
TenantGuard: Scalable Runtime Verification of
Cloud-Wide VM-Level Network Isolation

Yushun Wang∗, Taous Madi∗, Suryadipta Majumdar∗, Yosr Jarraya†,
Amir Alimohammadifar∗, Makan Pourzandi†, Lingyu Wang∗ and Mourad Debbabi∗

∗CIISE, Concordia University, Canada
Email: {yus wang, t madi, sumajum, amialim, wang, debbabi}@encs.concordia.ca

†Ericsson Security Research, Ericsson Canada
Email: {yosr.jarraya, makan.pourzandi} @ericsson.com

Abstract—Multi-tenancy in the cloud usually leads to security
concerns over network isolation around each cloud tenant’s
virtual resources. However, verifying network isolation in cloud
virtual networks poses several unique challenges. The sheer size
of virtual networks implies a prohibitive complexity, whereas
the constant changes in virtual resources demand a short re-
sponse time. To make things worse, such networks typically
allow fine-grained (e.g., VM-level) and distributed (e.g., security
groups) network access control. Those challenges can either
invalidate existing approaches or cause an unacceptable delay
which prevents runtime applications. In this paper, we present
TenantGuard, a scalable system for verifying cloud-wide, VM-
level network isolation at runtime. We take advantage of the
hierarchical nature of virtual networks, efficient data structures,
incremental verification, and parallel computation to reduce the
performance overhead of security verification. We implement our
approach based on OpenStack and evaluate its performance both
in-house and on Amazon EC2, which confirms its scalability and
efficiency (13 seconds for verifying 168 millions of VM pairs).
We further integrate TenantGuard with Congress, an OpenStack
policy service, to verify compliance with respect to isolation
requirements based on tenant-specific high-level security policies.

I. I NTRODUCTION

The widespread adoption of cloud is still being hindered
by security and privacy concerns, especially the lack of trans-
parency, accountability, and auditability [1]. Particularly, in
a multi-tenant cloud environment, virtualization allows opti-
mal and cost-effective sharing of physical resources, such as
computing and networking services, among multiple tenants.
On the other hand, multi-tenancy is also a double-edged
sword that often leads cloud tenants to raise questions like:
“Are my virtual machines (VMs) properly isolated from other
tenants, especially my competitors?” In fact, network isolation
is among the foremost security concerns for most cloud
tenants [2], [3], and cloud providers often have an obligation to
provide clear evidences for sufficient network isolation [4], [5],
either as part of the service level agreements, or to demonstrate

compliance with security standards (e.g., ISO 27002/27017 [6],
[7] and CCM 3.0.1 [8]).

Verifying network isolation potentially requires checking
that VMs are either reachable or isolated from each other
exactly as specified in cloud tenants’ security policies. In
contrast to traditional networks, virtual networks pose unique
challenges to the verification of network isolation.

- First, the sheer size of virtual networks inside a cloud
implies a prohibitive complexity. For example, a decent-
size cloud is said to have around 1,000 tenants and
100,000 users, with 17 percent of users having more than
1,000 VMs [9], [10]. Performing a cloud-wide verification
of network isolation at the VM-level for such a cloud
with potentially millions of active VM pairs using existing
approaches results in a significant delay (e.g., Plotkin et
al. [11] take 2 hours to verify 100k VMs). Most existing
techniques in physical networks are not designed for such
a scale, and will naturally suffer from scalability issues
(a detailed review of related work is given in Section II)
and quantitative comparison with state-of-the-art work is
provided in Section VI.

- Second, the self-service nature of a cloud means virtual
resources in a cloud (e.g., VMs and virtual routers or
firewalls) can be added, deleted, or migrated at any
time by cloud tenants themselves. Consequently, tenants
may want to verify the network isolation repeatedly or
periodically at runtime, instead of performing it only
once and offline. Moreover, since any verification result
will likely have a much shorter lifespan under such a
constantly changing environment, tenants would naturally
expect the results to be returned in seconds, instead of
minutes or hours demanded by existing approaches [11].

- Third, a unique feature of virtual networks, quite unlike
that in traditional networks, is the fine-grained and dis-
tributed nature of network access control mechanisms. For
example, instead of only determined by a few physical
routers and firewalls, the fate of a packet traversing virtual
networks will also depend on the forwarding and filtering
rules of all the virtual routers, distributed firewalls (e.g.,
security groups in OpenStack [12]), and network address
translation (NAT), which are commonly deployed in a
very fine-grained manner, such as on individual VMs.
Unfortunately, most existing works fail to reach such a
granularity since they are mostly designed for (physical)

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23365

network-level verification (i.e., between IP prefixes) in-
stead of VM-level verification with distributed firewalls.

Motivating Example. Figure 1 shows the simplified view of
a multi-tenant cloud environment.1 The solid line boxes depict
the physical machines (N compute nodes and one network
node) inside which are the VMs, distributed firewalls (security
groups), and virtual routers or switches. The virtual resources
of different tenants (e.g.,VM_A1 of Alice, andVM_B2 of Bob)
are depicted by different filling patterns.

Compute node 1

. . .

VNet 101
VNet 110

VNet 200

VNet 101
VNet 110

VNet 200

Virtual Switch

VLAN 100 VLAN 103

VLAN 200

VM_A1
Priv: 10.0.0.12
Pub: 1.10.0.75

Compute node N

Allow src
1.10.0.75

Virtual Switch

VLAN 103

VLAN 201

VLAN 300

Allow src
1.10.1.12

External Network

Network node

Virtual Switch

Virtual Switch

R_A1

R_A2

R_A3
R_B1

Bob’s resourcesAlice’s resources

VM Virtual routerSecurity group

VM_B2
Priv: 19.0.0.30
Pub: 1.10.1.12

Fig. 1. An Example of a Multi-Tenant Cloud

- Network isolation may be compromised through ei-
ther unintentional misconfigurations or malicious attacks
exploiting implementation flaws. For example, assume
the current security policies of tenants Alice and Bob
allow their VMs VM_A1 and VM_B2 to be reach-
able from each other, as reflected by the two secu-
rity group rulesallow src 1.10.1.12 andallow
src 1.10.0.75. Now suppose Alice would like to
stop accesses to her VMVM_A1, and therefore she deletes
the ruleallow src 1.10.1.12 and updates her high
level defined security policy accordingly. However, Alice
is not aware of an OpenStack vulnerability OSSA 2015-
021 [13], which causes such a security group change to
silently fail to be applied to the already running VM
VM_A1. At the same time, a malicious user of tenant
Bob exploits another vulnerability OSSA 2014-008 [14]
by which OpenStack (Neutron) fails to perform proper
authorization checks, allowing the user to create a port
on Alice’s virtual routerR_A3 and subsequently bridges
that port to his own routerR_B1. Consequently, Alice’s
VM, VM_A1, will remain to be accessible by Bob, which
is a breach of network isolation.

- To detect promptly such a breach of network isolation, the
challenge Alice faces is again threefold. First, assume the
cloud has25, 000 active VMs among which Alice owns
2, 000. Since all those VMs may potentially be the source
of a breach, and each VM may have both a private IP and
a dynamically allocated public IP, Alice potentially has to
verify the isolation between25, 000× 2, 000× 2 = 100
millions of VM pairs. Second, despite such a high com-
plexity, Alice wants to schedule the verification to be

1To make our discussions more concrete, the examples will mostly be based
on OpenStack, and Section VII discusses the applicability of our approach to
other cloud platforms.

performed every five minutes and is expecting to see the
results within a few seconds, since she knows the result
may only be valid until the next change is made to the
virtual networks (e.g., adding a port by Bob). Finally, to
perform the verification, Alice must collect information
from heterogeneous data sources scattered at different
locations (e.g., routing and NAT rules in virtual routers,
host routes of subnets, and firewall rules implementing
tenant security groups).

In this paper, we presentTenantGuard, a scalable system
for verifying cloud-wide, VM-level network isolation at run-
time, while considering the unique features of virtual networks,
such as distributed firewalls. To address the aforementioned
challenges, our main ideas are as follows. First, TenantGuard
takes advantage of the hierarchical structure found in most
virtual networks (e.g., OpenStack includes several abstraction
layers organized in a hierarchical manner, including VM
ports, subnets, router interfaces, routers, router gateways, and
external networks) to reduce the performance overhead of
verification. Second, TenantGuard adopts a top-down approach
by first performing the verification at the (private and public) IP
prefix level, and then propagating the partial verification results
down to the VM-level through efficient data structures with
constant search time, such as radix binary tries [15] and X-
fast binary tries [16]. Third, TenantGuard supports incremental
verification by examining only parts of the virtual networks
affected by a configuration change. Finally, TenantGuard
leverages existing cloud policy services to check isolation
results against tenant-specific high-level security policies. The
following summarizes our main contributions:

- We propose an efficient cloud-wide VM-level verification
approach of network isolation with a practical delay for
runtime applications (13 seconds for verifying25, 246
VMs and 168 millions of VM pairs, as detailed in
Section VI).

- We devise a hierarchical model for virtual networks
along with a packet forwarding and filtering function to
capture various components of a virtual network (e.g.,
security groups, subnets, and virtual routers) and their
relationships.

- We design algorithms that leverage efficient data struc-
tures, incremental verification, and an open source parallel
computation platform to reduce the verification delay.

- We implement and integrate our approach into Open-
Stack [12], a widely deployed open source cloud man-
agement system. We evaluate the scalability and efficiency
of our approach by conducting experiments both in-house
and on Amazon EC2.

- We further integrate TenantGuard into Congress [17], an
OpenStack policy checking service, in order to check the
compliance of isolation results against tenants’ predefined
high-level security policies.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes the
threat model and virtual network model. Section IV discusses
our system design and implementation. Section V provides
details on TenantGuard’s integration into OpenStack and Sec-

2

tion VI gives experimental results. Section VII discusses the
adaptability and integrity preservation. Section VIII discusses
limitations, provides future directions, and concludes the paper.

II. RELATED WORK

Table I summarizes the comparison between existing works
on network reachability verification and TenantGuard. The first
column divides existing works into two categories based on
the targeted environments, i.e., either cloud-based networks or
non-cloud networks. The second and third columns list existing
works and indicate their verification methods, respectively. The
next column compares those works to TenantGuard according
to various features, e.g., the support of parallel implementa-
tion, incremental verification, NAT, and all pairs reachability
verification (which is the main target of TenantGuard). The
next two columns respectively compare the scope of those
works, i.e., whether the work is designed for physical or virtual
networks, and whether it addresses control or data plane in
such networks. Note that a L3 network is composed of a
control plane for building the network typology and the routing
tables based on various routing protocols (e.g., OSPF, BGP),
and a data plane for handling packets according to the built
routing tables. The last two columns show the size of input
and verification time, respectively, as reported in those papers.

In summary, TenantGuard mainly differs from the state-
of-the-art works as follows. First, TenantGuard performs ver-
ification at a different granularity level (i.e., all-pair VM-
level vs single-pair router-level). Second, TenantGuard is more
scalable (e.g., verifying 100k VMs within 17mins). Finally,
TenantGuard employs custom algorithms instead of relying on
existing verification tools (e.g., [11], [27], [29], [28]),which
enables TenantGuard to more efficiently deal with complexity
factors specific to the cloud network infrastructure such asa
large number of VMs, longer routing paths (number of hops),
and increased number of security rules.

Non-Cloud Network Verification. In non-cloud networks,
several works (e.g., [30], [20], [18], [21], [19], [22], [23])
propose data plane analysis approaches, while others propose
control plane analysis (e.g., [25], [24], [26]). Some existing
works (e.g., [30], [20], [18]) address non-virtualized physical
networks. Specifically, Xie et al. [30] propose an automated
static reachability analysis of physical IP networks basedon a
graph model. Anteater [20] and Hassel [18] detect violations
of network invariants such as absent forwarding loops. While
those works are successful for verifying enterprise and campus
networks, they cannot address challenges of large scale virtual
networks deployed in the cloud with hundreds of thousands
of nodes. For instance, Hassel [18] needs 151 seconds to
compress forwarding tables before spending an additional 560
seconds in verifying loop-absence for a topology with 26
nodes.

Other works (e.g., [21], [19], [22]) propose approaches
for virtualized networks. VeriFlow [21], NetPlumber [19]
(extension of [18]), and AP verifier [22] outperform previ-
ous works by proposing a near real-time verification, where
network events are monitored for configuration changes, and
verification is performed only on the impacted part of the
network. Those works propose query-based network invariants
verification between a specific pair of source and destination

nodes. In order to cover all-pairs, the total number of queries
would grow significantly. This hinders the scalability of these
approaches to tackle large cloud data centers. Furthermore,
most of these works consider routers/switches as the source
and destination nodes for their verification. NetPlumber and
VeriFlow offer similar runtime performance. For a network
of 52 nodes, Netplumber [19] checks all-pairs reachability
in 60 seconds, whereas a single-machine implementation of
TenantGuard takes only 4.6 seconds to verify a network of
4,300 nodes (see Figure 10). Libra [23] uses a divide and
conquer technique to verify forwarding tables in large networks
for subnet-level reachability failures. While Libra relies on the
assumption that rules in switches consist of prefixes aggre-
gating many subnets, we additionally deal with more specific
rules (longer prefixes) by running the preorder traversal onthe
radix binary tries.

Works designed for control plane verification in physical
networks like ARC [24], Batfish [25] and ERA [26], if applied
to the cloud, would face the difficulty that (unlike physical
networks) routing rules and ACLs for tenants’ private virtual
networks are not generated by the control plane.

Network Verification for Cloud Deployments. There are
several works (e.g., [27], [11], [31], [32], [33], [28]) ver-
ifying the virtualized infrastructure in the cloud. Most of
those solutions focus on verifying configuration correctness
of virtualization infrastructures in terms of structural prop-
erties (e.g., Cloud Radar [28]), which is different from the
properties targeted by TenantGuard. NoD [27], SecGuru [34]
and their successor (Plotkin et al. [11]) are the closest works
to TenantGuard, as they can check all-pairs reachability in
physical networks for large cloud data centers. NoD is a
logic-based verification engine that has been designed for
checking reachability policies using Datalog definitions and
queries. Plotkin et al. [11] improve the response time of NoD
by exploiting the regularities existing in data centers lessen
the verification overhead using bi-simulation and modal logic.
The experimental results reported in Section VI show that
TenantGuard outperforms those tools.

Congress [35], is an open project for OpenStack platforms.
It enforces policies expressed by tenants and then monitors
the state of the cloud to check its compliance. However,
reachability requires recursive Datalog queries [35], which
are difficult to solve and are not supported by Congress.
Therefore, we integrated TenantGuard into Congress in order
to check network isolation results provided by TenantGuard
against tenants’ security policies defined in Congress (Section
V). Additionally, by integrating TenantGuard to Congress,
we augmented Congress capabilities to support reachability-
related policies as NoD without modifying Datalog-based
policy language provided by Congress.

III. M ODELS

In this section, we describe the threat model and propose
a hierarchical model for cloud virtual networks.

A. Threat Model

Our threat model is based on two facts. First, our auditing
solution focuses on verifying the security properties speci-
fied by cloud tenants, instead of detecting specific attacks

3

Network Proposals Methods
Features

Physical vs
Virtual net.

Control vs
Data plane Size of input Verif.

Time
Paral. Incr. NAT

All Pairs
Reach. Phys. Virt. Ctr. Data VMs Routers Rules

Non-
Cloud

Hassel [18] Custom algorithms • • • - 26 756.5k -
NetPlumber [19] Graph-theoretic • • • • • • - 52 143k 60

Anteater [20] SAT solver • • • • - 178 1,627 -
Veriflow [21] Graph-theoretic • • • - 172 5,000k -

AP verifier [22] Custom algorithms • • • • - 58 3,605 -
Libra [23] Graph-theoretic • • • • • - 11,260 2,650k -
ARC [24] Graph-theoretic • • - few tens - -

Batfish [25] SMT Solver • • • - 21 - 86,400
ERA [26] Custom Algorithms • • - over 1,600 - -

Cloud
NoD [27] SMT Solver • • • • 100k - 820k 471,600

Plotkin et al. [11] SMT Solver • • • • 100k - 820k 7,200
Cloud Radar [28] Graph-theoretic • 30k - - -
Probst et al. [29] Graph-theoretic • • • 23 - - -

TenantGuard Custom algorithms • • • • • • 100k 1,200 850k 1,055.88

TABLE I. COMPARING FEATURES AND PERFORMANCE OF DIFFERENT EXISTING SOLUTIONS WITH TENANTGUARD. THE SYMBOL (•) INDICATES THAT
THE PROPOSAL OFFERS THE CORRESPONDING FEATURE. ALL VERIFICATION TIME MEASUREMENTS ARE REPORTED IN SECONDS.

or vulnerabilities (which is the responsibility of IDSes or
vulnerability scanners). Second, the correctness of our auditing
results depends on correct input data extracted from logs and
databases. Since an attack may or may not violate the security
properties specified by the tenant, and logs or databases may
potentially be tampered with by attackers, our auditing results
can only signal an attack in some cases. Specifically, the
in-scope threats of our solution are attacks that violate the
specified security properties and at the same time lead to
logged events. The out-of-scope threats include attacks that
do not violate the specified security properties, attacks not
captured in the logs or databases, and attacks through which
the attackers may remove or tamper with their own logged
events. We assume each cloud tenant has defined its own
security policies on network isolation in terms of reachability
between VMs. We focus on the virtual network layer (layer
3) in this paper, and our work is complementary to existing
solutions at other layers (e.g., verification in physical networks
or isolation w.r.t. to covert channels caused by co-residency;
more details are given in Section II). Finally, we assume the
verification results (e.g., which VMs may connect to a tenant)
do not disclose sensitive information about other tenants and
regard potential privacy issues as a future work.

B. Virtual Network Model

Here, we define a hierarchical model to capture various
components of a virtual network and their logical relationships.
The following example provides intuitions on the model we
propose.

Example 1:Figure 2 illustrates an instance of our model
that captures the virtual networks of tenants Alice and Bob,
following our example shown in Figure 1. Each tenant can
create several subnets (e.g.,SN_A1 andSN_A2 of Alice). A
subnet (e.g.,SN_A2) is generally associated with a CIDR (e.g.,
10.0.0.0/24) and a set of forwarding rules (host routes)
specifying the default gateway (e.g., router interfaceIF_A11).
A newly created VM (e.g.,VM_A1, not shown here) will be
attached to a virtual port (e.g.,VP_A1) on a subnet (e.g.,
SN_A2) and associated with a private IP (e.g.,10.0.0.12).
Ingress and egress security groups are associated with the
virtual ports of VMs and act as virtual firewalls. Routers
(e.g.,R_A1) interconnect different subnets to route intra-tenant
(e.g., betweenSN_A2 and SN_A3) and inter-tenant traffic
and connect them to external networks (e.g.,ExtNet_1) via
router gateways (e.g.,RG_A1). Several interconnected external

networks (not shown in the figure) may exist, where each (e.g.,
ExtNet_1) can have a routable public IP address block (e.g.,
1.10.0.0/22). For inter-tenant traffic, at least one router
from each tenant must be involved and the traffic generally
traverses external networks. For any communication going
through external networks, a public IP address is allocatedper
VM (e.g.,VP_A1.Public_IP=1.10.0.75) depending on
which external network (e.g.,ExtNet_1) connects to the
subnet of the VM (e.g.,SN_A2). The mapping between private
and public IP addresses is maintained through NAT rules at
routers.

NAT rules

Routing rules

Security groups

Host routes

Ext. Net
1.10.0.0/22

RG_A1

IF_A12 IF_A31

SN_A2

10.0.0.0/24

SN_A3

10.0.1.0/24

R_B1

IF_B11 IF_B12

SN_B1

19.0.1.0/24

SN_B2

19.0.0.0/24

IP: 1.10.0.2 IP: 1.10.0.3

Tenant Alice Tenant Bob

VP_A1 VP_A2 VP_B1 VP_B2

IF_A21

SN_A1

10.0.2.0/24

IF_A22

R_A1

IF_A11

Private IP:10.0.0.12

Public IP:1.10.0.75

Private IP:10.0.1.22

Public IP:1.10.1.9

Private IP:19.0.1.15

Public IP:1.10.0.8

Private IP:19.0.0.30

Public IP:1.10.1.12

R_A2 R_A3

RG_B1

External

Network

Router

Gateway

Router

Router

Interface

Subnet

VM port

Edge

Forwarding path

Fig. 2. An Example of the Virtual Network Model

More generally, Figure 2 may be abstracted as an undi-
rected graph with typed nodes, as defined in the following.

Definition 1: A virtual network model is an undirected
graph G = (V,E), where V is a set of typed nodes
each of which is associated with a set of attributess =
{id, tenant id, Public IP, Private IP, type, rules}, where
type ∈ {vm port, subnet, v router, v router if, v router
gw , ext net}, representing VM port, subnet, router, router
interface, router gateway, and external network, respectively.
E is a set of undirected edges representing the logical
connectivity among those network components.

A virtual network modelG can usually be decomposed
into a set of maximally connected sub-graphs [36] (denoted
by Ci = (Vi, Ei) in later discussions) by removing all
edges between router gateways and external networks. Those
subgraphs represent different tenants’ private virtual networks,
which are connected to external networks via the removed

4

edges. We will leverage this characteristic later in Section IV
to tackle the complexity issues.

C. Forwarding and Filtering Model

In the following, we first model how packets may traverse
a virtual network, and then formalize the network isolation
property that we aim to verify.

Forwarding and Filtering. Network packets traversing virtual
networks are typically governed by both filtering (security
group rules) and forwarding (routing) rules, as demonstrated
in the following example.

Example 2:Figure 2 shows a dotted line representing the
sequence of edges traversed by a set of packets fromVM_A1
to VM_B2, which represents the forwarding path controlled
by different nodes between both corresponding virtual ports.
Packets sent to the virtual port (e.g.,VP_A1) are processed
by the egress security group rules then either dropped or
forwarded to the subnet nodeSN_A2. According to host
routes associated withSN_A2 and the destination address
(i.e., VM_B2.Public_IP), packets are either dropped or
forwarded to the default gateway, which is the router interface
IF_A11 of the routerR_A1. At the router node, packets’
headers are matched with the routing rules, and are either for-
warded toRG_A1 and then to the associated external network
ExtNet_1, or dropped. Packets destined toVM_B2 are then
forwarded byExtNet_1 to the routerRG_B1. If matching
forwarding rules for these packets are found at nodesRG_B1,
R_B1 andSN_B2, then the edges betweenRG_B1 andVP_B2
are traversed. AtVP_B2, only packets matching the ingress
security group rules are forwarded to their destination. Note
that at the level ofR_A1 (resp.R_B1), packets are transformed
using NAT rules by replacing the source (resp. destination)
private (resp. public) IP ofVM_A1 (resp.VM_B2) with the
corresponding public (resp. private) IP.

More generally, the following definition models the way
packets traverse virtual networks using a forwarding and
filtering function capturing respectively routing and security
group rules.

Definition 2: Forwarding and Filtering Function. Given
a virtual network modelG = (V,E),

- let p ∈ P be a symbolic packet (similarly as in [37])
consisting of a set of header fields (e.g., source and
destination IPs) and their corresponding values in{0, 1}

L

such thatL is the length of the field’s value, and

- let (p, (u, v)) be aforwarding statewhere (u,v) is the pair
of nodes inG representing respectively the previous hop
node (i.e., the sender node) and the current node (i.e., the
nodev where the packet is located in the current state).

- The forwarding and filtering functionfdG returns the
successor forwarding states{(p′i, (v, wi))}i∈N, such that
eachwi ∈ V is a receiving node according to the results
of rules matching at nodev, and p′i is the symbolic
packet resulting from a set of transformations (e.g.,
NAT) over packetp before being forwarded towi where
{v, wi}∀i∈N ∈ E.

- A forwarding path for packetp from nodeu to node
v is a sequence of forwarding states(p, (null, u))· · ·
(p′, (v, null)).

As a convention, we will usenull in forwarding states to
denote a forwarding state where the symbolic packet has been
dropped (e.g.,(null, (w, null))), a packet initially placed on
a nodev (e.g.,(p, (null, v))), or a packet received byw after
the last hop (e.g.,(p, (w, null))).

Network Isolation. With the virtual network model and for-
warding and filtering function just defined, we can formally
model network isolation and related properties as follows.

Definition 3: Given a virtual network modelG = (V,E),

- for any u,v ∈ V , we sayu and v are reachable if there
exists a packetp ∈ P and a forwarding path forp from
u to v. Otherwise, we sayu andv are isolated.

- A forwarding loop exists betweenu ∈ V and v ∈ V if
there existsp ∈ P destined tov and w,w′ ∈ V such
that (p, (w,w′)) is a reachable forwarding state and that
fdG((p, (w,w

′))) = (p, (w′, w)).

- A blackhole exists betweenu ∈ V and v ∈ V if
there existsp ∈ P destined tov and w,w′ ∈ V
such that(p, (w,w′)) is a reachable forwarding state and
fdG((p, (w,w

′))) = (null, (w′, null)).

The properties given in Definition 3 can serve as the
building blocks of any network isolation policies specified
by a cloud tenant. The specific forms in which such security
policies are given are not important, as long as such policies
can unambiguously determine whether two nodes should be
reachable or isolated. Therefore, our main goal in verifying
a tenant’s security policies regarding network isolation is to
ensure any two nodes are reachable (resp. isolated) if and only
if this is specified in such policies. In addition, our verification
algorithms introduced in Section IV can also identify forward-
ing loops and blackholes as anomalies in virtual networks.

IV. T ENANTGUARD DESIGN AND IMPLEMENTATION

In this section, we first provide an overview of our ap-
proach and then introduce the data structures and the verifica-
tion algorthims in details.

A. Overview

Due to the sheer size of a cloud, verifying separately each
pair of VMs (query-based approach) or directly computing all
possible forwarding paths for all pairs of VMs (henceforth
called thebaseline algorithm) would result in an unacceptable
response time, and not scale to large clouds, as will be
demonstrated through experiments in Section VI. Also, the use
of (possibly overlapping) private IPs and dynamically allocated
public IPs in the cloud can make things even worse. To address
those issues, TenantGuard leverages the hierarchical virtual
network model presented in Section III-B by partitioning the
verification task into a prefix-level verification followed by a
VM-level verification. Prefix-level verification splits further the
virtual networks into a set of private IP prefixes (i.e., tenants’
subnets) and a set of public IP prefixes (i.e., external network
IP prefixes), which results in a three-step approach, as it will be

5

External

networks

Routers Tables

Ingress/Egress

Security Groups

Subnets

Host Routes

TenantGuard

Compute

service

Networking

service

Compliance

V&V

Audit

Report

Security

Policies

Data Collection &

Preparation

Compliance Verification

 & Reporting

Fig. 3. An Overview of TenantGuard

Same
Component?

(Step1)
Private IP Prefix-
level verification

(Step2)
Public IP Prefix-
level verification

Yes

No
Reachable?

<sn-src, sn-dest>

Subnets: Not
reachable

No

Yes(Step3)
VM-Level all-

pairs verification
Isolated ?

No

<VM-src, VM-dst>:
not isolated

Yes
<VM-src, VM-dst>:

isolated

Fig. 4. A Flow Chart Illustrating Our Three-Step Approach

detailed later. Furthermore, we use efficient data structures that
allow handling all-pair verification at once instead of a query-
based approach. As we will confirm with experimental results
in Section VI, those conceptual advances allow to scale to
cloud-wide, VM-level verification of network isolation. Figure
3 provides an overview of the TenantGuard system. Input data
from the cloud infrastructure management system, including
router rules, host routes, and security groups, are collected and
processed using efficient data structures as it would be detailed
in Section IV-B. The preservation of collected data integrity
is discussed in Section III-A. Once the verification results
are returned, compliance verification compares such results
with the tenant’s pre-defined security policies. Finally, the
corresponding auditing report is generated and presented to the
tenant. Figure 4 provides a high-level flow graph corresponding
to our three-step approach. Each element of the graph will be
detailed in Section IV-C.

To grasp the intuition behind our three-step verification
approach, we present an example.

Example 3:Figure 5 illustrates the application of our
three-step verification approach using our running example
shown in Figure 2. InStep 1 (ref. Section IV-C1), prefix-
level isolation verification within the same components/sub-
graph using private IP is performed. For instance, the isolation
between Alice’s subnetsSN_A2 andSN_A3 through the router
R_A1 is verified using their respective private IP prefixes
(e.g.,10.0.0.0/24 and10.0.1.0/24). In Step 2 (ref.
Section IV-C1), prefix-level isolation verification between dif-
ferent components (e.g.,SN_A2 andSN_B2) is performed via
each adjacent external network (e.g.,ExtNet_1). This step
is further decomposed intoStep 2.a for verifying isolation
between the source subnet (e.g.,SN_A2) and the external
network, andStep 2.b for verifying isolation between the
external network and the destination subnet (e.g.,SN_B2).
This verification also involves public and private IP NAT.
Finally, Step 3 (ref. Section IV-C2) performs VM-level
security groups verification for any pair of subnets found to
be reachable usingStep 1 andStep 2.

Ext. Net
1.10.0.0/22

RG_A1

IF_A12 IF_A31

SN_A2

10.0.0.0/24

SN_A3

10.0.1.0/24

RG_B1

IF_B12

SN_B2

19.0.0.0/24

Tenant Alice Tenant Bob

VP_A1 VP_A2 VP_B2

R_A1

IF_A11

R_A3 R_B1

Step1

Step2.a Step2.b

Step3

Fig. 5. Example Application of Our Three-Step Verification Approach

B. Data Models

In order to further improve the scalability and response-
time of our approach, we investigated prefix matching and
packet classification literature. According to our findings, we
found out that both X-fast binary tries [16] and radix binary
tries [15] fit our purpose. Different type of trie structures
have been used in prior works e.g., VeriFlow [21]. Indeed,
X-fast binary tries not only allow efficiently storing of allIP
addresses with their prefix relationships but also provide fast
insertion and searching operations. Furthermore, radix tries are
efficiently used to store routing and filtering rules as well
as efficiently matching them against packet-headers. In the
following, we show how we use them in our approach.

1) Routing and Security Groups:We employ radix tries to
store routing and firewall rules and then to perform efficient
rule matching against IP prefixes. We use variables for labeling
nodes to store information about the rules and their order.

NH:null

NH:null

NH:null
….

NH: null

NH: RG_A1

NH:null

NH: IF_A22

NH: IF_A31

NH: null

0

1

0

0

0

0

….

1

….

1

Longest

prefix match

Preorder

traversal

1.10.0.0 1.10.3.255

Range 2: r3

Range 1: r2 Range 3: r1

Rules in Router R_A1

Next-Hop

10.0.1.0/24 IF_A12

r1 1.10.0.0/22 RG_A1

r2 1.10.0.0/24 IF_A22

r3 1.10.1.0/28 IF_A31

Rule Prefix

r0

Fig. 6. An Illustrative Routing Table in RouterR A1 and an Excerpt of the
Corresponding Radix Trie

Example 4:Figure 6 illustrates an example of a radix
trie (right-side) for an excerpt of the routing rules of router
R_A1 (upper left-side) with the different IP ranges (lower left-
side) resulting from matching all rules with the IP prefix of
ExtNet_1 (i.e., 1.10.0.0/22). Edges of the radix trie are la-
beled with binary values and nodes store different information
relevant to matching the bit-strings formed by concatenating all
labels of upstream edges starting from the root node [15]. The
matching consists in transforming the IP prefix into a bit string
(i.e., 0000.0001.0000.1010.00) and using it as a key search to
find the corresponding node. The node’s variableNH stores the
matching rule’s next hop; for firewall rules (not shown in this
example), we use two variables, namelyVAL for decision of
the matching rule (i.e., accept/deny), andSN for rules’ order.
In case of absence of a matching rule, those values are set to

6

null. For instance, the matched node is labeledNH = RG A1,
which corresponds to the next hop specified by ruler1 in the
routing table and it represents the longest-prefix matched rule.

For routing rules matching with an IP prefix, the common
algorithm used by routers for matching a single packet, namely,
the longest-prefix match [38], would not be sufficient. There-
fore, we only apply the longest-prefix match algorithm to any
rule that matches the destination prefix. Then, we apply a pre-
order traversal of the sub-trie starting from the node storing
the longest-prefix matching rule. The rationale is that other
more specific prefixes stored deeper in the radix trie (e.g.,
for a specific address range) will be needed for a consistent
matching result, which would result in splitting the matched
IP prefix into ranges, where each range is governed by the
appropriate rule, as it will be demonstrated in the following.

Example 5:As depicted in Figure 6, once ruler1 is found
using the longest prefix match algorithm for the IP prefix
1.10.0.0/22, the preorder traversal algorithm is applied on the
sub-trie from the node matching withr1. Thus, rulesr2 andr3
are also found to match 1.10.0.0/22. Considering all matching
rules, the destination prefix IP is split into three ranges,
namely, range 1: 1.10.0.0· · · 1.10.0.255, range 2: 1.10.1.0· · ·
1.10.1.15, and range 3: 1.10.2.0· · · 1.10.3.255, respectively
governed by r2, r3 and r1.

Note that for matching rules in security groups, we will
use the first-match algorithm [39].

2) Prefix-to-Prefix Verification Results Processing:The X-
fast binary tries [16] are used (Algorithm 1 in Section IV-C1)
to store and progressively compute verification results, per
hop, in order to assess isolation between two IP prefixes (see
Figure 7). An X-fast trie (denoted byBTries) is a binary
tree, where each node, including the root, is labeled with the
common prefix of the corresponding destination sub-tree. As
in radix tries, the left child specifies a0 bit at the end of the
prefix, while the right child specifies a bit-value1. Each node,
including leaves, is labeled with the bit-string from the root
to that leaf. We use the leaves to store intermediate and final
results as explained in this example. The binary trie’s leaves
are created and modified progressively by theprefix-to-prefix
Algorithm 1.

Example 6:Figure 7 illustrates an example of intermediate
values of aBTries built for source subnetSN_A2 and destina-
tion ExtNet_1. Leaves store the results of matching the radix
trie of Figure 6 with destination IP prefix1.10.0.0/22, which
is actually the root of the X-fast binary trie. Three variables
are used at the leaf nodes:

- VariableB stores the boundary of the IP ranges for each
leaf. Its value is eitherL for the lowest bound,H for the
highest bound, orLH if a single leaf with a specific IP
address (e.g.,1.10.0.2/32). The leftmost leaf in Figure 7,
B is set toL, which means the current leaf is the lowest
bound of the IP rangeRange 1. The next leaf,B is set
to H to delimit the upper bound ofRange 1.

- VariableRLB is a two-bit flag that indicates the status
of the verification process, where possible values are00
for no decision yet,01 for loop found,10 for blackhole
found, or11 for reachability verified. In the leftmost leaf
of the binary trie of Figure 7,RLB is set to00, which

means that the verification is still ongoing forRange
1 and next hop should be evaluated based on the next
variableHR.

- Variable HR is a sequence of triplets(r id, r if, src)
that stores the history of the visited nodes from source for
that IP range, wherer id is a router id,r if is a router
interface andsrc is the original source node. The last
result is appended to the beginning of the sequence and
should be used at the next iteration. For more readability,
in Figure 7, we only show the two first items of the
triplet from the last outcome (next hop) of routing rules
matching inR_A1.

000000000X 111111111X

1.10.0.0/22

0 1

0 1

� �

0
0011111110,
H,00, <R_A2,

IF_A22,SN_A2>

0100000000,
L,00, <R_A3,

IF_A31,SN_A2>

0100001110,
H,00, <R_A3,

IF_A31,SN_A2>

0000000000,
L,00, <R_A2,

IF_A22,SN_A2>

1

� �

0 1
� �

0 1

1111111111,
H,11, <R_A1,

RG_A1,SN_A2>

0100001111,
L,11, <R_A1,

RG_A1,SN_A2>

� �

0XXXXXXXXX 1XXXXXXXXX

Fig. 7. X-fast Binary Trie for Subnet SNA2 and Destination1.10.0.0/22.
Leaves Contain Results from Matching Radix Trie in Figure 6 with the
Destination

C. Verification

In this section, we present our customized algorithms
to perform the three verification steps. The reason that we
opt for customized algorithms, instead of existing large-scale
graph processing systems (e.g., Pregel [40], BGL [41], and
CGMgraph [42]) is that those are mostly designed for general-
purpose graph algorithms like finding shortest-path. None of
them can easily support network isolation use cases addressed
in this paper, in particular, path modifications caused by
decision making along the path (e.g. routing, firewalling),or
the path transformational operations (e.g., NAT).

Before starting the actual verification, X-fast binary tries
are created and initialized for each pair of source and des-
tination IP prefixes using the virtual network modelG as it
was explained in Section IV-B2. Also, as it was mentioned
earlier, bothStep 1 and Step 2 are parts of the prefix-
level verification, where the first step is applied on private
IP addresses while the second takes care of the public IP
addresses. As a result, we will haveBTries for pairs of
private IP prefixes of subnets in the same component (verified
in Step 1) and otherBTries for pairs IP prefixes of subnets
and external networks (verified inStep 2.a) and vice-versa
(verified in Step 2.b). These two steps will be explained
in Section IV-C1. Afterward, VM-level isolation verification
takes place atStep 3, details of which are in Section IV-C2.

1) Prefix-Level Verification:The functionprefix-to-prefix
(see Algorithm 1) uses the initialized X-fast binary triesbtrie
to verify prefix-level isolation on each hop between all pairs of
source and destination IP prefixes. For a given pair of prefixes,
theprefix-to-prefixverifies routing rules on a per-hop basis. In
all hops between a given pair of prefixes, it uses the same
corresponding X-fast binary trie (i.e., having one prefix as
source specified in leaves and the other as destination specified
in the root of the trie) to update the new results according
to the results of matching the rules within the node’s radix
trie against each IP range. The core of this algorithm is the
matching process (explained in Section IV-B1) and copying

7

these results from a temporary trie to thebtrie. The latter is
explained better using the following example.

Example 7:Figure 8 illustrates the process of copying
the leaves from the temporary binary trie, which contain
the outcome of matching R0 rules with the destination IP
prefix, to the the main prefix-to-prefix binary trie within the
appropriate IP range (Algorithm 1 line 10). Figure 8 illustrates
the modified binary trie after applying a hop per address
range verification on the trie of Figure 7 with an excerpt
of the rules ofR_A3 (left-side) andR_A2 (right-side). We
compute only the decisions of those routers that are related
to Range 1 andRange 2. After matching these tables with
the destination address, new leaves are created (e.g.,Range
2 is split intoRange 21 andRange 22) with new results,
while for others (i.e.,Range 1) only the result is updated in
the binary trie, as follows:

- At R_A2, no routing rule was matched, thus indicating a
black hole (RLB is 10) for range 1.

- At R_A3, matching the destination prefix with the corre-
sponding rules results in two matching rules (i.e.,r31
and r32), which partitionsRange 2 into two sub-
ranges.Range 21 is handled byr31, which leads to
a loop (RLB = 01) that can be detected by consulting
the variableHR. Packets belonging toRange 22 are
handled by ruler32 and they can reach the router
gatewayR_A3 (i.e., RLB = 11).

Algorithm 1 takes as input the binary trie identifier then
updates the trie progressively by creating new leaves and
modifying others using per-hop results. At each iteration,it
traverses the leaves of the trie and, for each IP range, it
matches the radix trie corresponding to the networking element
specified for that range with the destination IP prefix using
algorithms in Section IV-B1. The algorithm terminates if a
loop or a blackhole is found, or reachability is verified for all
ranges. It uses a temporary trieTempBTrie, which contains
the result of matching the radix trie of the current router with
the destination IP prefix located at the root of the binary trie as
discussed in Section IV-B1. This temporary trie is generated
once, but can be re-used, particularly, for the verification
of other IP prefixes as source (e.g.,SN_A2 and SN_A3 in
Figure 3) with the same destination (e.g.,ExtNet_1) and
the same router (e.g.,R_A1). FunctionsearchT ries finds, if
any, the temporary trie corresponding to the specific router
and destination IP range. FunctionCopy is used to update the
main binary triebtrie with the results stored in the temporary
binary trieTempBTrie for each specific range as discussed
in Example 7.

2) VM-Level Isolation Verification: Prefix-level results
computed in Section IV-C1 are used to determine subnets that
are not isolated. For those subnets, we need to perform a VM-
level isolation verification by checking for each pair of VMs
their corresponding security groups using both private and
public IP addresses. Algorithm 2 describes theVM-to-VMpro-
cedure in which functionRoute-Lookup checks whether there
exists a forwarding path between any two VM ports, whereas
the V erifySecGroups function verifies security groups of
these VMs.

The VM-to-VM route lookup is to determine whether
these VMs belong to reachable subnets by searching in the

Algorithm 1 prefix-to-prefix(btrie)
1: Input/Output: btrie

2: counter=0
3: for each range[L,H] in btrie.leafs with RLB = 00 do
4: router = get(HR, r id)
5: dst = getroot(btrie)
6: if searchTries(dst, router) = false then
7: TempBTrie = Match(RadixTrie(router), dst)
8: else
9: TempBTrie = getBTrie(dst, router)

10: Copy(btrie, TempBTrie, [L,H])
11: counter = counter + 1
12: if counter 6= 0 then
13: prefix-to-prefix(btrie)

Algorithm 2 VM-to-VM(VMsrc,VMdest)
1: Triepub = getBTrie(VMdst.publicIP.CIDR, VMsrc . subnet id)
2: Triepriv = getBTrie(VMdst.privateIP.CIDR, router id)
3: routable =Route-Lookup(Triepub, Triepriv)
4: if routable = true then
5: V erifySecGroups(VMsrc,VMdest)

relevant binary tries leaves using the IP addresses of these
VMs. This will determine the leaves with boundariesH and
L corresponding to the IP ranges containing VMs’ IPs and
verifying the value of the flagRLB. This is explained in the
following example.

Example 8:Consider the case ofVM_A1 andVM_B2 from
our running example shown in Figure 2. Route lookup for this
pair is achieved by searching for the two X-fast binary tries
denoted byTriepub andTriepriv, respectively, in Algorithm
1. TheTriepub andTriepriv tries contain the routing results
respectively, for the pair (SN_A2, ext_net) and (ext_net,
SN_B2). Using the public IP ofVM_B2 (i.e., 1.10.1.12, which
is within the prefix of ExtNet1), and the private IP ofVM_A1
(i.e., 10.0.0.12, which is within the prefix of subnet SNA2),
the corresponding binary trieTriepub is shown in Figure 8.
By searching theTriepub(see Figure 8) using the public IP of
VM_B2, one can find that it falls intoRange 22. The value
of RLB for this range is11, which indicates the existence
of a route fromSN A2 to ExtNet 1. Similarly, TriePriv
can be identified using the public IP ofVM_B2, which is
attached to routerR_B1, and its private IP (i.e., 19.0.0.30).
Searching inTriepriv (not shown for the lack of space) for
theRLB for using the private IP ofVM_B2 allows concluding
on the existence of a route betweenVM_A1 andVM_B2. More
precisely, ifRLB in these boundary leaves of bothTriepriv
and Triepub is equal to11, we say that a forwarding path
exists between these VMs.

At this stage, once a path is found between the subnets of
the pair of VMs, we then verify both security groups associated
with these VMs. According to the type of communication,
either private or public IP will be used. For each VM within
a source subnet, we use its egress security group radix trie
and perform a first-match with the public or private IP of
the destination VM. Then, we use the ingress security group
rules of the destination VM and perform a first-match with the
public or private IP of the VM source. If both results indicate
matching rules with theacceptdecisions, then the pair of VMs
can be concluded to be reachable using their public or private
IP addresses.

3) Complexity Analysis:LetS be the number of subnets,R
be the number of routers between two prefixes (i.e., number

8

000000000X 111111111X… …

1.10.0.0/22

0 1

0 1

0XXXXXXXXX 1XXXXXXXXX

… …

0

0011111110,

H,10, R_A2,

IF_A22

0100000000,

L,01, R_A1,

IF_A12

0100000011,

L,01, R_A1,

IF_A12

0100000100,

L,11, R_A3,

RG_A3

0100001111,

H,11, R_A3,

RG_A3

0100010000,

L,11,R_A1,

RG_A1

1111111111,

H,11, R_A1,

RG_A1

0000000000,

L,10, R_A2,

IF_A22

1

Rules in Router R_A2

Prefix Next-Hop

r21 10.0.0.0/24 IF_A21

Rule

Rules in Router R_A3

Rule Prefix Next-Hop

r31 1.10.1.0/28 IF_A12

r32 1.10.1.0/30 RG_A3

… …

0 1

… …

0 1

Fig. 8. Updated Binary Trie of Figure 7 Based on Matched Rulesin Routers RA2 and R A3

of hops),L be the length of keys (whose maximum value
is 32 for an exact IP address),M be the number of VMs,
andNex be the number of external networks. Complexities
related to the data structure manipulation are known to be
O(L) for insert operation in X-fast binary tries,O(Log(L))
for search operations in X-fast binary tries, andO(L) for radix
trie matching per router.

In Step 1 and Step 2, the complexity of prefix-to-
prefix reachability verification (Algorithm 1) isO((S2 + 2 ×
S ×Nex)×R×K × (L+ log(L))), whereK represents the
number of operations performed over the data structures for
each routing node. This can be approximated to O(S2) for large
data centers where the number of subnets is larger than the
number of external networks(Nex ≪ S) and the number of
hops is usually limited for delay optimization(R ≪ S), with
L andK being constants. InStep 3, the complexity of VM-
level verification (Algorithm 2) isO(2 ∗ (L+Log(L)) ∗M2)
and can be approximated toO(M2).

We thus obtain an overall complexity ofO(S2 + M2).
However, this only provides a theoretical upper bound, which
typically will not be reached in practice. In general, depending
on the communication patterns in multi-tenant clouds, the
number of interconnected subnets is usually smaller thanS as
traffic isolation is the predominant required property in such
environments. For example, it has been reported in [43] that
inter-tenant traffic varies between 10% and 35% only. Thus, if
we denote byM ′ the number of VMs belonging to connected
subnets, it is safe to claim the practical complexity for our
solution would beO(S2+ M ′2), whereM ′ ≪ M .

4) Correctness:According to our model, verifying isola-
tion means checking whether there exists any layer 3 commu-
nication path between any pair of VMs according to tenants’
policies. Therefore, proving the correctness of our approach
boils down to proving that our algorithm visits all paths
and returns the desired isolation result for each of them.
In a typical cloud environment at network virtual layer 3,
private IP addresses are used for communications inside the
same network (component), whereas public addresses are
used for communications between VMs belonging to different
networks, and with networks outside the cloud. As we are
considering both private and public IP addresses (with NAT
mechanism) to investigate the whole symbolic IP packet ad-
dress space, our approach explores all IP forwarding paths
by iteratively applying, on each path, relevant forwardingand
filtering functions (using corresponding matching algorithms)
of each encountered node in the virtual network connectivity
graph for each packet.

Referring to Figure 4, Step 1 and Step 2 explore disjoint
prefix-level IP address spaces (private addresses spaces vs
public addresses space). Thus, the two steps do not have
any side effects on one another. The results of these two
steps are the pairs of subnets that can reach each other (R)
and those that cannot (U). As we use well-known packet
header matching algorithms to find reachable paths, the sets
U andR should contain the correct pairs with respect to their
reachability status. The third step relies on the results ofStep
1 and Step 2 and verifies security groups for all pairs of VMs
belonging only to the set of pairs of reachable subnets inR.
In this step as well, we rely on state-of-the-art first-match
algorithm applied on firewall rules at each VM-side against
the header of the symbolic packet. Therefore, the correctness
of our approach follows from the correctness of those well-
established algorithms in a straightforward manner.

5) Incremental Verification:The dynamic nature of cloud
leads to frequent changes in the configurations of virtual
networks. The verification result may be invalidated even after
a single change, such as the deletion of a security group
rule from a group of VMs, or the addition of a routing
rule to a router. However, verifying the cloud-wide network
isolation again after each such event is obviously costly and
unnecessary.

To cope with the effect of each event at run-time, Ten-
antGuard adopts an incremental event-driven verification ap-
proach. This approach first identifies the set of events that
potentially impact the isolation results. Then, the impactof
each such event is identified. Finally, only those parts of the
verification that are affected by the event will be re-evaluated.
Table II lists an excerpt of events that may require updating
the verification results along with their impact. Note thatG
should be updated for all these events and the symbol∗ in the
table indicates the network elements impacted by the event.

To illustrate how such events may be handled via incre-
mental verification, Algorithm 3 sketches the steps for partially
updating the verification results upon deleting a security group
rule and upon adding a new routing rule, respectively, as
explained in the following (detailed algorithms for other events
are omitted due to space limitations).

- Creating a VM : The creation of a new VM (denoted
as VM*) does not affect the verification process unless
it gets connected to one or more subnets through virtual
ports, which naturally leads to the update of our graph
model by creating the corresponding virtual port nodes.
Furthermore, when the VM is first created, it is attached to

9

Event Verification Tasks
Creating a VM* • Invoke VM-to-VM for VM* once as source and once as destination
Deleting a VM* • Remove the results related toVM-to-VM for VM*

Creating a subnet SN*

• Initialize a radix trie for the host routes
• Create new prefix-to-prefix binary tries where SN* is source or destination
• Invoke prefix-to-prefixfor subnets in the C* related to SN*
• Invoke prefix-to-prefix(Step 2.a and Step 2.b) for SN*

Deleting a subnet SN*
• Delete the prefix-to-prefix tries where SN* is source or destination
• Update VM-level isolation for all VMs having private IPs within the prefix of SN* either as source or destination

Creating a router R* • Initialize the corresponding radix trie

Deleting a router R*
• Recalculate all the prefix-to-prefix tries for the componentC* related to R*
• Partially perform VM-level isolation for all VMs belongingto C* considered as source and as destination

TABLE II. A N EXCERPT OFEVENTS AND THEIR CORRESPONDINGINCREMENTAL VERIFICATION TASKS. THE SYMBOL * I NDICATES THE NETWORK
ELEMENTS THAT ARE IMPACTED BY THE EVENT

the default security group. At this level, the results of step
1 and step 2 of our methodology remain unchanged and
the verification update is confined to step 3 by invoking
the function VM-to-VM.

- Deleting a VM: After deleting a VM, the graph model is
updated by removing the associated virtual ports, then the
last result is updated by removing all VM pairs where the
deleted VM appears either as a source or as a destination.

- Creating a subnet: When a subnet (denoted as SN*) is
newly created, it is specified with a gateway, which is a
router interface, and an IP prefix. Our graph model is up-
dated with a new subnet node with an edge to the gateway
interface and the corresponding radix tree is initialized.
This event will create new prefix-to-prefix binary tries
for which SN* is either a source or a destination. This
would result in re-calculating step 1 for C*, the maximally
connected component SN* belongs to, then step 2-a and
step 2-b for SN*. As long as no VM has been attached
to SN*, the VM-to-VM reachability verification (step 3)
does not require updates.

- Deleting a subnet: The deletion of a subnet (denoted as
SN*) will lead to deleting the prefix-to-prefix tries where
SN* appears either as a source or as a destination. This
will obviously reduce the number of possible forwarding
paths. As such, VM-to-VM reachability also needs to
be updated accordingly for all VMs having their private
IPs within the prefix of SN* either as a source or as a
destination.

- Creating a router: The event of adding a router (denoted
as R*) would result only in adding a router node in
the graph model and initializing the corresponding radix
tree. The verification result is affected when the router’s
interfaces are connected either to the tenant’s network or
to the external network, and the routing rules are added.

- Deleting a router: Deleting a router R* requires recal-
culating all the Btries for the component C* the router
belongs to. VM-to-VM reachability analysis should also
be partially performed in this situation for all VMs
belonging to C* either considered as a source or as a
destination.

- Deleting a security group rule: Whenever an ingress (or
egress) rule is deleted from a security group, the action is
propagated into all VMs, denoted as VMs*, this security
group is attached to. Consequently, the corresponding
ingress (or egress) radix trie is updated accordingly. Let
VM* be a member of VMs*. For the deletion of an egress
(resp. ingress) rule, security groups verification result is

updated for all pairs where VM* appears as a source VM
(resp. destination VM).

- Adding a routing rule : Whenever a new routing rule
is added to a router, denoted as R*, belonging to a
component C*, this would result in updating the cor-
responding radix trie with the decision of the newly
inserted rule. Then, for each prefix-to-prefix binary trie
built for subnets belonging to the component C*, the
variable HR of the binary trie (holding the history of
visited nodes) is consulted. If the ID of R* appears in the
history of traversed nodes, then the corresponding binary
trie needs to be updated. Then VM-level isolation needs
to be checked for couples of VMs if the source and/or
destination belong to C*. Routing rules and host routes
deletion and addition events are handled similarly.

Algorithm 3 Rules addition/deletion
1: On the creation/deletion of a security group rule r* for a set of VMs* do:
2: update RadixTrie(r*)
3: for each VM* in VMs* do
4: if r* is an egress rulethen
5: for each pair(V Msrc, V Mdst) where(VMsrc = V M∗ do
6: V erifySecGroups(V M∗, V Mdest)

7: if r* is an ingress rulethen
8: for each pair(V Msrc, V Mdst) where(VMdst = V M∗ do
9: V erifySecGroups(V Msrc, V M∗)

10: On the creation/deletion of a routing rule r* at router R* bel onging to C* do:
11: update RadixTrie(r*)
12: for eachprefix-to-prefix binary triebtrie built for subnets ofC∗ do
13: if R∗isinbtrie.leaves.HR then
14: prefix-to-prefix(btrie)
15: for each pair(VMsrc, VMdst) whereV MsrcinC

∗ and/orVMdstinC
∗ do

16: V M-to-V M(V Msrc, V Mdst)

To facilitate the verification update, we leverage caches that
store intermediary and previous prefix-level isolation results,
such as X-fast binary tries. We also utilize the radix tries,
which store the routing rules and the security groups.

As discussed in Section IV-C3, the complexity of Algo-
rithm 3 (basically updating the Radix tree) is constant because
it is linear in the length of a key, which is bounded by 32. In
contrast, the complexity of a full verification isO(M2) where
M is the number of VMs, can be as large as millions for a real
cloud. Therefore, the overhead of our incremental verification
is negligible in comparison to a full verification.

V. A PPLICATION TO OPENSTACK

We have implemented the proposed system design as a
prototype system based on OpenStack [12]. In this section, we
briefly discuss implementation details about data collection,
preprocessing, and parallel verification. In OpenStack, VMs
are managed by the compute serviceNova, while networking
serviceNeutron manages virtual networking resources in the

10

cloud. Data related to these services is stored in databases
containing over one hundred tables.

Data Collection and Preprocessing.TenantGuard allows both
on-demand and on regular basis incremental auditing. To build
a snapshot of the virtual networking infrastructure for audit-
ing, we collect data from OpenStack databases. Additionally,
we leverage the notification service from PyCADF [44] and
Ceilometer [12] services to intercept operational events that
result in a configuration change. Thus, our data collection
module starts by collecting an initial snapshot of the virtual
networking infrastructure. Then, at each detected event, the
changed configuration is gathered and the snapshot of the vir-
tual networking infrastructure is updated to enable incremental
verification.

Once the data is collected, we perform several prepro-
cessing steps, such as building and initializing differentdata
structures to be used in the verification step. For instance,from
the list of all subnets, routers, and gateways of all tenants,
we correlate the information to determine which subnets can
actually communicate through public IPs. We also determine
the lists of subnets involved in the prefix-level verification
using public IP prefixes, and subnets per maximally connected
subgraphs as explained in Section IV-C1. Additionally, we
filter all ‘orphan’ subnets, as they are not connected to any
other subnets or external networks.

In OpenStack, VMs and virtual networking resources are
respectively managed by Nova and Neutron services. The
corresponding configuration data is then stored in Nova and
Neutron databases. Therefore, we mainly used SQL queries
to retrieve data for different tables in those databases. For
instance, VM ports, router interfaces, router gateways and
other virtual ports are collected from table ports in Neutron
database. Therein, we use both device owner and device id
fields to infer the type and affiliation relationship between
the virtual ports and their corresponding devices. The packet
filtering and forwarding rules are stored in neutron.routerrules,
subnetroutes, and securitygrouprules tables, where rulesare
represented by destination-nexthop data pairs.

Parallelization of Reachability Verification. In addition to
the single machine-based implementation, we have also ex-
tended TenantGuard to a parallel environment. The paralleliza-
tion is based on building groups of prefixes such that there is
no common path in the graph. This allows us to cache the
temporary binary tries to store results for routers matching,
which can be reused in other paths. Thus, we divide the list
of all prefixes into groups of prefixes that would be used as
destination prefixes and we create the same number of threads
as the groups, where each thread considers all possible prefixes
as sources.

The analysis controller is responsible for data collection,
graph construction, verification tasks scheduling and distri-
bution. The controller obtains the topological view of the
compute worker cluster, its computation capacity and metrics,
such as the number of cores with CPU loads. Based on such
profiles, the task scheduler dynamically divides the verification
computation into Java runnables, which will be distributedand
executed individually across the worker clusters through data
streaming in such a way that all the tasks are performed in
memory and no disk IO is involved. To avoid interference, the

divided runnable is not executed at the controller. The compute
worker cluster consists of nodes for performing tasks assigned
by the controller. The nodes discover each other automatically
through the configuration in the same LAN. The result could
be returned directly to the caller, or written into the data
cache cluster in such a way that the data can be in-memory
distributed among the nodes. The latter is especially useful
when the size of data exceeds the capacity of single-machine
memory.

Integration to OpenStack Congress.We further integrate
TenantGuard into OpenStack Congress service [17]. Congress
implements policy as a service in OpenStack in order to pro-
vide governance and compliance for dynamic infrastructures.
Congress can integrate third party verification tools usinga
data source driver mechanism [17]. Using Congress policy
language that is based on Datalog, we define several tenant
specific security policies. We then use TenantGuard to detect
network isolation breaches between multiple tenants. Tenant-
Guard’s results are in turn provided as input for Congress
to be asserted by the policy engine. This allows integrating
compliance status for some policies whose verification is
not supported by Congress (e.g., reachability verificationas
mentioned in Section II). TenantGuard can successfully verify
VM reachability results against security policies defined inside
the same tenant and among different tenants. TenantGuard can
also detect breaches to network isolation. For example, we
test an attack in which, through unauthorized access to the
OpenStack management interface, the attacker authorizes some
malicious VMs to have access to the virtual networks from
other tenants. TenantGuard can successfully detect all such
injected security breaches providing the list of rules in the
routers that caused the breach.

VI. EXPERIMENTS

This section presents experimental results for performance
evaluation of TenantGuard on a single machine, on Amazon
EC2 [45] and using data collected from a real cloud. We also
perform a quantitative comparison with our baseline algorithm
and with NoD [27], which is the closest work to ours (as
detailed in Section II, most of the other works are either
designed for physical networks and not suitable for large
scale virtual networks, or they do not support the verification
of all-pair reachability at the VM-level as targeted by our
solution). Note that, in our experiments, the baseline algorithm
is not brute force but already an optimized algorithm that uses
efficient data structures, mainly radix tries (although it lacks
the other optimization mechanisms of our final solution, e.g.,
the three-step prefix-to-prefix approach detailed in Section IV).

A. Experimental Settings

Our test cloud is based on OpenStack version Kilo with
Neutron network driver, implemented by ML2 OpenVSwitch
and L3 agent plugins, which are popular networking deploy-
ments [12]. There are one controller node integrated with
networking service, and up to 80 compute nodes. Tenants’
VMs are initiated from the Tiny CirrOS image [12], separated
by VLAN inside the compute nodes, while VxLAN tunnels are
used for the VM communications across the compute nodes.

We generate two series of datasets (i.e., SNET and LNET)
for the evaluation. The SNET datasets represent small to

11

100 200 300 400 500
0

2

4

6

8

of VMs/Subnet

T
im

e
(s

)
0 2,000 4,000 6,000

0

3

6

9

12

of Rules/Router

T
im

e
(s

)

Prefix−to−Prefix Baseline Algo NoD

0 5 10 15 19
0

10

20

30

40

50

of Hops

T
im

e
(s

)

(a) (b) (c)

Fig. 9. Performance Comparison by Varying the # of (a) VMs perSubnet, (b) Routing Rules, and (c) Hops, while Fixing the # ofSubnets to 62

DataSet VMs Routers Subnets Reachable Paths
DS1 4362 300 525 > 5.67 million
DS2 10168 600 1288 > 29.2 million
DS3 14414 800 1828 > 57.0 million
DS4 20207 1000 2580 > 109 million
DS5 25246 1200 3210 > 168 million

TABLE III. LNET D ATASET DESCRIPTION

medium virtual networks containing six subnets, while we
vary different factors such as the number of VMs per subnet,
the number of rules per router, and the number of hops
between subnets, to examine corresponding characteristics of
our algorithms, and have been built using OpenStack and
specifically using Horizon. We then cloned the SNET virtual
infrastructure environments to obtain different tenants and
thus LNET datasets, which represent large networks, where
each virtual network is organized in a three-tier structure
where the first-tier router is connected to the external network,
while the others use extra routes to forward packets between
each other, so in essence they are synthetic. Security rules
are generated in the same logic behind the deployment of
two-tier applications in the cloud. For a given tenant, one
group of VMs can only communicate with each other but
not with outside (or other tenants) networks, while another
group is open to be reached from anywhere. Up to 25,246
VMs are created in the test cloud, with 1,200 virtual routers,
3,210 subnets, and over 43,000 allocated IP addresses. As a
reference, according to a recent report [12],94% of inter-
rogated OpenStack deployments have less than 10,000 IPs.
Therefore, we consider the scale of our largest dataset is
a representative of large size clouds. The five datasets in
LNET are described in Table III. We use open-source Apache
Ignite [46] as the parallel computation platform, which can
distribute the workload in real-time across hundreds of servers.
On the other hand, all datasets both in SNET and LNET for
NoD are generated synthatically using the provided generator.3

B. Results

We evaluate the performance of our approaches and the
effect of various factors on the performance.

1) SNET Results:This set of experiments is to test how
network structure and configuration influence the performance
of our system. All tests usingSNET datasets are conducted
with a Linux PC having 2 Intel i7 2.8GHz CPUs and 2GB
memory. Note that, for SNET datasets the verification time
for NoD is measured for 1 to 5 pairs, and for TenantGuard

2Note that for NoD, we vary the number of pairs from 1 to 5 through the
X axis, and for TenantGuard, we consider all possible pairs of VMs as the X
axis depicts the number of VMs.

3Available at: http://web.ist.utl.pt/nuno.lopes/netverif

the time is measured for all-pair. As shown in Figure 9(a),
when the number of VMs per subnet is increased from 100 to
500, the prefix-level isolation verification time increasesmuch
slower than the baseline algorithm (defined in Section IV-A)
and NoD. The reason behind these results is, as illustrated in
complexity analysis in section IV, the prefix-to-prefix algo-
rithm that reduces the complexity toO(R +N2), in contrast
to O(R∗N2) in the baseline algorithm, whereR is the number
of hops andN is the number of VMs; whenN increases, the
complexityO(R∗N2) increases much faster thanO(R+N2).
On the other hand, as the number of pairs is one of the major
factors for NoD verification time, we observe increase in the
verification time while increasing the number of pairs from 1
to 5. As shown in Figure 9(b), when the number of routing
rules per router increases exponentially, the verificationtime
for TenantGuard and the baseline algorithm remain relatively
stable due to using radix trie and X-fast binary trie, both of
which have constant searching time; However, the baseline
algorithm takes longer time due to the higher number of pairs
to be verified. On the other hand, as NoD is designed for a
large number of rules instead of large number of pairs, we
increase the number of pairs from 1 to 5 while keeping the
number of rules similar to the setting of TenantGuard.

Additionally, as the number of hops increases the com-
plexity of the verification (it corresponds to the number of
virtual routers on a communication path), we vary the number
of hops between VMs. We investigate the average number of
hop usually encountered in real life systems (e.g., Internet) and
according to [47] and [48], the average number of hops varies
between 12 to 19; hence, we vary the number of hops between
2 to 19. Figure 9(c) shows that the prefix-to-prefix verification
experiences negligible changes. In contrast, a fourfold increase
in the overhead is observed with the baseline algorithm.
Whereas, the verification time for NoD increases exponentially
specially after 14 hops, as their algorithms are not optimized
for higher number of hops.

2) LNET Results Using Amazon EC2:Single-Machine
Mode. TheLNET datasets are used to examine the scalability
of our system for large virtual networks. Hence, factors exam-
ined in theSNET dataset are kept invariant for each subnet,
and the number of tenant’s subnets is varied as shown in
Table III. There are two modes forLNET tests: single-machine
mode and parallel mode. Single-machine tests are conducted
on one EC2 C4.large instance at AWS EC2 with 2 vCPUs and
3.75 GB memory. We measure NoD performance only for the
single machine tests, as NoD implementation does not support
parallelization. The data collection and initialization steps are
performed on a single machine in both modes.

12

4.3k 10k 14k 20k 25k
0

0.5

1

1.5

2

of VMs

T
im

e
(s

)

3.3k 4.7k 6.2k 7.8k 9.3k
0

200

400

600

of Rules

T
im

e
(s

)

Prefix−to−Prefix Baseline Algo NoD

(a) Data collection (b) Isolation verification

Fig. 10. Performance Comparison in the Single-Machine Modewith the
LNET Datasets Described in Table III. (a) Showing Data Collection Time,
and (b) Showing Verification Time

As shown in Figure 10(a), data collection and processing
time varies between 1.5 to 2 seconds, including retrieving data
from the database, initializing radix tries for routers andsecu-
rity groups, etc., which shows that the collection time is not
the prominent part of the execution time. Meanwhile, Figure
10(b) compares the verification time between TenantGuard,
baseline algorithm and NoD. When the number of routing
rules increases along with subnets and VMs, the prefix-to-
prefix algorithm is more efficient than NoD and the baseline
algorithm (e.g., TenantGuard performs 82% faster than NoD
for the largest dataset). NoD (while varying the number of pairs
from 20 to 200 through the X axis) and the baseline algorithm
show almost similar response time. For 9,300 routing rules
with 25,246 VMs in 3,250 subnets, it takes 108 seconds using
the prefix-to-prefix algorithm, 605 seconds for NoD (for 200
pairs) and around 628 seconds for the baseline algorithm. Note
that TenantGuard verifies in total over 168 millions VM pairs.

We report our extended experiment results to further val-
idate the scalability of TenantGuard in Table IV. In this
set of experiment, we increase the number of routing rules
to 850k, and the number of VMs to 100k to compare the
reported results in Plotkin et al. [11]. For the first part, we
compare TenantGuard with NoD for the 850k routing rules
with other parameters as our DS5 datasets, and observe that
TenantGuard completes the all-pair reachability verification in
100.14s, which is significantly faster than NoD (5.5 days). In
the second part, we generate a completely new datasets with
850k routing rules and 100k VMs, and observe that the all-
pair reachability verification takes less than 18 minutes for
TenantGuard, whereas Plotkin et al. [11] needs about 2 hours.

Datasets 850k rules 850k rules and 100k VMs
NoD [27] 475,200 [11] -

Plotkin et al. [11] - 7,200 [11]
TenantGuard 100.14 1,055.88

TABLE IV. C OMPARING THE PERFORMANCE(IN SECONDS) BETWEEN

EXISTING WORKS AND TENANTGUARD TO VERIFY ALL -PAIR
REACHABILITY

Parallel Verification Test. Although our approach already
demonstrates significant performance improvements over NoD
and the baseline algorithm, the results are still based on a
single machine. In real clouds, with large deployments (10Ks
of active VMs), there is need for verifying very large virtual
networks. Therefore, we extend our approach to achieve par-
allel verification, where the isolation verification is distributed
among the nodes of worker cluster, except the data collection
and initialization run on a single node. This parallel imple-
mentation provides larger memory capacity to our approach,
and results in much shorter verification times. For the parallel
mode, one EC2 C4.xlarge instance with 4 vCPUs is configured
as the controller, and up to 16 instances of the same type

2 5 8 11 14 16

10

20

30

40

50

of Worker nodes

T
im

e
(s

)

0 20 40 60
0

2

4

6

8

Portion of task distributing (%)

S
p

ee
d
u
p

 R
at

e
(t

im
es

)

4,362 VMs 10,168 VMs 14,414 VMs 20,207 VMs 25,246 VMs

(a) Parallel Mode (b) Speedup Analysis

Fig. 11. The Performance Improvement of Parallel Computation with LNET
Data Described in Table III. (a) Verification Time while Varying the Number
of Worker Nodes in Amazon EC2 for Different Datasets, and (b)Speedup
Analysis over the Number of VMs Using 16 Worker Nodes

with a compute worker cluster, while node discovery and
communications are established by their internal IPs.

Figure 11(a) shows the performance of parallel verification
using 2 to 16 worker nodes. Clearly, for each dataset, by
increasing the number of worker nodes, in contrast to the
result of the single machine mode, the overheads decrease
significantly. For example, in contrast to 108 seconds in the
single machine mode, it only takes approximately 13 seconds
in the parallel mode with 16 workers, while over 160 millions
of paths are verified as reachable.

In Figure 11(b), in order to show the scalability of our
approach while increasing the virtual network size, we examine
the relationship between the cluster size and speedup gain.
The parallel execution time can be divided into two parts:
task distribution time to send input data from the controller
to different workers, namelyTd, and execution time on those
nodes (we ignore the result generation time due to the small
size of result data). We note that, even if the tasks could be
divided evenly, which is unlikely the case in practice, the tasks
could still arrive at worker nodes at different times. As a
result, some of those tasks may start significantly later than
others due to networking delay, while the overall performance
is always decided by the slower runners. AsTd becomes larger,
it becomes more predominant in the overall execution time.
However, due to the lack of knowledge on task execution
sequence in the synchronous mode, we cannot accurately
measure the distribution time. Additionally, there will always
be some tasks which begin later than the other tasks. In order
to minimize this impact and to start tasks at roughly the same
time, we use an asynchronous task distribution technique. In
Figure 11(b), thex-axis represents the ratioTd/T , while T
is the overall verification time. In addition, the speedup ratio
(Rs) is the performance ratio between sequential and parallel
programs, represented byy-axis. With the number of worker
nodes increasing,Td rises as expected because more data
and code need to be transferred among cluster nodes. When
it becomes more dominant, the speedup rate increases more
gradually. For the smallest dataset,Rs decreases when the
number of workers ranges from 8 to 16. TheTd/T ratio can
be used to decide the optimal data size in each node.

Our experiment results show that even a small number
(i.e., 16) of working nodes can handle large-scale verification
(i.e., 168 millions of VM pairs); recalling that real world
clouds have the size of 100,000 users and maximum 1,000
VMs for each user. Also, our speed-up analysis (Figure 11(b))
illustrates that after 8 nodes the speedup goes down. Therefore,
we restrict the number of working nodes to 16. The result
of incremental verification is not reported, as our discussion

13

Routing/Filtering OpenStack [12] Amazon EC2-VPC [49] Google GCE [50] Microsoft Azure [51] VMware vCD [52] TenantGuard support
Intra-tenant
routing

Host routes, routers Routing tables Routes System and user-
defined routes

Distributed logical
routers

Yes/ TenantGuard forwarding and
filtering function

Inter-tenant
routing

Routers, external
gateways

Internet gateway/VPC
peering

Internet gateway System route to Inter-
net

Edge gateway Yes/ TenantGuard forwarding and
filtering function

L3 filtering Security groups Security groups Firewall rules Network security
groups

Edge firewall ser-
vice

Yes/ TenantGuard forwarding and
filtering function

TABLE V. ROUTING AND FILTERING IN DIFFERENTCLOUD PLATFORMS AND HOW THEY ARE SUPPORTED INTENANTGUARD

in Section IV-C5 shows that the overhead of the incremental
verification is negligible in comparison to a full verification.

3) Experiment with Real Cloud:We further test Tenant-
Guard using data collected from a real community cloud hosted
at one of the largest telecommunications vendors. The main
objective is to evaluate the real world applicability of Tenant-
Guard (this dataset is not suitable for performance evaluation
due to the relatively small scale of the cloud). All tests are
performed in a single machine using the collected dataset with-
out any modification. The tested cloud consists of only nine
routers and 10 subnets. Initially, the TenantGuard verification
process fails due to a minor incompatibility issue between the
OpenStack version used in our lab (Kilo) and an earlier version
used inside the real cloud (Juno). From OpenStack Juno to
Kilo, two new fields are added to the neutron.networks table,
namely, ‘mtu’ int(11) and ‘vlantransparent’ tinyint(1). This
difference between the two versions has prevented Tenant-
Guard to execute SQL queries against table neutron.networks
due to the missing ‘mtu’ field. After addressing this issue by
altering the neutron.networks table, TenantGuard successfully
completes the requested verification in several milliseconds.

VII. D ISCUSSION

In this section, we provide the required effort to adopt
TenantGuard in other cloud platforms e.g., Amazon, Google,
VMware. Additionally, we discuss existing methods to builda
chain of trust to preserve the integrity of the collected data.

Adapting TenantGuard in other cloud platforms. we review
packet routing and filtering in different cloud platforms and
show the applicability of TenantGuard. Table V shows how
routing and filtering are implemented in OpenStack, Amazon
AWS EC2-VPC (Virtual Private Cloud) [49], Google Com-
pute Engine (GCE) [50], Microsoft Azure [51], and VMware
vCloud Director (vCD) [52]. Similar to OpenStack, all other
platforms allow tenants to create private networks and to create
routing rules to govern communication between them. Those
rules are captured by the forwarding and filtering functionfdG
in our model. VMs attached to those private networks can have
private IPs and public IPs respectively for intra-tenant and
inter-tenant communication. In the case of inter-tenant com-
munication, gateways are endowed with NAT services in order
to manage mapping between private and public IP addresses.
NAT rules are captured in our model by the functionfdG.
Internet gateways in EC2-VPC, system route to the Internet in
Azure, and edge gateways in vCD can be represented in our
model by the componentv router gw. Exceptionally, in EC2
VPC, the VPC peering routing can be employed to enable
private IP connections across tenants’ virtual networks with
tenants’ agreement. To support this feature, the definitionof
fdG will need to be extended. Security groups in OpenStack
and EC2, firewall rules in ECG, network security groups in
Azure, and edge firewall services in vCD are set up to filter
VMs’ outbound/inbound packets. Those filtering rules are also

supported by TenantGuard via the forwarding and filtering
function fdG.

Preserving integrity of the system.There exist many tech-
niques on trusted auditing to establish a chain of trust,
e.g., [53], [54], [55]. Bellare et al. [53] propose a MAC-
based approach. They provide the forward integrity by using
a chain of keys and erasing previous keys so that any old logs
cannot be altered. Crosby et al. [54] also present a tree-based
history data structure, which prevents log tampering wherethe
author of the log is untrusted. Apart from tamper prevention,
there are some other works to further detect tampering logs.
Chong et al. [57] implement the Schneier and Kelsey’s secure
audit logging protocol with tamper resistant hardware, namely
iButton. Furthermore, OpenStack leverages Intel Trusted Exe-
cution Technology (TXT) to establish a chain of trust from the
embedded TPM chips in the host hardware to critical software
components using a standalone attestation server [56].

VIII. C ONCLUSION

In this paper, we have proposed a novel and scalable run-
time approach to the verification of cloud-wide, VM-level
network isolation in large clouds. We presented a new hierar-
chical model representing virtual networks, and we designed
efficient algorithms and data structures to support incremental
and parallel verification. As a proof of concept, we integrated
our approach into OpenStack and also extended it to a par-
allel implementation using Apache Ignite. The experiments
conducted locally and on Amazon EC2 clearly demonstrated
the efficiency and scalability of our solution. For a large data
center comprising 25,246 VMs, verification using our approach
finished in 13 seconds. The main limitations of this work
are as follows. First, since TenantGuard only focuses on the
virtual network layer, a future direction is to integrate itwith
existing tools working at other layers (e.g., verification tools
for physical networks, or co-residency and covert channel
detection techniques). Second, since TenantGuard relies on
cloud infrastructures for input data, how to ensure the integrity
of such data (e.g., through trusted computing techniques)
is another future direction. Third, TenantGuard assumes the
verification results can be safely disclosed to tenants, which
may not always be the case, and addressing such privacy issues
comprises an interesting future challenge.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers and our shep-
herd, Vyas Sekar, for their valuable comments. We appreciate
Yue Xin’s support in the implementation. This work is partially
supported by the Natural Sciences and Engineering Research
Council of Canada and Ericsson Canada under CRD Grant
N01566.

REFERENCES

[1] Cloud Security Alliance. Security guidance for critical areas of focus
in cloud computing v 3.0, 2011.

14

[2] Cloud Security Alliance. Cloud computing top threats in2016, Feb
2016.

[3] V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle. A survey
of network isolation solutions for multi-tenant data centers. IEEE
Communications Surveys Tutorials, PP(99):1–1, 2016.

[4] SANS Institute, InfoSec Reading Room. An introduction to securing a
cloud environment, 2012.

[5] Amazon Web Services. Overview of security processes, June 2016.

[6] ISO Std IEC. ISO 27002:2005. Information Technology-Security
Techniques, 2005.

[7] ISO Std IEC. ISO 27017.Information technology- Security techniques
(DRAFT), 2012.

[8] Cloud Security Alliance. Cloud control matrix CCM v3.0.1, 2014.
Available at: https://cloudsecurityalliance.org/research/ccm/.

[9] OpenStack. OpenStack user survey, 2016. Available at:
https://www.openstack.org.

[10] RightScale. RightScale 2016 state of the cloud report,2016. Available
at: http://www.rightscale.com.

[11] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Vargh-
ese. Scaling network verification using symmetry and surgery. In POPL,
2016.

[12] OpenStack. OpenStack open source cloud computing software. Avail-
able at: http://www.openstack.org.

[13] OpenStack. Nova network security group changes are
not applied to running instances, 2015. Available at:
https://security.openstack.org/ossa/OSSA-2015-021.html, last visited
on: May, 2016.

[14] OpenStack. Routers can be cross plugged by other tenants, 2014.
Available at: https://security.openstack.org/ossa/OSSA-2014-008.html,
last visited on: May, 2016.

[15] J. Corbet. Trees I: Radix tree. Available at:
http://lwn.net/Articles/175432/.

[16] D. E. Willard. Log-logarithmic worst-case range queries are possible
in space o(n), 1983. Information Processing Letters.

[17] OpenStack. Policy as a Service (Congress). Available at:
http://wiki.openstack.org/wiki/Congress.

[18] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. InNSDI, 2012.

[19] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space
analysis. InNSDI, 2013.

[20] H. Mai, Ahmed Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T.
King. Debugging the data plane with anteater. InSIGCOMM, 2011.

[21] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
verifying network-wide invariants in real time. InNSDI, 2013.

[22] H. Yang and S. S. Lam. Real-time verification of network properties
using atomic predicates. InICNP, Oct 2013.

[23] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat. Libra: Divide and conquer to verify forwarding tables
in huge networks. InNSDI, 2014.

[24] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. Fast control plane analysis using an abstract repre-
sentation. InSIGCOMM, 2016.

[25] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A general approach to
network configuration analysis. InNSDI, 2015.

[26] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Mill-
stein, Vyas Sekar, and George Varghese. Efficient network reachability
analysis using a succinct control plane representation. InOSDI, 2016.

[27] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, andG. Varghese.
Checking beliefs in dynamic networks. InNSDI’15, 2015.

[28] Sören Bleikertz, Carsten Vogel, and Thomas Groß. Cloud Radar:
Near real-time detection of security failures in dynamic virtualized
infrastructures. InACSAC, 2014.

[29] T. Probst, E. Alata, M. Kaâniche, and V. Nicomette. An approach for
the automated analysis of network access controls in cloud computing
infrastructures. InNetwork and System Security. 2014.

[30] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G.Hjalm-
tysson, and J. Rexford. On static reachability analysis of IP networks.
In INFOCOM, 2005.

[31] Taous Madi, Suryadipta Majumdar, Yushun Wang, Yosr Jarraya, Makan
Pourzandi, and Lingyu Wang. Auditing security compliance of the
virtualized infrastructure in the cloud: Application to OpenStack. In
CODASPY, 2016.

[32] Suryadipta Majumdar, Yosr Jarraya, Taous Madi, Amir Alimohammad-
ifar, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi. Proactive
verification of security compliance for clouds through pre-computation:
Application to OpenStack. InESORICS, 2016.

[33] S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson. Automated
information flow analysis of virtualized infrastructures.In ESORICS,
2011.

[34] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie
Kaufman. Automated analysis and debugging of network connectiv-
ity policies. Technical report, Technical Report MSR-TR-2014-102,
Microsoft Research, 2014.

[35] OpenStack. Congress documentation release. Available at:
https://congress.readthedocs.io/en/latest/ .

[36] Robin J. W. Definitions and examples. InIntroduction to Graph Theory,
Second Edition, 1979.

[37] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. InNSDI, pages 113–126, 2012.

[38] Fred Halsall. Computer Networking and the Internet (5th Edition).
Addison-Wesley Longman Publishing Co., Inc., 2005.

[39] W. R. Cheswick, S. M. Bellovin, and A. Rubin.Firewalls and Internet
Security: Repelling the Wily Hacker.

[40] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. InSIGMOD, 2010.

[41] Douglas Gregor and Andrew Lumsdaine. The parallel BGL:A generic
library for distributed graph computations.POOSC, 2, 2005.

[42] Albert Chan and Frank Dehne. CGMgraph/CGMlib: Implementing and
testing CGM graph algorithms on PC clusters. InEuropean Parallel
Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 2003.

[43] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and
G. O’Shea. Chatty tenants and the cloud network sharing problem. In
NSDI, 2013.

[44] Cloud auditing data federation (CADF). PyCADF: A Python-based
CADF library, 2015. Available at: https://pypi.python.org/pypi/pycadf.

[45] Amazon. Amazon EC2- Virtual Server Hosting. Availableat:
https://aws.amazon.com/ec2.

[46] Ignite. Available at: https://ignite.apache.org.

[47] A. Fei, G. Pei, R. Liu, and L. Zhang. Measurements on delay and
hop-count of the internet. InGLOBECOM, 1998.

[48] F. Begtasevic and P. V. Mieghem. Measurements of the hopcount in
internet. InPAM, 2001.

[49] Amazon. Amazon virtual private cloud. Available at:
https://aws.amazon.com/vpc.

[50] Google. Google compute engine subnetworks beta. Available at:
https://cloud.google.com.

[51] Microsoft. Microsoft Azure virtual network. Available at:
https://azure.microsoft.com.

[52] VMware. VMware vCloud Director. Available at:
https://www.vmware.com.

[53] M. Bellare and B. Yee. Forward integrity for secure audit logs.
Technical report, Citeseer, 1997.

[54] Scott A Crosby and Dan S Wallach. Efficient data structures for tamper-
evident logging. InUSENIX Security Symposium, 2009.

[55] Di Ma and Gene Tsudik. A new approach to secure logging.ACM
Transactions on Storage (TOS), 5(1):2, 2009.

[56] OpenStack. Security hardening, 2016. Available at:
http://docs.openstack.org/admin-guide/compute-security.html.

[57] Cheun Ngen Chong, Zhonghong Peng, and Pieter H Hartel. Secure
audit logging with tamper-resistant hardware. InSecurity and Privacy
in the Age of Uncertainty. Springer, 2003.

15

https://cloudsecurityalliance.org/research/ccm/
https://www.openstack.org
http://www.rightscale.com
http://www.openstack.org
https://security.openstack.org/ossa/OSSA-2015-021.html
https://security.openstack.org/ossa/OSSA-2014-008.html
http://lwn.net/Articles/175432/
http://wiki.openstack.org/wiki/Congress
https://congress.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pycadf
 https://aws.amazon.com/ec2
https://ignite.apache.org
 https://aws.amazon.com/vpc
https://cloud.google.com
 https://azure.microsoft.com
 https://www.vmware.com
http://docs.openstack.org/admin-guide/compute-security.html

	Introduction
	Related Work
	Models
	Threat Model
	Virtual Network Model
	Forwarding and Filtering Model

	TenantGuard Design and Implementation
	Overview
	Data Models
	Routing and Security Groups
	Prefix-to-Prefix Verification Results Processing

	Verification
	Prefix-Level Verification
	VM-Level Isolation Verification
	Complexity Analysis
	Correctness
	Incremental Verification

	Application to OpenStack
	Experiments
	Experimental Settings
	Results
	SNET Results
	LNET Results Using Amazon EC2
	Experiment with Real Cloud

	Discussion
	Conclusion
	References

