt
successor forwarding staté$p., (v, w;))}ien, such that network model presented in Sectibn 1l1-B by partitioning th
eachw; € V is a receiving node according to the resultsverification task into a prefix-level verification followed la
of rules matching at node, and p, is the symbolic VM-level verification. Prefix-level verification splits ftirer the
packet resulting from a set of transformations (e.g.virtual networks into a set of private IP prefixes (i.e., tetsa
NAT) over packetp before being forwarded ta; where subnets) and a set of public IP prefixes (i.e., external ndtwo
{v, w; }vien € E. IP prefixes), which results in a three-step approach, adlibei

; e Ext Net iz S1p2b
Host Routes Security "' 1.10.0.0/22 \‘I
u Policies ! !
openstack Routers Tables (H H
1 5 1
N ' 4@:} '
\| Subnets Compliance i Stepl i
Networking TenantGuard V&V ! LA N !
['
S networks) i i i

Compute ()

servli’ce Ingress/Egress Audit i E @ IF_BI2 i
Security Groups Report H ¢ !
’ i [SN_A2 SN_A3 SNBZ)\

Data Collection & Compliance Verification 10.0.0.0/24 10.0.1.0/24 19.0.0.0/24

Preparation & Reporting
Step3 @
Fig. 3. An Overview of TenantGuar P_Al P_A2
Yes (Stepl) Tenant Alice Tenant Bob

Private IP Prefix
level verification

Fig. 5. Example Application of Our Three-Step Verificatioppkoach

<sn-src, sn-dest>

B. Data Models

(Step2)
Public IP Prefi Reachable? . .
No ' |level verification] . In order to further improve the scalability and response-
STV S VM(E;%%?L) time of our approach, we investigated prefix matching and

not isolated

pairs verificatio packet classification literature. According to our findinge
found out that both X-fast binary tries [16] and radix binary
tries [15] fit our purpose. Different type of trie structures
isolated reachable have been used in prior works e.g., VeriFlow[21]. Indeed,

Fig. 4. A Flow Chart lllustrating Our Three-Step Approach X-fast binary tries not only allow efficiently storing of alP

. - addresses with their prefix relationships but also provads f
detailed later. Furthermore, we use efficient data stresttirat insertion and searching operations. Furthermore, raitis ere

allow handling all-pair verlflcatmn_ at once |nste§1d of anue efficiently used to store routing and filtering rules as well
based approach. As we will confirm with experimental results

in Section[V), those conceptual advances allow to scale Y-S efﬁmently matching them against _packet-headers. In the
. ! e . . . ?ollowmg, we show how we use them in our approach.

cloud-wide, VM-level verification of network isolation. diire

provides an overview of the TenantGuard system. Input data 1) Routing and Security Groupdfe employ radix tries to

from the cloud infrastructure management system, inclydin store routing and firewall rules and then to perform efficient

router rules, host routes, and security groups, are celfemhd rule matching against IP prefixes. We use variables for iagel

processed using efficient data structures as it would bdlelta nodes to store information about the rules and their order.

in Section[IV-B. The preservation of collected data int8gri gyjes in Router R_A1
is discussed in Section II[JA. Once the verification results g . T peix [NextHop 0
are returned, compliance verification compares such mesul @{‘j
with the tenant's pre-defined security policies. Finallggt | |'00102¢] F-A12 e
corresponding auditing report is generated and presenti t rl | 1100022 | RG_A1 v
tenant. Figur€l4 provides a high-level flow graph correspand | > | 1100004 | 17 a22 @
to our three-step approach. Each element of the graph will bg
. . . 3 1.10.1.0/28 | IF_A31 -
detailed in Sectioh IV-C. *_N- RG_Al
. L. . - . Range 2: 13 ; BN
To grasp the intuition behind our three-step verification Pl iy 1
Ra 1:12 2 : —_NH: 1l Preord
approach, we present an example. R 3 A | = e
'l

Example 3:Figure [B illustrates the application of our TS RTEETTS [NE: TF_A3T |
three-step verification approach using our running example = o
shown in FigurdR. InSt ep 1 (ref. Section IV-Cl.), prefix- Fig. 6. An lilustrative Routing Table in Routd?_A1 and an Excerpt of the
level isolation verification within the same componentisfsuy C°rresponding Radix Trie

graph using private IP is performed. For instance, the isola Example 4:Figure [illustrates an example of a radix
between Alice’s subneSN_A2 andSN_A3 through the router trie (right-side) for an excerpt of the routing rules of reut
R_Al is verified using their respective private IP prefixesR A1 (upper left-side) with the different IP ranges (lower left-
(e.9.,10. 0. 0.0/ 24 and10. 0. 1. 0/ 24). In Step 2 (ref. sjde) resulting from matching all rules with the IP prefix of
SectiorIV-C1), prefix-level isolation verification betwedif- Ext Net _1 (i.e., 1.10.0.0/22). Edges of the radix trie are la-
ferent components (e.gSN_A2 andSN_B2) is performed via peled with binary values and nodes store different inforomat
each adjacent external network (e.Bxt Net _1). This step relevant to matching the bit-strings formed by concategil

is further decomposed intst ep 2. a for verifying isolation |abels of upstream edges starting from the root node [15. Th
between the source subnet (e.§N_A2) and the external matching consists in transforming the IP prefix into a binstr
network, andSt ep 2. b for verifying isolation between the (i.e., 0000.0001.0000.1010.00) and using it as a key search to
external network and the destination subnet (€SN, B2). find the corresponding node. The node’s variaiitéstores the
This verification also involves public and private IP NAT. matching rule’s next hop; for firewall rules (not shown insthi
Finally, Step 3 (ref. Section[IV-C?) performs VM-level example), we use two variables, namaL for decision of
security groups verification for any pair of subnets found tothe matching rule (i.e., accept/deny), a8 for rules’ order.

be reachable usin§tep 1 andStep 2. In case of absence of a matching rule, those values are set to

null. For instance, the matched node is labél#tl= RG_A1, means that the verification is still ongoing f®Range

which corresponds to the next hop specified by rtilen the 1 and next hop should be evaluated based on the next
routing table and it represents the longest-prefix matchkd r variable HR.

For routing rules matching with an IP prefix, the common - Variable HR is a sequence of triplet&_id, r_if, src)
algorithm used by routers for matching a single packet, mgme that stores the history of the visited nodes from source for
the longest-prefix match [38], would not be sufficient. There that IP range, where_id is a router id,r_i f is a router

fore, we only apply the longest-prefix match algorithm to any interface andsrc is the original source node. The last
rule that matches the destination prefix. Then, we apply a pre result is appended to the beginning of the sequence and
order traversal of the sub-trie starting from the node stpri should be used at the next iteration. For more readability,
the longest-prefix matching rule. The rationale is that othe in Figure[T, we only show the two first items of the
more specific prefixes stored deeper in the radix trie (e.g., triplet from the last outcome (next hop) of routing rules
for a specific address range) will be needed for a consistent matching inR_Al.

matching result, which would result in splitting the matdhe
IP prefix into ranges, where each range is governed by the 0 1
appropriate rule, as it will be demonstrated in the follagvin
Example 5:As depicted in Figurgl6, once ruté is found - 1
P P gurel [a0t | i

A
0100001110,H 0100001111,H 1111111111,)‘

0000000000, 0011111110, 0100000000,

using the longest prefix match algorithm for the IP prefix

1.10.0.0/22, the preorder traversal algorithm is appliedie | 155,22 1| 28 /5 M, M0 S0 P00 S ok i el e i
sub-trie from the node matching with. Thus, rules-2 andr3 g S El— e e — S < — T S
are also found 10 m-atCh 1'1-0'0'0/2-2' Co_nsidering all maghi Fig. 7. X-fast Binary Trie for Subnet SM2 and Destinatior.10.0.0/22.
rules, the destination prefix IP is split into three ranges, eaves Contain Results from Matching Radix Trie in Figlite Bhvthe
namely, range 1: 1.10.0:0-1.10.0.255, range 2: 1.10.1.0- Destination

1.10.1.15, and range 3: 1.10.2.0 1.10.3.255, respectively « \serification

governed by r2, r3 and rl.

)) i) In this section, we present our customized algorithms
Note that for matching rules in security groups, we Will {5 perform the three verification steps. The reason that we
use the first-match algorithm [39]. opt for customized algorithms, instead of existing largaks

2) Prefix-to-Prefix Verification Results Processirihe X- graph processing systems (e.g., Pregel [40], BGL [41], and
fast binary tries[[16] are used (Algorithih 1 in Section1¥)c1 CGMgraph[42]) is that those are mostly designed for general
to store and progressively compute verification results, pePurpose graph algorithms like finding shortest-path. Nohe o
hop, in order to assess isolation between two IP prefixes (sdBem can easily support network isolation use cases aditess
Figure[T). An X-fast trie (denoted byTries) is a binary In this paper, in particular, path modifications caused by
tree, where each node, including the root, is labeled wiéh thdecision making along the path (e.g. routing, firewallingy),
common prefix of the corresponding destination sub-tree. A§he path transformational operations (e.g., NAT).

in radix tries, the left child specifies @bit at the end of the Before starting the actual verification, X-fast binary srie
prefix, while the right child specifies a bit-valie Each node, 41 created and initialized for each pair of source and des-
including leaves, is labeled with the bit-string from theto iination 1P prefixes using the virtual network modglas it

to that leaf. We use the leaves to store intermediate and fing|;g explained in Sectiom IV-B2. Also, as it was mentioned
results as explained i_n this examplle. The bina_ry trie’s égav earlier, bothSt ep 1 and Step 2 are parts of the prefix-
are created and modified progressively by fhiefix-to-prefix |evel verification, where the first step is applied on private
Algorithm 1. IP addresses while the second takes care of the public IP

Example 6: FigurelT illustrates an example of intermediate @ddresses. As a result, we will havel'ries for pairs of
values of aBTries built for source subne3N_A2 and destina- Private IP prefixes of subnets in the same component (verified
tion Ext Net _1. Leaves store the results of matching the radixin St ep 1) and otherBT'ries for pairs IP prefixes of subnets
trie of Figure[® with destination IP prefik10.0.0/22, which ~ and external networks (verified Bt ep 2. a) and vice-versa

is actually the root of the X-fast binary trie. Three variabl (verified in Step 2. b). These two steps will be explained
are used at the leaf nodes: in Section[IV-C1. Afterward, VM-level isolation verificatn

takes place a6t ep 3, details of which are in Sectidn TV-C2.

- Variable B stores the boundary of the IP ranges for each

leaf. Its value is eitheL for the lowest boundH for the

highest bound, ol H if a single leaf with a specific |

address (e.g1.10.0.2/32). The leftmost leaf in Figurgl 7,

B is set toL, which means the current leaf is the lowest

bound of the IP rang®ange 1. The next leafB is set

to H to delimit the upper bound dRange 1.

1) Prefix-Level Verification:The function prefix-to-prefix

= (see AlgorithnTll) uses the initialized X-fast binary trigsie

to verify prefix-level isolation on each hop between all paif

source and destination IP prefixes. For a given pair of prefixe

the prefix-to-prefixverifies routing rules on a per-hop basis. In

all hops between a given pair of prefixes, it uses the same

corresponding X-fast binary trie (i.e., having one prefix as

- Variable RLB is a two-bit flag that indicates the status source specified in leaves and the other as destinatiorfiggeci
of the verification process, where possible valuestére in the root of the trie) to update the new results according
for no decision yetp1 for loop found,10 for blackhole to the results of matching the rules within the node’s radix
found, or11 for reachability verified. In the leftmost leaf trie against each IP range. The core of this algorithm is the
of the binary trie of Figur€l7RLB is set to00, which matching process (explained in Section TV}B1) and copying

these results from a temporary trie to thieie. The latter is Algorithm 1 prefix-to-prefixbirie)

explained better using the following example. 1: Input/Output: btrie
. . . 2: counter=0
Example 7:Figure [8 illustrates the process of copying 3: for each rangdL, H] in bric.leafswith RLB = 00 do

the leaves from the temporary binary trie, which contain 4 Zo?lffrigett(gf,_r_id)
the outcome of matching RO rules with the destination IPg: ifSse;i;;j;.’eg(d’;ﬁwm) — False then

prefix, to the the main prefix-to-prefix binary trie within the g: TempBTrie = Match(RadizTrie(router), dst)
1 1 1 i 1 . else

appropriate IP range (A_Igorlthm 1 Ime_ 10). Figlte 8 illasas 9. TempBTric = get BTrie(dst, router)

the modified binary trie after applying a hop per addressy. .., virie, TempBTric, (L, H])

range verification on the trie of Figuld 7 with an excerptii: counter = counter + 1

of the rules ofR_A3 (left-side) andR_A2 (right-side). We 125 if counter ;ﬁof_”;z”_

compute only the decisions of those routers that are relatett. PremoPrefitbiric)

to Range 1 andRange 2. After matching these tables with :

the destination address, new leaves are created Ragge Algorithm 2 VM-t0-VMVMs,.c, VMges¢)

2 is split into Range 21 andRange 22) with new results, 1: Triepub = getBTrieY Ma.;.publicI P.CIDR, V My.. subnet_id)
i i i i 2: Triepriv = getBTriel My .private] P.CIDR, ter_id)

vr}hllﬁ_for oth_ers (|.?.ﬁang.e 1) only the result is updated in 2 Trieprty = gelBTriel M. Zz:(r:me;w Triepri:)())u er_i

the inary trie, as follows: 4: if routable = true then

VerifySecGroups(VMgrc, VMgest)

5:
- At R_A2, no routing rule was matched, thus indicating a
black hole RLB is 10) for range 1.

- At R_A3, matching the destination prefix with the corre- relevant binary tries leaves using the IP addresses of these
sponding rules results in two matching rules (ie31 VMs. This will determine the leaves with boundarig&sand
and r 32), which partitonsRange 2 into two sub- L corresponding to the IP ranges containing VMs’ IPs and
ranges.Range 21 is handled byr 31, which leads to verifying the value of the flagkLB. This is explained in the
a loop (RLB = 01) that can be detected by consulting following example.

Lhzfn(\jlli r(ljakgle]{lﬁérP;; kgtns d bfrlgng::nagn t?:lgcghe tﬁez ?orﬁter Example 8:Consider the case &M Al andVM B2 from
y rul y our running example shown in Figure 2. Route lookup for this
gatewayR A3 (i.e., RLE = 11). pair is achieved by searching for the two X-fast binary tries
Algorithm [takes as input the binary trie identifier then denoted byl'riepub andTriepriv, respectively, in Algorithm
updates the trie progressively by creating new leaves ardl TheTriepub andTriepriv tries contain the routing results
modifying others using per-hop results. At each iteratiibn, respectively, for the pairgN_A2, ext _net) and gxt _net,
traverses the leaves of the trie and, for each IP range, BN_B2). Using the public IP oM B2 (i.e., 1.10.1.12, which
matches the radix trie corresponding to the networking elgm is within the prefix of ExtNet1), and the private IP dfM_Al
specified for that range with the destination IP prefix using(i.e., 10.0.0.12, which is within the prefix of subnet 3),
algorithms in Sectiof IV-B1. The algorithm terminates if athe corresponding binary tri&riepub is shown in Figuré8.
loop or a blackhole is found, or reachability is verified féir a By searching th@riepub(see Figurél8) using the public IP of
ranges. It uses a temporary tfiempBTrie, which contains VM_B2, one can find that it falls int&kange 22. The value
the result of matching the radix trie of the current routethwi of RLB for this range isl1, which indicates the existence
the destination IP prefix located at the root of the binagyas ~ of a route fromSN_A2 to ExtNet_1. Similarly, Trie Priv
discussed in Sectidn IV-B1. This temporary trie is genefrate can be identified using the public IP &M B2, which is
once, but can be re-used, particularly, for the verificatiorattached to routeR_B1, and its private IP (i.e., 19.0.0.30).
of other IP prefixes as source (e.§N A2 and SN_A3 in Searching inT'riepriv (not shown for the lack of space) for
Figure[3) with the same destination (e.§xt Net 1) and the RLB for using the private IP 0¥M_B2 allows concluding
the same router (e.gR_A1). FunctionsearchTries finds, if ~ on the existence of a route betwedédl Al andVM B2. More
any, the temporary trie corresponding to the specific routeprecisely, if RLB in these boundary leaves of bdlhriepriv
and destination IP range. Functi6vpy is used to update the and Triepub is equal toll, we say that a forwarding path
main binary triebtrie with the results stored in the temporary exists between these VMs.
binary trie T'empBTrie for each specific range as discussed ot this stage, once a path is found between the subnets of
in ExamplelY. the pair of VMs, we then verify both security groups assedat
2) VM-Level Isolation Verification: Prefix-level results with these VMs. According to the type of communication,
computed in Section TV-G1 are used to determine subnets thaither private or public IP will be used. For each VM within
are not isolated. For those subnets, we need to perform a VM& source subnet, we use its egress security group radix trie
level isolation verification by checking for each pair of VMs and perform a first-match with the public or private IP of
their corresponding security groups using both private andhe destination VM. Then, we use the ingress security group
public IP addresses. Algorithimh 2 describes ¥iMd-to-VMpro- rules of the destination VM and perform a first-match with the
cedure in which functioRoute- Lookup checks whether there public or private IP of the VM source. If both results indieat
exists a forwarding path between any two VM ports, whereasnatching rules with thacceptdecisions, then the pair of VMs
the VerifySecGroups function verifies security groups of can be concluded to be reachable using their public or grivat
these VMs. IP addresses.

The VM-to-VM route lookup is to determine whether 3) Complexity Analysistet S be the number of subnetg,
these VMs belong to reachable subnets by searching in thee the number of routers between two prefixes (i.e., number

Rules in Router R_A3 1.10.0.0/22 Rules in Router R_A2
Rule Prefix Next-Hop 0] 1 Rule Prefix Next-Hop
e ~a
31 | 1.10.1.0/28 IF_Al12 ‘ OXXXXXXXXX ‘ ‘ IXXXXXXXXX ‘ 21 | 10.0.0.024 IF_A21
0 1 0/ 1
32 1.10.1.0/30 RG_A3 ¥ Y I'4 Yy
o ~
000000000X | . . 111111111X
0 1
0000000000, 0011111110, 0100000000, 0100000011, 0100000100, 0100001111, 0100010000, 1111111111,
L,10, R_A2, | H,10, R_A2, [-» L,01, R_Al, | L,01, R_Al, |- L,11, R_A3, | H,11, R_A3, > L,11,R_Al, | H,11,R_Al,
IF_A22 IF_A22 IF_A12 IF_A12 RG_A3 RG_A3 RG_A1 RG_A1

< Range | > < Range 21 > < Range 22 > < Range 3 >

Fig. 8. Updated Binary Trie of Figulgd 7 Based on Matched RineRouters RA2 and R A3

of hops), L be the length of keys (whose maximum value Referring to Figuréd4, Step 1 and Step 2 explore disjoint
is 32 for an exact IP address){ be the number of VMs, prefix-level IP address spaces (private addresses spaces vs
and Nex be the number of external networks. Complexitiespublic addresses space). Thus, the two steps do not have
related to the data structure manipulation are known to bany side effects on one another. The results of these two
O(L) for insert operation in X-fast binary trie§)(Log(L)) steps are the pairs of subnets that can reach each dfjer (
for search operations in X-fast binary tries, an@lL) for radix =~ and those that cannolU/j. As we use well-known packet
trie matching per router. header matching algorithms to find reachable paths, the sets
U and R should contain the correct pairs with respect to their
reachability status. The third step relies on the resultStep
1 and Step 2 and verifies security groups for all pairs of VMs
elonging only to the set of pairs of reachable subnet&.in
n this step as well, we rely on state-of-the-art first-match
orithm applied on firewall rules at each VM-side against
e header of the symbolic packet. Therefore, the correstne

; - G : of our approach follows from the correctness of those well-
anpﬁd'%ubs;i‘gyclgﬂggig rlgteléig %Fftltrr?ézgggﬁeﬁs)c;fv\\%;'_ established algorithms in a straightforward manner.
level verification (AlgorithnTR2) isO(2 = (L + Log(L)) * M?) 5) Incremental Verification:The dynamic nature of cloud
and can be approximated @(1/?). leads to frequent changes in the configurations of virtual
networks. The verification result may be invalidated eveaaraf
a single change, such as the deletion of a security group
rule from a group of VMs, or the addition of a routing
éule to a router. However, verifying the cloud-wide network
Isolation again after each such event is obviously costly an
unnecessary.

In Step 1 and Step 2, the complexity of prefix-to-
prefix reachability verification (Algorithrl1) i©((S? + 2 x
Sx Nex)x Rx K x (L+1log(L))), whereK represents the
number of operations performed over the data structures f
each routing node. This can be approximated t8{or large
data centers where the number of subnets is larger than t
number of external network§Vex < S) and the number of

We thus obtain an overall complexity @b(S? + M?).
However, this only provides a theoretical upper bound, Whic
typically will not be reached in practice. In general, degiag
on the communication patterns in multi-tenant clouds, th
number of interconnected subnets is usually smaller $has
traffic isolation is the predominant required property irclsu
environments. For example, it has been reported_in [43] that To cope with the effect of each event at run-time, Ten-
inter-tenant traffic varies between 10% and 35% only. THus, iantGuard adopts an incremental event-driven verificatipn a
we denote byl the number of VMs belonging to connected proach. This approach first identifies the set of events that
subnets, it is safe to claim the practical complexity for ourpotentially impact the isolation results. Then, the impaft
solution would beO(5?+ M'?), where M’ < M. each such event is identified. Finally, only those parts ef th

4) Correctness:According to our model, verifying isola- Verification that are affected by the event will be re-evidda

tion means checking whether there exists any layer 3 commqtable[ll lists an excerpt of events that may require updating
nication path between any pair of VMs according to tenantsthe verification results along with their impact. Note that
policies. Therefore, proving the correctness of our apgtoa Should be updated for all these events and the symliothe
boils down to proving that our algorithm visits all paths table indicates the network elements impacted by the event.

and returns the desired isolation result for each of them. 14 jjystrate how such events may be handled via incre-
In a typical cloud environment at network virtual layer 3, mental verification, Algorithri3 sketches the steps foriphiyt
private IP addresses are used for communications inside thﬁ‘pdating the verification results upon deleting a securitug
same network (component), whereas public addresses afgle and upon adding a new routing rule, respectively, as

used for communications between VMs belonging to differenieypained in the following (detailed algorithms for otheeats
networks, and with networks outside the cloud. As we argre omitted due to space limitations).

considering both private and public IP addresses (with NAT
mechanism) to investigate the whole symbolic IP packet ad- - Creating a VM: The creation of a new VM (denoted
dress space, our approach explores all IP forwarding paths as VM*) does not affect the verification process unless

by iteratively applying, on each path, relevant forwardamgl it gets connected to one or more subnets through virtual
filtering functions (using corresponding matching alduris) ports, which naturally leads to the update of our graph
of each encountered node in the virtual network connegtivit model by creating the corresponding virtual port nodes.
graph for each packet. Furthermore, when the VM is first created, it is attached to

Event Verification Tasks

Creating a VM*

Invoke VM-to-VM for VM* once as source and once as destination

Deleting a VM*

Remove the results related ¥M-to-VM for VM*

Creating a subnet SN*

Initialize a radix trie for the host routes

Create new prefix-to-prefix binary tries where SN* is sourcel@stination
Invoke prefix-to-prefixfor subnets in the C* related to SN*

Invoke prefix-to-prefix(Step 2.a and Step 2.b) for SN*

Deleting a subnet SN*

Delete the prefix-to-prefix tries where SN* is source or dedion
Update VM-level isolation for all VMs having private IPs Wwih the prefix of SN* either as source or destination

Creating a router R*

Initialize the corresponding radix trie

Deleting a router R*

Recalculate all the prefix-to-prefix tries for the compon€ntrelated to R*
Partially perform VM-level isolation for all VMs belongintp C* considered as source and as destination

TABLE II. AN EXCERPT OFEVENTS AND THEIR CORRESPONDINGNCREMENTAL VERIFICATION TASKS. THE SYMBOL * | NDICATES THE NETWORK

ELEMENTS THAT ARE IMPACTED BY THE EVENT

the default security group. At this level, the results opste updated for all pairs where VM* appears as a source VM
1 and step 2 of our methodology remain unchanged and (resp. destination VM).
the verification update is confined to step 3 by invoking

the function VM-to-VM. - Adding a routing rule: Whenever a new routing rule
is added to a router, denoted as R* belonging to a
Deleting a VM: After deleting a VM, the graph model is component C*, this would result in updating the cor-
updated by removing the associated virtual ports, then the responding radix trie with the decision of the newly
last result is updated by removing all VM pairs where the inserted rule. Then, for each prefix-to-prefix binary trie

deleted VM appears either as a source or as a destination. built for subnets belonging to the component C*, the
)) variable HR of the binary trie (holding the history of

Creating a subnet When a subnet (denoted as SN*) is visited nodes) is consulted. If the ID of R* appears in the

newly created, it is specified with a gateway, whichis a pjstory of traversed nodes, then the corresponding binary

router interface, and an IP prefix. Our graph model is up- trie needs to be updated. Then VM-level isolation needs

dated with a new subnet node with an edge to the gateway to pe checked for couples of VMs if the source and/or

interface and the corresponding radix tree is initialized. gestination belong to C*. Routing rules and host routes

This event will create new prefix-to-prefix binary tries deletion and addition events are handled similarly.

for which SN* is either a source or a destination. This

would result in re-calculating step 1 for C*, the maximally Algorithm 3 Rules addition/deletion

connected component SN* belongs to, then step 2-a and: on the creation/deletion of a security group rule r* for a setof VMs* do:

step 2-b for SN*. As long as no VM has been attached?2: update RadixTrie(r*)

to SN*, the VM-to-VM reachability verification (step 3) f{; for {f{’}fﬁsvx*;grgs"f:u?;en

does not require updates. 5: for each pair(V Merc, V Mys:) where(V M. = VM* do
6: VerifySecGroups(VM*,V Mgest)

Deleting a subnet The deletion of a subnet (denoted as 7: if r*is an ingress rulghen)

SN*) will lead to deleting the prefix-to-prefix tries where &: for each pair(V Merc, V Mast) where (V. Mgz, = VM™ do

. N . X 9: VerifySecGroups(V Mgye, VM™)
SN appears either as a source or as a Qestlnatlon._Th@): On the creation/deletion of a routing rule r* at router R* bel onging to C* do:
will obviously reduce the number of possible forwarding 11: update RadixTrie(r)

paths As such. VM-to-VM reachability also needs to 12: for eachprefiz-to-prefiz binary trie btrie built for subnets ofC* do
’ ! : if R*isinbtrie.leaves.HR then

be up_da_ted accordlingly for aII_VMs having their private 14 pre fiz-to-pre fiz (btrie)
IPs within the prefix of SN* either as a source or as ais: for each paif(V Maye, V Mg.;) whereV M, ,cinC* andlorV M., inC* do
destination. 16: VM-to-VM(VMgre,VMast)

Creating a router: The event of add|ng a router (denoted To facilitate the verification Update, we Ieverage cachas th
as R*) would result only in adding a router node in store intermediary and previous prefix-level isolationuttss
the graph model and initializing the corresponding radixsuch as X-fast binary tries. We also utilize the radix tries,
tree. The verification result is affected when the router'swhich store the routing rules and the security groups.

Lnt?rr]face? are Icontnectked e|(tjhtehr to thtg tenalnts netwg(rjk (cj)r As discussed in Sectidi IV-C3, the complexity of Algo-
0 the external network, and the routing rules are add€dy, ;3 (basically updating the Radix tree) is constant bieea

Deleting a router: Deleting a router R* requires recal- it iS linear in the length of a key, which is b‘?“”d%d by 32. In
culating all the Btries for the component C* the router contrast, the complexity of a full verification @(M) where
belongs to. VM-to-VM reachability analysis should also is the number of VMs, can be as large as millions for a real
be partially performed in this situation for all VMs cloud. Therefore, the overhead of our incremental veribeat
belonging to C* either considered as a source or as & negligible in comparison to a full verification.

destination.

Deleting a security group rule Whenever an ingress (or V. APPLICATION TO OPENSTACK

egress) rule is deleted from a security group, the actionis \we have implemented the proposed system design as a
propagated into all VMs, denoted as VMs?, this security prototype system based on OpenStack [12]. In this sectien, w
group is attached to. Consequently, the correspondingriefly discuss implementation details about data cobexti
ingress (or egress) radix trie is updated accordingly. Lepreprocessing, and parallel verification. In OpenStack,sVM
VM* be a member of VMs?*. For the deletion of an egress gre managed by the compute servikesa, while networking
(resp. ingress) rule, security groups verification ressilt i serviceNeut r on manages virtual networking resources in the

10

cloud. Data related to these services is stored in databasd&ided runnable is not executed at the controller. The asap
containing over one hundred tables. worker cluster consists of nodes for performing tasks asslg

. . by the controller. The nodes discover each other autoniigtica
Data Collection and PreprocessingTenantGuard allows both through the configuration in the same LAN. The result could
on-demand and on regular basis incremental auditing. Td bui pe returned directly to the caller, or written into the data
a snapshot of the virtual networking infrastructure foriaud cache cluster in such a way that the data can be in-memory
ing, we collect data from OpenStack databases. Additignall gistriouted among the nodes. The latter is especially Wisefu

we leverage the notification service from PyCADEI[44] andwhen the size of data exceeds the capacity of single-machine
Ceilometer [12] services to intercept operational eveht t memory.

result in a configuration change. Thus, our data collection

module starts by collecting an initial snapshot of the dttu Integration to OpenStack Congress.We further integrate
networking infrastructure. Then, at each detected evéet, t TenantGuard into OpenStack Congress service [17]. Cosigres
changed configuration is gathered and the snapshot of the vimplements policy as a service in OpenStack in order to pro-
tual networking infrastructure is updated to enable in@etal vide governance and compliance for dynamic infrastrusture
verification. Congress can integrate third party verification tools using

Once the data is collected, we perform several prepro(_jata source driver mechanism_[17]. Using Congress policy

cessing steps, such as building and initializing differdata language that is based on Datalog, we define several tenant

; A ; specific security policies. We then use TenantGuard to tetec
structures to be used in the verification step. For instances network isolation breaches between multiple tenants. itena
the list of all subnets, routers, and gateways of all tenant

. . i . Guard’s results are in turn provided as input for Congress
we correlate the information to determine which subnets call e asserted by the policy engine. This allows integrating
actually communicate through public IPs. We also d.e.term'n%ompliance status for some policies whose verification is
the lists of subnets involved in the prefix-level verificatio

using public IP prefixes, and subnets per maximally connlectenOt supported by Congress (e.g,, reachability verificatisn

! . . L mentioned in Sectioh]ll). TenantGuard can successfullifyer
s_ubgrapr‘\s as e’xplalned in Section IMC1. Additionally, WeyMm reachability results against security policies defineside
filter all ‘orphan’ subnets, as they are not connected to an

other subnets or external networks ¥he same tenant and among differe_nt tenants. TenantGuard ca
' also detect breaches to network isolation. For example, we
In OpenStack, VMs and virtual networking resources argest an attack in which, through unauthorized access to the
respectively managed by Nova and Neutron services. Th@®penStack management interface, the attacker authodnes s
corresponding configuration data is then stored in Nova andhalicious VMs to have access to the virtual networks from
Neutron databases. Therefore, we mainly used SQL queriegher tenants. TenantGuard can successfully detect ai suc
to retrieve data for different tables in those databases. Fdnjected security breaches providing the list of rules ie th
instance, VM ports, router interfaces, router gateways andouters that caused the breach.
other virtual ports are collected from table ports in Nentro
database. Therein, we use both device owner and device id VI. EXPERIMENTS
fields to infer the type and affiliation relationship between
the virtual ports and their corresponding devices. The giack
filtering and forwarding rules are stored in neutron.routies,
subnetroutes, and securitygrouprules tables, where ares
represented by destination-nexthop data pairs.

This section presents experimental results for performanc
evaluation of TenantGuard on a single machine, on Amazon
EC2 [45] and using data collected from a real cloud. We also
perform a quantitative comparison with our baseline atpari
and with NoD [27], which is the closest work to ours (as
detailed in Sectiori ll, most of the other works are either
gdesigned for physical networks and not suitable for large
scale virtual networks, or they do not support the verifaati

tion is based on building groups of prefixes such that there iof aI_I-pair reachabil_ity at the V_M-Ievel as targe_ted_by our
no common path in the graph. This allows us to cache théolunon). Note that, in our experiments, the baseline réigm

temporary binary tries to store results for routers maighin 'S not brute force but already an optimized algorithm thatsus

which can be reused in other paths. Thus, we divide the "S%fficient data_ structures, mainly radix tries _(althoughairl:Hs
e other optimization mechanisms of our final solution,,e.g

of all prefixes into groups of prefixes that would be used a . ! Lo
destination prefixes and we create the same number of threalfi three-step prefix-to-prefix approach detailed in Seff#).
as the groups, where each thread considers all possiblggwefi

as sources.

Parallelization of Reachability Verification. In addition to
the single machine-based implementation, we have also e
tended TenantGuard to a parallel environment. The palel

A. Experimental Settings

Our test cloud is based on OpenStack version Kilo with
Neutron network driver, implemented by ML2 OpenVSwitch
and L3 agent plugins, which are popular networking deploy-
ments [12]. There are one controller node integrated with

etworking service, and up to 80 compute nodes. Tenants’

s are initiated from the Tiny CirrOS image [12], separated
by VLAN inside the compute nodes, while VXLAN tunnels are
used for the VM communications across the compute nodes.

The analysis controller is responsible for data collection
graph construction, verification tasks scheduling andrielist
bution. The controller obtains the topological view of the
compute worker cluster, its computation capacity and ro&tri
such as the number of cores with CPU loads. Based on su
profiles, the task scheduler dynamically divides the vexiftm
computation into Java runnables, which will be distribused
executed individually across the worker clusters througtad
streaming in such a way that all the tasks are performed in We generate two series of datasets (i.e., SNET and LNET)
memory and no disk 10 is involved. To avoid interference, thefor the evaluation. The SNET datasets represent small to

11

—&— Prefix—to—Prefix—e— Baseline Algo —+— NoD

8 12 50
6 t 9 40
< @ [moe— o
5 4 . 230
= £ £ 20
= ~ 4
% 3 10
] -

0 b = frt = =
00 200 300 400 500 o 2000 4000 6000 0 5 10 15 19
of VMs/Subnet # of Rules/Router # of Hops

(a) (b) ©
Fig. 9. Performance Comparison by Varying the # of (a) VMs Pebnet, (b) Routing Rules, and (c) Hops, while Fixing the #uabnets to

DataSet VMs Routers Subnets Reachable Paths

DST 1367 300 =oE < 5.67 million the time is measured for all-pair. As shown in Figlie 9(a),
DS2 10168 500 1288 > 29.2 million when the number of VMs per subnet is increased from 100 to
DS3 14414 800 1828 > 57.0 million 500, the prefix-level isolation verification time increasesch
D> e Ly e e slower than the baseline algorithm (defined in SecfionJV-A)
and NoD. The reason behind these results is, as illustrated i
TABLE Il LNET D ATASET DESCRIPTION complexity analysis in section_1V, the prefix-to-prefix algo

medium virtual networks containing six subnets, while wefithm that reduces the complexity ©@(R + N?), in contrast
vary different factors such as the number of VMs per subneflo O(12+N?) in the baseline algorithm, wheié is the number

the number of rules per router, and the number of hop®f hops andV is the number of VMs; whetV increases, the
between subnets, to examine corresponding characteristic COmMplexityO(RxN?) increases much faster thaf R+ N?).
our algorithms, and have been built using OpenStack an€n the other hand, as the number of pairs is one of the major
specifically using Horizon. We then cloned the SNET virtualfactors for NoD verification time, we observe increase in the
infrastructure environments to obtain different tenantsl a Verification time while increasing the number of pairs from 1
thus LNET datasets, which represent large networks, wher® 5. As shown in Figuré]9(b), when the number of routing
each virtual network is organized in a three-tier structurgules per router increases exponentially, the verificatiore
where the first-tier router is connected to the external oty for TenantGuard and the baseline algorithm remain relgtive
while the others use extra routes to forward packets betweetable due to using radix trie and X-fast binary trie, both of
each other, so in essence they are synthetic. Security rul¥dich have constant searching time; However, the baseline
are generated in the same logic behind the deployment #gorithm takes longer time due to the higher number of pairs
two-tier applications in the cloud. For a given tenant, onet0 be verified. On the other hand, as NoD is designed for a
group of VMs can only communicate with each other butlarge number of rules instead of large number of pairs, we
not with outside (or other tenants) networks, while anotheincrease the number of pairs from 1 to 5 while keeping the
group is open to be reached from anywhere. Up to 25 248umber of rules similar to the setting of TenantGuard.

VMs are created in the test cloud, with 1,200 virtual routers Additionally, as the number of hops increases the com-

3,210 subnets, and over 43,000 allocated IP addresses. ASplaexity of the verification (it corresponds to the number of

reference, according to a recent report! [12}% of inter- virtual routers on a communication path), we vary the number
rogated OpenStack deployments have less than 10,000 IF hops between VMs. We investigate the average number of

Therefore, we consider the_ scale of our Iargest dataset .'ﬁop usually encountered in real life systems (e.g., Int¢are
ENrg_lgresegtatlvgb O(]; .Iar_lg_jebl%lzﬁ \c/{;)uds. The five dataAsetsh'Qccording tol[4l7] and [48], the average number of hops varies
aré described In 1a - VWWE USE Open-Source Apacngayyeen 12 to 19; hence, we vary the number of hops between

Ignite [46] as the parallel computation platform, which can,s 119 Fi . ' e
- , ; . Figuré B(c) shows that the prefix-to-prefix verifioati
distribute the workload in real-time across hundreds ofesst experiences negligible changes. In contrast, a fourfaltbiase

On the other hand, all datasets both in SNET and LNET for

‘ X . in the overhead is observed with the baseline algorithm.
NoD are generated synthatically using the provided geoifat Whereas, the verification time for NoD increases exponkytia

specially after 14 hops, as their algorithms are not optahiz
for higher number of hops.
We evaluate the performance of our approaches and the _) _
effect of various factors on the performance. 2) LNET Results Using Amazon ECZingle-Machine
))) Mode. The LNET datasets are used to examine the scalability
1) SNET ResultsThis set of experiments is to test how of our system for large virtual networks. Hence, factorsnexa
network structure and conflgurauon influence the perfortean jned in the SNET dataset are kept invariant for each subnet,
of our system. All tests usinGNET datasets are conducted gnq the number of tenant's subnets is varied as shown in
with a Linux PC having 2 Intel i7 2.8GHz CPUs and 2GB Tap|e[]. There are two modes faNET tests: single-machine
memory. Note that, for SNET datasets the verification timemode and parallel mode. Single-machine tests are conducted
for NoD is measured for 1 to 5 pairs, and for TenantGuarchy gne EC2 C4.large instance at AWS EC2 with 2 vCPUs and
°Note that for NoD, we vary the number of pairs from 1 to 5 thrioulge 3.'75 GB memory. We measure NoD perfo_rmance only for the
X axis, and for TenantGuard, we consider all possible pdirgMs as the X single machme tests, as NoD |r'r_1plemen.ta_t|pn_ dO_eS not suppor
axis depicts the number of VMs. parallelization. The data collection and initializatioless are
3Available at: http://web.ist.utl.pt/nuno.lopes/neifer performed on a single machine in both modes.

B. Results

12

I Prcfix—to—Prefix I Baseline Algo [] NoD —E—4362VMs —+— 10,168 VMs —©— 14,414 VMs —4— 20,207 VMs —— 25,246 VMs

2 600 30 % g
15 40 £
. =~ ~6
o 2 400 239 g
Z 1 2 E 20 c 4 T
.= .= = — 3 —
= 0.5 = 200 10§i7777” s § 2 e —E—
’ 1 ——
0 2 5 8 11 14 16 0 20 40 60
LA T APRNIN
43k 10k 14k 20k 25K 1] 33k 47Kk 62k 7.8k 9.3k # of Worker nodes Portion of task dlstrlbutleg (%)
of VMs # of Rules (a) Parallel Mode (b) Speedup Analysis
(a) Data collection (b) Isolation verification Fig. 11. The Performance Improvement of Parallel Computatiith LNET

Fig. 10. Performance Comparison in the Single-Machine Muwita the Data Described in Table]ll. (a) Verification Time while Vamg the Number

LNET Datasets Described in Tad[Elll. (a) Showing Data Guiter Time, of Worker Nodes in Amazon EC2 for Different Datasets, and $pgedup
and (b) Showing Verification Time Analysis over the Number of VMs Using 16 Worker Nodes

As shown in Figuré_10(a), data collection and processingyith a compute worker cluster, while node discovery and

time varies between 1.5 to 2 seconds, including retrieviiga d - communications are established by their internal IPs.
from the database, initializing radix tries for routers aedu-

rity groups, etc., which shows that the collection time it no Figure[I1(a) shows the performance of parallel verification
the prominent part of the execution time. Meanwhile, Figureusing 2 to 16 worker nodes. Clearly, for each dataset, by
[Id(b) compares the verification time between TenantGuardncreasing the number of worker nodes, in contrast to the
baseline algorithm and NoD. When the number of routingresult of the single machine mode, the overheads decrease
rules increases along with subnets and VMs, the prefix-tosignificantly. For example, in contrast to 108 seconds in the
prefix algorithm is more efficient than NoD and the baselinesingle machine mode, it only takes approximately 13 seconds
algorithm (e.g., TenantGuard performs 82% faster than NoDn the parallel mode with 16 workers, while over 160 millions
for the largest dataset). NoD (while varying the number afpa of paths are verified as reachable.

from 20 to 200 through the X axis) and the baseline algorithm . . .
show almost similar response time. For 9,300 routing rules In F'gwe_m_(b% m_order to show the sca_llab|l|ty (.)f our
with 25,246 VMs in 3,250 subnets, it takes 108 seconds usin@pproach Wh"? increasing the virtual netyvork SIZ€, We aram
the prefix-to-prefix algorithm, 605 seconds for NoD (for 200 N€ relationship between the cluster size and speedup gain.
pairs) and around 628 seconds for the baseline algorithrie No 1he parallel execution time can be divided into two parts:

that TenantGuard verifies in total over 168 millions VM pairs task_ distribution time to send input data _from_ the controlle
to different workers, namel{fy;, and execution time on those

We report our extended experiment results to further valnodes (we ignore the result generation time due to the small
idate the scalability of TenantGuard in Talle] IV. In this size of result data). We note that, even if the tasks could be
set of experiment, we increase the number of routing ruleslivided evenly, which is unlikely the case in practice, thskis
to 850k, and the number of VMs to 100k to compare thecould still arrive at worker nodes at different times. As a
reported results in Plotkin et al._[11]. For the first part, weresult, some of those tasks may start significantly laten tha
compare TenantGuard with NoD for the 850k routing rulesothers due to networking delay, while the overall perforogan
with other parameters as our DS5 datasets, and observe thgtalways decided by the slower runners.Bsbecomes larger,
TenantGuard completes the all-pair reachability veriiicain it becomes more predominant in the overall execution time.
100.14s, which is significantly faster than NoD (5.5 days). | However, due to the lack of knowledge on task execution
the second part, we generate a completely new datasets witlequence in the synchronous mode, we cannot accurately
850k routing rules and 100k VMs, and observe that the allmeasure the distribution time. Additionally, there willvalys
pair reachability verification takes less than 18 minutes fobe some tasks which begin later than the other tasks. In order
TenantGuard, whereas Plotkin et al.[[11] needs about 2 hourto minimize this impact and to start tasks at roughly the same

Daiasets 850K Tules T 850K rules and 100K VIS time, we use an asynchronous task distribution technique. |
NoD [27] 475,200 [11] . Figure[I1(b), ther-axis represents the ratif,; /T, while T
Plotkin et al. [11] - 7,200 [11] is the overall verification time. In addition, the speedufiora
TenantGuard 100.14 1,055.88 (R,) is the performance ratio between sequential and parallel
TABLE IV. COMPARING THE PERFORMANCHIN SECONDS) BETWEEN programs, represented @yaxis_ With the number of worker
EXISTING WORKS AND TENANTGUARD TO VERIFY ALL-PAIR nodes increasingy,; rises as expected because more data

REACHABILITY
and code need to be transferred among cluster nodes. When

Parallel Verification Test. Although our approach already i hecomes more dominant, the speedup rate increases more
demonstrates significant performance improvements over No g adually. For the smallest datasét, decreases when the
and the baseline algorithm, the results are still based on g, mper of workers ranges from 8 tOS 16. THg/T ratio can

single machine. In real clouds, with large deployments @0K e seq to decide the optimal data size in each node.
of active VMs), there is need for verifying very large virtua

networks. Therefore, we extend our approach to achieve par- Our experiment results show that even a small number
allel verification, where the isolation verification is dibuted (i.e., 16) of working nodes can handle large-scale veriticat
among the nodes of worker cluster, except the data collectio(i.e., 168 millions of VM pairs); recalling that real world
and initialization run on a single node. This parallel imple clouds have the size of 100,000 users and maximum 1,000
mentation provides larger memory capacity to our approachyMs for each user. Also, our speed-up analysis (Figute }1(b)
and results in much shorter verification times. For the paral illustrates that after 8 nodes the speedup goes down. Tdreref
mode, one EC2 C4.xlarge instance with 4 vCPUs is configuredie restrict the number of working nodes to 16. The result
as the controller, and up to 16 instances of the same typef incremental verification is not reported, as our disaussi

13

Routing/Filtering OpenStack [12] Amazon EC2-VPC [49] | Google GCE[50] | Microsoft Azure [b1] VMware vCD [52] TenantGuard support

Intra-tenant Host routes, routers| Routing tables Routes System and user{ Distributed logical [Yes/ TenantGuard forwarding an

routing defined routes routers filtering function

Inter-tenant Routers, external| Internet gateway/VPC| Internet gateway | System route to Inter-| Edge gateway Yes/ TenantGuard forwarding an

routing gateways peering net filtering function

L3 filtering Security groups Security groups Firewall rules Network security [Edge firewall ser-| Yes/ TenantGuard forwarding an
groups vice filtering function

TABLE V. ROUTING AND FILTERING IN DIFFERENTCLOUD PLATFORMS AND HOW THEY ARE SUPPORTED INTENANTGUARD

in Section[IV-Cb shows that the overhead of the incrementasupported by TenantGuard via the forwarding and filtering
verification is negligible in comparison to a full verificati. function fd.

3) Experiment with Real CloudWe further test Tenant- Preserving integrity of the system.There exist many tech-
Guard using data collected from a real community cloud libsteniques on trusted auditing to establish a chain of trust,
at one of the largest telecommunications vendors. The maie.g., [53], [54], [55]. Bellare et al. [53] propose a MAC-
objective is to evaluate the real world applicability of @&t based approach. They provide the forward integrity by using
Guard (this dataset is not suitable for performance evialmat a chain of keys and erasing previous keys so that any old logs
due to the relatively small scale of the cloud). All tests arecannot be altered. Crosby et al. [54] also present a treedbas
performed in a single machine using the collected datasght wi history data structure, which prevents log tampering whigee
out any modification. The tested cloud consists of only nineauthor of the log is untrusted. Apart from tamper prevention
routers and 10 subnets. Initially, the TenantGuard vetiica there are some other works to further detect tampering logs.
process fails due to a minor incompatibility issue betwéen t Chong et al.[[57] implement the Schneier and Kelsey’s secure
OpenStack version used in our lab (Kilo) and an earlier eersi audit logging protocol with tamper resistant hardware, elgm
used inside the real cloud (Juno). From OpenStack Juno t®utton. Furthermore, OpenStack leverages Intel Trustes E
Kilo, two new fields are added to the neutron.networks tablecution Technology (TXT) to establish a chain of trust frore th
namely, ‘mtu’ int(11) and ‘vlantransparent’ tinyint(1). This embedded TPM chips in the host hardware to critical software
difference between the two versions has prevented Tenantomponents using a standalone attestation server [56].
Guard to execute SQL queries against table neutron.neswork
due to the missing ‘mtu’ field. After addressing this issue by VIII. CONCLUSION
altering the neutron.networks table, TenantGuard sufidgss

completes the requested verification in several millisdson In this paper, we have proposed a novel and scalable run-

time approach to the verification of cloud-wide, VM-level
network isolation in large clouds. We presented a new hierar
VII. DISCUSSION chical model representing virtual networks, and we deslgne
)]]] efficient algorithms and data structures to support increaie
In this section, we provide the required effort to adoptang parallel verification. As a proof of concept, we integdat
TenantGuard in other cloud platforms e.g., Amazon, Googlegyr approach into OpenStack and also extended it to a par-
VMware. Additionally, we discuss existing methods to buld ajje| implementation using Apache Ignite. The experiments
the efficiency and scalability of our solution. For a largeada

Adapting TenantGuard in other cloud platforms. we review canter comprising 25,246 VMs, verification using our apptoa
packet routing and filtering in different cloud platformsdan finished in 13 seconds. The main limitations of this work

show the applicability of TenantGuard. Talilé V' shows howye a5 follows. First, since TenantGuard only focuses on the
routing and filtering are implemented in OpenStack, Amazon;;yya| network layer, a future direction is to integratenith
AWS EC2-VPC (Virtual Private Cloud) [49], Google Com- gyisiing tools working at other layers (e.g., verificatiaols
pute Engine (GCE) [20], Microsoft Azure [51], and VMware o, physical networks, or co-residency and covert channel
vCloud Director (vCD) [[52]. Similar to OpenStack, all other getection techniques). Second, since TenantGuard refies o
platforms allow tenants to create private networks andéater o infrastructures for input data, how to ensure thegjrite
routing rules to govern communication between them. Thosgs ,ch data (e.g., through trusted computing techniques)
rules are captured by the forwarding and filtering funcfe; s another future direction. Third, TenantGuard assumes th
in our model. VMs attached to those private networks can havgerification results can be safely disclosed to tenantschvhi

private IPs and publ_ic IPs respectively for.intra-tenanﬁ an may not always be the case, and addressing such privacgissue
inter-tenant communication. In the case of inter-tenamh-co comprises an interesting future challenge.

munication, gateways are endowed with NAT services in order
to manage mapping between private and public IP addresses.
NAT rules are captured in our model by the functigdg.
Internet gateways in EC2-VPC, system route to the Intemeti The authors thank the anonymous reviewers and our shep-
Azure, and edge gateways in vCD can be represented in ofierd, Vyas Sekar, for their valuable comments. We appeciat
model by the component router_gw. Exceptionally, in EC2 Yue Xin's support in the implementation. This work is palfia
VPC, the VPC peering routing can be employed to enabléupported by the Natural Sciences and Engineering Research
private IP connections across tenants’ virtual networkéh wi Council of Canada and Ericsson Canada under CRD Grant
tenants’ agreement. To support this feature, the definiibn NO1566.

fde will need to be extended. Security groups in OpenStack

ACKNOWLEDGMENT

and EC2, firewall rules in ECG, network security groups in REFERENCES
Azure, and edg_e firewall services in VCD are set up to filter (1] cloud Security Alliance. Security guidance for criticareas of focus
VMs’ outbound/inbound packets. Those filtering rules asmal in cloud computing v 3.0, 2011.

14

(2]
(3]

(4

(5]
(6]

(7]
(8]
El
[20]

(11]

[12]

[13]

[14]

[15]
[16]
[17]
(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Cloud Security Alliance. Cloud computing top threats 2616, Feb [30]
2016.

V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle. Angey

of network isolation solutions for multi-tenant data ceste IEEE [31]

Communications Surveys TutoriaBP(99):1-1, 2016.

SANS Institute, InfoSec Reading Room. An introducti@ansecuring a
cloud environment, 2012.

Amazon Web Services. Overview of security processese R2016.

ISO Std IEC. 1SO 27002:2005. Information Technology-Security
Techniques2005.

ISO Std IEC. ISO 27017Information technology- Security techniques [33]
(DRAFT) 2012.

Cloud Security Alliance.

(32

Cloud control matrix CCM v310.2014.

Available at: https://cloudsecurityalliance.org/resbéccm, . [34]
OpenStack. OpenStack user survey, 2016. Available at:
https://www.openstack.org.

RightScale. RightScale 2016 state of the cloud re®ii6. Available

at: | http:/iwww.rightscale.com. [35]
G. D. Plotkin, N. Bjgrner, N. P. Lopes, A. RybalchenkodaG. Vargh-

ese. Scaling network verification using symmetry and syrdeiPOPL, [36]
2016.

OpenStack. OpenStack open source cloud computingvat Avail- [37]
able at: http://www.openstack.org.

OpenStack. Nova network security group changes arel38]
not applied to running instances, 2015. Available at:
https://security.openstack.org/ossa/OSSA-2015-@21, h last visited [39]
on: May, 2016.

OpenStack. Routers can be cross plugged by other ®naot4. [40]
Available at:| https://security.openstack.org/ossa/®2814-008.html,

last visited on: May, 2016.

J. Corbet. Trees |: Radix tree. Available at: [41]
http://lwn.net/Articles/175432/.

D. E. Willard. Log-logarithmic worst-case range qesriare possible [42]
in space o(n), 1983. Information Processing Letters.

OpenStack. Policy as a Service (Congress). Availabte a
http://wiki.openstack.org/wiki/Congress.

P. Kazemian, G. Varghese, and N. McKeown. Header spaafysis: [43]
Static checking for networks. INSDI, 2012.

P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeownd a 44]
S. Whyte. Real time network policy checking using headercspa
analysis. INNSD|, 2013.

H. Mai, Ahmed Khurshid, R. Agarwal, M. Caesar, P. Goygfrand S. T. [45]
King. Debugging the data plane with anteater. SiGCOMM 2011.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. GodfregriFlow: [46]
verifying network-wide invariants in real time. INSD|, 2013. [47]
H. Yang and S. S. Lam. Real-time verification of networogerties

using atomic predicates. ICNP, Oct 2013. (48]
H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N.Kdown,

and A. Vahdat. Libra: Divide and conquer to verify forwamglitables [49]
in huge networks. IINSDI|, 2014.

Aaron Gember-Jacobson, Raajay Viswanathan, AdityallAk and (501
Ratul Mahajan. Fast control plane analysis using an alistegre-
sentation. INSIGCOMM 2016. [51]
Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraedi®r, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A general appgh to [52]
network configuration analysis. INSDI, 2015.

Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahafadd Mill- [53]
stein, Vyas Sekar, and George Varghese. Efficient netwatheability
analysis using a succinct control plane representatiorO3$D|, 2016. [54]
N. P. Lopes, N. Bjgrner, P. Godefroid, K. Jayaraman, @nd/arghese.
Checking beliefs in dynamic networks. MSDI'15 2015. [55]
Soren Bleikertz, Carsten Vogel, and Thomas Grof3. €l&adar:

Near real-time detection of security failures in dynamictualized [56]
infrastructures. IMMCSAGC 2014.

T. Probst, E. Alata, M. Kaaniche, and V. Nicomette. Appeoach for [57]

the automated analysis of network access controls in clontpating
infrastructures. IfNetwork and System Securi®014.

15

G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, t§alm-
tysson, and J. Rexford. On static reachability analysisPohétworks.
In INFOCOM, 2005.

Taous Madi, Suryadipta Majumdar, Yushun Wang, Yosrala, Makan
Pourzandi, and Lingyu Wang. Auditing security compliandettee
virtualized infrastructure in the cloud: Application to @yStack. In
CODASPY 2016.

Suryadipta Majumdar, Yosr Jarraya, Taous Madi, Amiimdhammad-
ifar, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi.aPtige
verification of security compliance for clouds through pmmputation:
Application to OpenStack. [ESORICS2016.

S. Bleikertz, T. Grof3, M. Schunter, and K. Eriksson. d@dwmated
information flow analysis of virtualized infrastructuren ESORICS
2011.

Karthick Jayaraman, Nikolaj Bjgrner, Geoff OuthredidaCharlie
Kaufman. Automated analysis and debugging of network octiie
ity policies. Technical report, Technical Report MSR-T&t2-102,
Microsoft Research, 2014.

OpenStack. Congress documentation
https://congress.readthedocs.io/en/latest/.
Robin J. W. Definitions and examples. lintroduction to Graph Theory,
Second Edition1979.

P. Kazemian, G. Varghese, and N. McKeown. Header spaalysis:
Static checking for networks. INSD|, pages 113-126, 2012.

Fred Halsall. Computer Networking and the Internet (5th Edition)
Addison-Wesley Longman Publishing Co., Inc., 2005.

W. R. Cheswick, S. M. Bellovin, and A. Rubirkirewalls and Internet
Security: Repelling the Wily Hacker

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, Jan@Dehnert,
llan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregelystem for
large-scale graph processing. $\GMOD, 2010.

Douglas Gregor and Andrew Lumsdaine. The parallel B&lgeneric
library for distributed graph computation®OOSGC 2, 2005.

Albert Chan and Frank Dehne. CGMgraph/CGMIlib: Impletieg and
testing CGM graph algorithms on PC clusters. Haropean Parallel
Virtual Machine/Message Passing Interface Users’ Groupefifig
Springer, 2003.

H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawand, and
G. O'Shea. Chatty tenants and the cloud network sharinglgarabin
NSDJ, 2013.

Cloud auditing data federation (CADF). PyCADF: A Pythbased
CADF library, 2015. Available ai: https://pypi.pythongdpypi/pycadf.
Amazon. Amazon EC2- Virtual Server Hosting. Availabi:
https://aws.amazon.com/ec2.

Ignite. Available at/ https://ignite.apache.org.

A. Fei, G. Pei, R. Liu, and L. Zhang. Measurements on Welad
hop-count of the internet. IGLOBECOM 1998.

F. Begtasevic and P. V. Mieghem. Measurements of thedwmt in
internet. InPAM, 2001.
Amazon. Amazon virtual
https://aws.amazon.com/vpc.

release. Availaal:

private cloud. Available at:

Google. Google compute engine subnetworks beta. &bl at:
https://cloud.google.com.
Microsoft. Microsoft Azure virtual network. Availabl at:

https://azure.microsoft.com.

VMware. VMware vCloud Director.
https://www.vmware.com.

M. Bellare and B. Yee. Forward integrity for secure daultigs.
Technical report, Citeseer, 1997.

Scott A Crosby and Dan S Wallach. Efficient data struesuior tamper-
evident logging. INUSENIX Security Symposiura009.

Di Ma and Gene Tsudik. A new approach to secure loggiAgEM
Transactions on Storage (TQ$(1):2, 2009.

OpenStack. Security hardening, 2016. Available at:
http://docs.openstack.org/admin-guide/compute- sgydumi.

Cheun Ngen Chong, Zhonghong Peng, and Pieter H Harteturs

audit logging with tamper-resistant hardware. Sacurity and Privacy
in the Age of UncertaintySpringer, 2003.

Available at:

https://cloudsecurityalliance.org/research/ccm/
https://www.openstack.org
http://www.rightscale.com
http://www.openstack.org
https://security.openstack.org/ossa/OSSA-2015-021.html
https://security.openstack.org/ossa/OSSA-2014-008.html
http://lwn.net/Articles/175432/
http://wiki.openstack.org/wiki/Congress
https://congress.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pycadf
 https://aws.amazon.com/ec2
https://ignite.apache.org
 https://aws.amazon.com/vpc
https://cloud.google.com
 https://azure.microsoft.com
 https://www.vmware.com
http://docs.openstack.org/admin-guide/compute-security.html

	Introduction
	Related Work
	Models
	Threat Model
	Virtual Network Model
	Forwarding and Filtering Model

	TenantGuard Design and Implementation
	Overview
	Data Models
	Routing and Security Groups
	Prefix-to-Prefix Verification Results Processing

	Verification
	Prefix-Level Verification
	VM-Level Isolation Verification
	Complexity Analysis
	Correctness
	Incremental Verification

	Application to OpenStack
	Experiments
	Experimental Settings
	Results
	SNET Results
	LNET Results Using Amazon EC2
	Experiment with Real Cloud

	Discussion
	Conclusion
	References

