
SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs

Jaebaek Seo∗§ , Byounyoung Lee†§, Seongmin Kim∗, Ming-Wei Shih‡,
Insik Shin∗, Dongsu Han∗, Taesoo Kim‡

∗KAIST †Purdue University ‡Georgia Institute of Technology
{jaebaek, dallas1004, ishin, dongsu_han}@kaist.ac.kr, blee@purdue.edu, {mingwei.shih, taesoo}@gatech.edu

Abstract—Traditional execution environments deploy Address
Space Layout Randomization (ASLR) to defend against memory
corruption attacks. However, Intel Software Guard Extension
(SGX), a new trusted execution environment designed to serve
security-critical applications on the cloud, lacks such an effective,
well-studied feature. In fact, we find that applying ASLR to SGX
programs raises non-trivial issues beyond simple engineering for
a number of reasons: 1) SGX is designed to defeat a stronger
adversary than the traditional model, which requires the address
space layout to be hidden from the kernel; 2) the limited memory
uses in SGX programs present a new challenge in providing a
sufficient degree of entropy; 3) remote attestation conflicts with
the dynamic relocation required for ASLR; and 4) the SGX
specification relies on known and fixed addresses for key data
structures that cannot be randomized.

This paper presents SGX-Shield, a new ASLR scheme de-
signed for SGX environments. SGX-Shield is built on a secure
in-enclave loader to secretly bootstrap the memory space layout
with a finer-grained randomization. To be compatible with SGX
hardware (e.g., remote attestation, fixed addresses), SGX-Shield
is designed with a software-based data execution protection
mechanism through an LLVM-based compiler. We implement
SGX-Shield and thoroughly evaluate it on real SGX hardware. It
shows a high degree of randomness in memory layouts and stops
memory corruption attacks with a high probability. SGX-Shield
shows 7.61% performance overhead in running common micro-
benchmarks and 2.25% overhead in running a more realistic
workload of an HTTPS server.

I. INTRODUCTION

Hardware-based security solutions, such as trusted execution
environments, are gaining popularity in today’s market. Intel
SGX is one of such mechanisms readily available in commodity
Intel CPUs since the Skylake microarchitecture. It guarantees
confidentiality and integrity of applications, even if their
underlying components are compromised. More specifically,
SGX provides an isolated execution that protects an application
running inside a secure container, called an enclave, against
potentially malicious system software, including the operating

§This work is done while these authors were visiting and Ph.D. students in
Georgia Institute of Technology.

system and hypervisor. It also offers hardware-based measure-
ment, attestation, and enclave page access control to verify the
integrity of its application code.

Unfortunately, we observe that two properties, namely,
confidentiality and integrity, do not guarantee the actual
security of SGX programs, especially when traditional memory
corruption vulnerabilities, such as buffer overflow, exist inside
SGX programs. Worse yet, many existing SGX-based systems
tend to have a large code base: an entire operating system as
library in Haven [12] and a default runtime library in SDKs
for Intel SGX [28, 29]. Further, they are mostly written in
unsafe programming languages (e.g., C and C++) or often
in an assembly language to provide direct compatibility with
the Intel SGX hardware and to support its instruction sets.
Running such a large code base inside an enclave altogether
simply makes SGX programs vulnerable to traditional memory
corruption attacks, facing the same security challenges as typical
computer environments. This not only nullifies the security
guarantee that SGX claims to provide, but also, perhaps more
critically, allows attackers to exploit isolation and confidentiality
to lurk—there is no way to know what the compromised
enclave runs, and even worse, no way to analyze or monitor
its execution behavior. For example, by exploiting a stack
overflow vulnerability in a trusted web server or database
server running in an enclave, an adversarial client can launch
traditional return-oriented-programming (ROP) attacks [42, 49]
to disclose security-sensitive data in an enclave, which violates
the confidentiality guarantee of SGX, yet avoiding any runtime
analysis or monitoring thanks to its isolation guarantee.

To defeat such attacks in modern computing systems, many
modern defense mechanisms (e.g., stack canary [20], DEP
[40], CFI [7], etc) have been proposed, implemented, and
deployed recently to significantly raise the bar for exploitation
in practice. Address space layout randomization (ASLR) is
one of the most comprehensive, yet solid defense schemes
proven to be effective in the field. In particular, when properly
implemented, ASLR can provide a statistical guarantee of
preventing all attackers’ attempts. Since ASLR hides the
memory layouts from adversaries by randomly placing code and
data in runtime, it forces the attackers to guess where the victim
code or data is located in order to launch control-flow hijack
or data-flow manipulation attacks. This probabilistic defense
mechanism has demonstrated its effectiveness in thwarting
countless exploitation attempts, and now it is a de-facto security
solution in today’s modern operating systems, including mobile
and server environments.

For this reason, Intel also acknowledges the need for
ASLR in the SGX environment and includes a simple ASLR

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first p a ge. R e production f o r c o mmercial p u rposes i s s t rictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23037

scheme for SGX in Intel SGX SDKs for Linux and Windows.
However, we find that Intel’s ASLR design has several critical
limitations that invalidate the security guarantees of ASLR (e.g.,
a whole memory layout is completely known to an adversary,
the malicious operating system). We emphasize that these
limitations are not implementation issues that can be fixed
easily, but originate from fundamental design challenges that
result in conflicts between SGX and ASLR.

This paper uncovers four key challenges in securely deploy-
ing ASLR for SGX:

• The strong, unique attack model of SGX exposes the
enclave memory layout to untrusted system software,
leaving SGX programs completely unprotected by ASLR.
By design, SGX delegates page mapping managements to
untrusted system software, and thus leaks the information
of virtual memory mapping to the underlying software.
Note that this was never a security issue in non-SGX
computing environments where the system software always
serves as the trust computing base of user processes.

• SGX provides the limited memory to an enclave; typically
64 MB or 128 MB in total can be supported [29]. Thus,
ASLR for SGX cannot fully utilize virtual address space,
significantly limiting the degree of randomness and the
security of ASLR.

• ASLR requires a dynamic relocation scheme that updates
relative addresses in the code and data section, which
conflict with the attestation process of SGX; specifically,
SGX finalizes the integrity measurement before an enclave
execution starts, but the relocation for ASLR must be
performed afterwards. This inherent design disagreement
results in writable code pages, nullifying another funda-
mental hardening technique, executable space protection.

• The SGX specification forces the use of a fixed address
for some security-critical data in an enclave. For security
reasons, SGX makes several data structures within an
enclave immutable, exposing such data structures abused
for bypassing ASLR.

To address these issues, this paper proposes SGX-Shield,
a new ASLR scheme for SGX programs. It introduces the
concept of a multistage loader, which pushes back all ASLR-
related operations to its secure in-enclave loader, hiding all
security-sensitive operations from adversaries. To maximize the
degree of randomness of memory layouts, SGX-Shield employs
fine-grained randomization by splitting the code into a set of
randomization units. SGX-Shield also enforces a software data
execution protection (DEP) to guarantee W⊕X (i.e., Write XOR
Execute) in enclave’s code pages and isolates security-sensitive
data structures from adversaries.

We have implemented a prototype of SGX-Shield on Intel
SGX running on both Linux and Windows and evaluated its
security properties and performance overhead. We also verify
that the SGX programs protected with SGX-Shield have a
high degree of entropy to thwart memory corruption attacks
inside the SGX environment, yet with a reasonable performance
overheads: 7.61% on average in the micro-benchmark and
2.25% in the macro-benchmark.

To summarize, this paper makes the following contributions:

Privilege Type Instruction Description

ring-0 EXE ECREATE Create an enclave
ring-0 MEM EADD Allocate an EPC page to an enclave
ring-0 MEM EEXTEND Measure 512 bytes of an EPC page
ring-0 EXE EINIT Finalize the enclave initialization
ring-3 EXE EENTER Enter to an enclave
ring-3 EXE EEXIT Exit from an enclave

TABLE I: Intel SGX instructions. MEM: Memory management
related; EXE: Enclave execution related.

• New challenges. We identify fundamental challenges in
enabling ASLR for the SGX environment. In particular,
we launch ROP attacks to test the effectiveness of the
current ASLR implementation in Linux and Windows
SDKs for Intel SGX and find that the ASLR is completely
ineffective against strong attackers (e.g., untrusted kernel).

• Defense scheme. We implement SGX-Shield, a new
ASLR implementation for SGX programs that overcomes
the fundamental challenges facing the SGX environment.
SGX-Shield supports both Linux and Windows environ-
ments, and it incorporates a secure in-enclave loader,
software DEP, and software fault isolation all together
to provide truly secure ASLR in the SGX environment.

• Evaluation. We provide a thorough analysis on
SGX-Shield; not only do we conduct performance bench-
marks on the real Intel SGX hardware, but also we provide
the security analysis on our approach.

The rest of this paper is organized as follows. §II pro-
vides background information on Intel SGX and ASLR. §III
elaborates fundamental challenges in deploying ASLR for
the SGX environment. §IV presents a design of SGX-Shield.
§V describes implementation details of SGX-Shield, and §VI
evaluates security effectiveness and performance overheads of
SGX-Shield. §VII discusses impacts of controlled side-channel
attacks against SGX-Shield. §VIII describes related work of
SGX-Shield, and §IX concludes the paper.

II. BACKGROUND

Intel SGX. Intel SGX is an extension of the x86 instruction
set architecture [39] that allows a user process to instantiate
a protected memory region, called an enclave, inside its own
address space. SGX prevents system components, including the
privileged software (e.g., kernel), from accessing the enclave,
which guarantees integrity and confidentiality of the enclave.
In this subsection, we summarize the enclave setup and the
interaction between an enclave and its host program. The related
SGX instructions are described in Table I.

Enclave initialization: Since instructions for the enclave
initialization must be executed in the ring-0 mode, the kernel
(i.e., SGX device driver) helps a user process initialize the
enclave. The enclave initialization can be categorized into
the following four procedures: creation, memory allocation,
measurement, and finalizing the initialization: (1) ECREATE
creates an enclave within the address space of a user process.
ECREATE requires a public key and the signature of the enclave
program as a parameter; (2) EADD allocates an Enclave Page
Cache (EPC), a physical memory to be used for an enclave,
and then copies specified memory pages in the host process

2

to the EPC. The size of the total physical EPC memory is
predetermined by the BIOS, and the default size is less than
128MB. (3) EEXTEND measures the SHA-256 digest of 512 bytes
of an EPC. Multiple EEXTEND can be invoked to measure more
EPC memory pages as well. (4) EINIT finalizes the initialization,
which lets the CPU verify the integrity of the enclave program
using the measurement result and the pair of the public key
and signature provided in ECREATE. After EINIT, no EPC page
can be added to the enclave and the permissions of EPC pages
cannot be changed1.

While this enclave initialization process indeed guarantees
the integrity of an enclave program, the initial contents of an
enclave program are completely visible to system components
(i.e., the kernel). It is worth noting that the notion of confiden-
tiality in SGX is limited only to the runtime memory contents
after the enclave initialization.

Host-enclave interaction: By the design of SGX, an enclave
cannot directly invoke system calls in the OS. Instead, using
EENTER and EEXIT, each of which allows entrance or exit
between an enclave and host execution contexts, the enclave
can indirectly invoke system calls. Moreover, because EEXIT
allows the enclave to jump into any location of the host, these
two instructions are also used to call the host function from
the enclave.

EENTER needs a Thread Control Structure (TCS) to specify
the entry point of an enclave execution. A TCS is a special EPC,
added by EADD with a TCS flag that contains information for a
thread execution, such as the entry point, the base addresses
of FS/GS segments, the offset of a State Save Area (SSA), etc.
An SSA is a buffer used to save the context of a thread (e.g.,
values of registers) when an interrupt occurs. Since TCS is
critical for the security of enclave programs, SGX prohibits an
explicit access to the TCS after initialization. We explain the
security implication of SSA and TCS in §III.

ASLR. Address space layout randomization (ASLR) is a
powerful memory-protection technique, primarily used to guard
against memory corruption attacks. Without ASLR, memory
corruption vulnerabilities (e.g., buffer overflow) can easily be
exploited by attackers to hijack control-flows or manipulate
data-flows and execute malicious code. By randomizing the
memory layout (e.g., location of executables and data), ASLR
makes it hard for attackers to exploit the vulnerabilities
because control-flow hijacking or manipulating in-memory data
requires understanding the process memory layout. Thus, ASLR
provides probabilistic defense. In particular, with ASLR, the
operating system randomly places code and data at load time,
making it difficult for attackers to infer the location of code
and data, which forces attackers to rely on bruteforce attacks
on memory layouts.

III. TECHNICAL CHALLENGES

In this section, we articulate the technical challenges in
designing ASLR on an SGX environment (Figure 1).

C1. Strong adversary. Typical ASLR mechanisms are built on
top of an assumption: memory layout is hidden from attackers,

1 In SGX version 2, there are instructions to add EPC pages and change
permissions of EPC pages at the runtime. At the time of writing this paper,
there are no available hardware supporting SGX version 2.

C2. EPC pages
< 128MB

Trusted
SGX CPU

Enclave

RAM

C1.
Page Table

Code C3.
RWX

RW C4. SSA Frame

User process

Untrusted kernel

Enclave Program

Fig. 1: A workflow of running programs (e.g., executable ELF and PE
files) within a SGX enclave. We identify four fundamental challenges
in securely performing ASLR in this procedural (i.e., marked from
C1 to C4).

which are not valid in an SGX environment. The strong and
unique attack model of SGX exposes the process memory layout
to untrusted system software, leaving SGX programs vulnerable
to traditional exploitation techniques. In initializing enclaves,
the untrusted kernel should coordinate the launching procedure
to allocate and manage system resources, such as EPC pages.
From a security standpoint, this initialization procedure relying
on an untrusted party seriously weakens the security of ASLR,
as page allocations and its virtual address mapping for an
enclave are all visible and thus known to attackers.

Specifically, in order to map a physical address of the EPC
region to a virtual address, SGX requires the untrusted kernel’s
collaboration —the kernel executes EADD, a privileged SGX
instruction, with the information on both physical and virtual
addresses to be mapped. This design decision is unavoidable and
rather natural, as the kernel should be involved in evicting some
EPC pages to non-EPC pages if EPC pages are oversubscribed.

However, this results in critical security issues from the
ASLR perspective—the untrusted kernel always knows about
the complete memory layout of an enclave application. More-
over, the base address and the size of an enclave are given to
ECREATE as parameters when creating the enclave. Using the
base address and the memory layout, the kernel can calculate
the exact location of the memory object that does not move
during the runtime (e.g., code objects).

This problem is more critical in another popular usage of
SGX: hostile cloud environment where people use SGX to
securely offload the computation. The current design of Intel
SGX always exposes the memory layouts of enclave programs
to adversaries, such as cloud providers, where they have full
control of underlying software stacks including the kernel,
firmware, and all the way down to the SMM program. Under
such a strong adversarial model, the greatest care should be
taken to design a secure ASLR scheme for SGX. In §VI, we
demonstrate that the kernel can succeed in an ROP attack
against a vulnerable enclave program with only a single trial
in the current Intel SGX SDKs.

C2. Limited memory space. The entropy of the ASLR
implementation is inherently limited by the SGX design; SGX
has not only a limited memory space overall (i.e., 128 MB

3

EPC [29]), but also the allocated physical memory per enclave
is very limited (i.e., an order of 10 MB in typical usages). In
these situations, an attacker can easily bruteforce the entire
search space to bypass ASLR, as long as they can freely
try to mount an exploitation. As such, this limited memory
space would significantly reduce the entropy (i.e., the amount
of randomness) in enclave programs, compared to what we
typically expect in a non-SGX environment: for example, ASLR
in x86_64 can utilize the full virtual address space per process
(i.e., 48-bit). To address this issue, SGX-Shield takes a fine-
grained randomization approach to maximize the randomness
of memory layouts.

C3. Writable code pages. Dynamic relocation for ASLR
makes it difficult to utilize a powerful, comprehensive defense
mechanism against control-hijacking attacks: the No-eXecute
(NX) bit [41], which exclusively grants either an executable or
writable permission to individual memory pages. This feature is
effective in preventing code-injection attacks because attackers
cannot directly jump to execute (i.e., executable) the injected
code (i.e., writable).

However, there are some situations where both executable
and writable flags need to be set at the same time. Just-In-Time
(JIT) compilation is a notable exception, as it first writes the
compiled code to the memory and executes after that. A typical
way to handle this situation is to disable the NX bit for the
corresponding memory pages, which are the apparent target
for attackers to place the malicious code.

The key feature of SGX, integrity checking (attestation), has
a similar problem; it first has to load the code (i.e., writable)
and then execute after the measure (i.e., executable). For this
reason, the integrity measurement for SGX is only valid for
fixed code and data pages, and it cannot be easily extended to
support the dynamically changing pages. Specifically, before
launching an enclave (i.e., EENTER), the integrity measurement
should be finalized and cannot be changed after that. However,
implementing ASLR for an enclave program inherently requires
changing the permission bit (from writable to non-writable) of
code pages after the initial measurement, in particular, the code
sections that need to be relocated. Unfortunately, SGX prohibits
changing a permission bit after the initial measurement [30].
Therefore, code pages have to be both writable and executable
to perform a proper relocation for ASLR after the measurement:
the relocation takes place within an enclave after EINIT.
We confirm that some Windows enclave programs requiring
dynamic relocation contain writable and executable pages. In
fact, Intel already acknowledged this issue [27] and further
recommended that the enclave code contain no relocation (i.e.,
no code randomization after the initialization) to enable the
NX feature. To properly guarantee the security of ASLR in
SGX programs, we need to carefully rethink the design criteria
that are compliant with the SGX environment.

C4. Known, fixed addresses. Worse yet, some data structures
in SGX do not allow relocation at all. For example, the State
Save Area (SSA) frame in SGX does not allow relocation to
arbitrary memory addresses; the SSA frame is dedicated to
storing the execution context when handling interrupts in SGX.
More precisely, the address of SSA Frame is determined by
an OSSA field, the offset from the base address of an enclave
to SSA, embedded in the Thread Control Structure (TCS).

The TCS is initialized and loaded by the kernel through an
EADD instruction and contains information for executing an
SGX program, such as the entry point of the enclave, the base
addresses of FS/GS segments, the offset of SSA, etc. Since
TCS is critical for the security of enclave programs, SGX
prohibits an explicit access to the TCS after initialization. After
initialization, some fields of the TCS might be updated by the
CPU during execution (e.g., saving the execution context to
the SSA frame in Asynchronous Enclave Exit), and the fields
specifying the location of SSA (i.e., OSSA) cannot be updated.
In other words, the virtual address of SSA is always known
to the untrusted kernel, and the location of SSA cannot be
randomized after initialization.

This leaves potential opportunities for abuse. Let’s assume
two threads T1 and T2 are running concurrently in an enclave.
When T1 temporarily exits an enclave due to an interrupt, its
execution context, including all register and values, is saved into
the SSA. Then, using T2, an attacker can mount an arbitrary
memory write to overwrite the field for the instruction pointer
in the SSA frame, thereby hijacking control of the T1 thread.
Similarly, with an arbitrary memory read, attackers can infer
the complete address space layout by following the pointers
and instructions from the initial information found in the SSA
frame, similar to just-in-time code reuse [57]. In SGX-Shield,
we isolate all memory accesses to the known yet security-critical
data structures in an SGX program.

IV. DESIGN

In this section, we present the design of SGX-Shield, which
fortifies the security aspect of the ASLR scheme in an SGX
environment. In particular, we address all challenges highlighted
in §III.

• C1: Strong adversaries. SGX-Shield introduces the
concept of a multistage loader, which can hide ASLR-
related security decisions and operations from adversaries
(§IV-B).

• C2: Limited memory. SGX-Shield employs a form of
fine-grained randomization that is tailored to maximize its
entropy on the SGX environment (§IV-C).

• C3: Writable code pages. SGX-Shield implements a
software DEP to enforce W⊕X in an enclave’s code pages
(§IV-D).

• C4: Known address space. SGX-Shield incorporates
coarse-grained software-fault isolation (SFI) to protect
fixed, security-sensitive data structures from arbitrary
memory reads and writes (§IV-E).

For the rest of this section, we start by describing our
threat model (§IV-A), and then explain techniques to overcome
each challenge in the following subsections: §IV-B shows
our multistage loader; §IV-C describes the fine-grained ASLR
scheme for SGX; §IV-D explains software DEP; and §IV-E
shows our SFI scheme designed for SGX programs. In §IV-F,
we introduce performance optimization techniques that we
adopt.

4

Secure in-enclave
loader

Code pages (X)

Data pages (RW)

Runtime Data

User process

No permission
SSA, TCS, Guard

Code pages (RWX)

Data pages (RW)

Enclave

User process

3. Secure
in-enclave

loading

Enclave

2. Bootstrapping

1. Preparation

Source
code Source

code Source
code

Multistage loading (§IV-B)

Fine-grained
ASLR

(§IV-C)

Software-DEP
(§IV-D)

SFI (§IV-E)

Secure in-enclave
loader

Target SGX Program

Secure in-enclave
loader

r15
(NRW boundary)

SGX-Shield’s
Compile toolchains

(LLVM, static linker)
SGX-Shield supports

both Linux and Windows

Fig. 2: Overall workflow of SGX-Shield: 1) the preparation phase builds a SGX binary from the target program’s source code; 2) the
bootstrapping phase loads the secure in-enclave loader into code pages and the target SGX program into data pages; and 3) the secure in-enclave
loading phase finally loads the target SGX program.

A. Threat Model

SGX-Shield assumes the same attack model as SGX, as
our ASLR scheme is designed for SGX programs. Specifically,
we assume that only the CPU package with SGX support is
trusted and all other hardware components are not. A user
runs his or her own target program within an enclave, and all
other components in the software stack are not trusted (i.e.,
other processes, an operating system, and a hypervisor). Our
attack model consideration focuses on an attacker who wishes
to exploit a vulnerability, a memory corruption vulnerability in
particular, in the target program running in the enclave. While
completely addressing side-channel issues is not the primary
goal of this paper, SGX-Shield provides a barrier to guess the
memory layout of an enclave against the attack based on the
page fault side-channel (i.e., controlled side-channel) [61]. We
discuss the effectiveness of SGX-Shield against the controlled
side-channel attacks in §VI-A1 and §VII.

B. Multistage Loader

To prevent the untrusted kernel from learning the memory
layout of an enclave, SGX-Shield performs all ASLR operations
within the enclave, taking advantage of its isolated execution.
SGX-Shield consists of three phases, as shown in Figure 2:
preparation, bootstrapping, and secure in-enclave loading.

First, the preparation phase builds the target SGX program
that a user wants to deploy. This built executable contains a
secure in-enclave loader in its code section and the target SGX
program in its data section, where the secure in-enclave loader
will load the target SGX program later. This phase can be
carried out anytime before deployment and does not have to
be performed on the same SGX machine in which the target
program will be run.

Second, in the bootstrapping phase, SGX-Shield performs
the first part of multistage loading. The primary role of the
bootstrapping phase is to create an enclave and initialize the
secure in-enclave loader with the help of the untrusted kernel.
Because the memory layout of an enclave is assumed to be

visible to the non-trusted party in this phase, it is designed to
make as minimal decisions on resource provisioning as possible
and defer all security-sensitive decisions to the secure in-enclave
loader. This phase allocates two types of enclave data pages
with read and write permissions and code pages with read,
write, and execute permissions. The read/write permissions
granted to code pages enable the secure in-enclave loader
to write the target SGX program into an enclave memory
(performing the relocation as well) and then execute it. While
this design decision facilitates multistage loading, it ends up
having both writable and executable memory pages, similar to
the challenge C3 (§III). To address this issue, §IV-D presents
how SGX-Shield removes read and write permissions from
these pages using a software-level enforcement.

Finally, the secure in-enclave loader loads the target SGX
program into the memory space from its data pages. The
secure in-enclave loader randomly picks the base address using
the RDRAND instruction, which relies on the non-deterministic
on-processor entropy. Then, it loads each section of the
target program, where the address of each section is further
adjusted independently at random. Before finishing the loading,
SGX-Shield resolves all relocation information, which includes
global variables, static variables, and the destination of all
branches. As a last step, SGX-Shield wipes out the secure
in-enclave loader from the memory space, and then jumps to
the entry point of the target SGX program to hand over the
execution.

Because the target program is loaded within an enclave by
the secure in-enclave loader, SGX-Shield completely hides the
address space layout information from the untrusted kernel.
The random value is directly obtained from the CPU, and all
the following computations and decisions for ASLR of the
target program are performed inside the enclave.

It is worth noting that our multistage loading scheme is fully
compatible with SGX’s attestation scheme. At the moment a
measurement for an enclave is finalized by an EINIT instruction
(i.e., between the bootstrapping and secure in-enclave loading
phase), all required resources for SGX-Shield are finalized

5

3. Secure in-enclave
loading

…

jg A*
jmp C*

if
el

se

2. Bootstrapping

RU A

RU B if
el

se

RU C

…

jg A

1. Preparation

if
el

se

…

jg A
jmp C

…

jg A
jmp C

RU A

RU B

RU C

RU A

RU B

RU C

RU A

RU B

RU C

Fig. 3: Fine-grained ASLR scheme based on a randomization unit. jg A∗ and jmp c∗ represent the relocated instructions of jg A and jmp C,
respectively. The preparation phase instruments an unconditional branch (i.e., jmp C) next to a conditional branch (i.e., jg A). As a result, during
a secure in-enclave loading phase, the following unit (i.e., RU C) can be randomly placed independently to the location of the instrumented unit
(i.e., RU B) by resolving relocation.

and fully measured. Thus, from the perspective of performing
attestation, SGX-Shield is the same as typical SGX programs—
SGX-Shield simply runs code, the secure in-enclave loader,
with data, the target SGX program. Specifically, all memory
pages for SGX-Shield including the secure in-enclave loader
in code pages and the target SGX program in data pages are
added to EPC pages and extended for measurement through
EADD and EEXTEND, respectively.

C. Fine-grained Randomization for Enclaves

SGX-Shield employs fine-grained randomization
schemes [13, 23, 24, 32, 45, 59] to maximize the ASLR
entropy. In the following, we describe how SGX-Shield is
designed to randomize the memory space layout across three
phases.

Preparation. To enable fine-grained ASLR for code,
SGX-Shield relocates code at smaller granularity, called a
randomization unit. Randomization units are of fixed size that
can be configured. Our implementation supports 32- and 64-
byte units. SGX-Shield modifies commodity compilation and
linkage procedures because they support only simple module-
level (i.e., section-level) randomization. During the compilation,
SGX-Shield ensures that the terminating instructions of ran-
domization units are not fall-through cases. This is because
fall-through assumes that randomization units are placed
consecutively, which is not true when they are relocated for
ASLR. Thus, for each fall-through case, SGX-Shield appends
an unconditional branch instruction that points to the entry
point of the next randomization unit (i.e., the randomization
unit pointed to by the fall-through case).

For example, as shown in Figure 3, right after the condi-
tional branch instruction (i.e., jg A), an unconditional branch
instruction (i.e., jmp C) is added, allowing RU C to be randomly
relocated independently to the location of RU B. Note that this
instrumentation pass cannot be done naively at the intermediate
language (IR) level. Even when IR does not have conditional
branch instructions with fall-through features (e.g., LLVM IR),
the compiler backend may automatically introduce this. For
example, the Intel x86-64 architecture always uses fall-through
with conditional branch instructions.

Finally, the size of the randomization unit introduces a
trade-off between security and performance. When the size
of the randomization is small, there will be more candidate
slots to place the randomization unit, increasing the entropy of

ASLR at the cost of more frequent branching and decreased
spatial locality. We evaluate this trade-off in §VI.

Stage 1: Bootstrapping. We let the loading scheme in the
bootstrapping phase over-estimate the memory space required
to load the target program, as this size is directly related to
the ASLR entropy. Strong adversaries, including the untrusted
kernel, always know of ranges of truly active memory space.
Thus, unlike traditional ASLR settings where an attacker
needs to bruteforce the entire virtual address space, the strong
adversary needs to bruteforce only a small space based on
her/his prior-knowledge. To this end, we over-estimate both
code and data pages, where both are configured as 32 MB in
the current version of SGX-Shield.

Stage 2: Secure in-enclave loading. Using the target SGX
program in data pages, the secure in-enclave loader starts to
place each randomization unit into previously allocated memory
spaces. SGX-Shield fully utilizes over-estimated memory space,
reserved for loading the target program, to randomly scatter
each randomization unit, which in turn maximizes the ASLR
entropy. SGX-Shield randomizes all data objects as well,
which includes stack, heap, and global variables. Specifically,
SGX-Shield performs the following steps: (1) for a stack
area, SGX-Shield picks the random base address and reserves
continuous memory space from this base; (2) for a heap area,
it randomly picks k memory pools from the rest of the data
pages, where the size of each memory pool is configurable
(i.e., 1 MB in the current version of SGX-Shield); (3) global
and static variables are randomly placed into the rest of the
data pages.

Since SGX-Shield randomizes all code and data objects, all
references to memory objects including the absolute address
and the PC-relative address must be determined after placing
them. The secure in-enclave loader conducts the relocation
for all memory objects after loading them. For example, as
shown in Figure 3, instructions jg A and jmp C are relocated
to correctly point to the shuffled locations for randomization
units A and B, respectively.

Considering controlled side-channel attacks [61], our design
also randomizes control-flow dependencies upon data values
during the secure in-enclave loading phase. More precisely, the
secure in-enclave loader randomizes the order of loading and
relocation so that simply observing memory access patterns at
page granularity would not leak information on which data or
code is being loaded or relocated. Actual runtime behaviors

6

Heap

Code

TCS

TLS

C4. SSA Frame

Stack

C3. RWX

TCS*

RW

Guard

Guard

Guard

BASE + 0x2001000

BASE + 0x2011000

BASE + 0x2012000

BASE + 0x2013000

BASE + 0x2023000

BASE + 0x2025000

BASE + 0x2035000

BASE + 0x2045000

BASE + 0x2000000

BASE (4KB aligned)

Enclave

C2. EPC pages
< 128MB

Page Table

C1. untrusted kernel

RAM

User address space

(a) Intel SGX SDK

Secure in-enclave loader

Heap

Reserved for
Target SGX Program Code

TCS

TLS

SSA Frame

Stack

BASE (4KB aligned)

BASE + 0x40000

BASE + 0x2400000

BASE + 0x2401000

RWX

BASE + 0x2411000

BASE + 0x2412000

BASE + 0x2413000

TCS*

RW
BASE + 0x2423000

BASE + 0x2425000

BASE + 0x2435000

BASE + 0x4445000

Secure
In-ecnlave
Loading

Code

TCS

SSA Frame

TCS*

(NRW
boundary)

r15

RW

Only X

No Permission

Before Secure in-enclave loading After Secure in-enclave loading

Guard

Guard

Guard Guard

Stack growth

BASE + 0x2000000

Multistage
loading
(§IV-B)

Fine-grained
ASLR

(§IV-C) Software-DEP
(§IV-D)

Software-DEP
and SFI
(§IV-D,
§IV-E)

Enclave

Target SGX
Program

No Permission

Randomized
Stack, Heap, TLS,
Global Variables

(b) SGX-Shield

Fig. 4: Runtime memory layouts of an enclave under Intel SGX SDK and SGX-Shield. Both are taken by running Windows 10, but they are
similar to those for Linux. After going through secure in-enclave loading phase, SGX-Shield randomizes all code and data pages to maximize
the entropy aspects of ASLR as well as implementing software-DEP and SFI.

of the target program might be vulnerable, however, and we
describe and evaluate more details of this aspect in §VI-A1
and §VII.

D. Software DEP in Enclaves

As noted in §IV-C, the multistage loading scheme of
SGX-Shield leaves code pages both writable and executable.
In this subsection, we describe how SGX-Shield removes read
and write permissions from code pages by using software-based
DEP. Specifically, code pages are granted not only execution
but also read and write permissions. As such, SGX-Shield
eliminates read and write permissions on code pages once
the secure in-enclave loading is finished (i.e., after the target
program is randomly mapped to the memory). The key idea
behind this is enforcing the NRW boundary (i.e., Non Readable
and Writable boundary), which is a virtual barrier between
code and data pages (See Figure 4). SGX-Shield guarantees
this by (1) shepherding all memory access instructions and (2)
ensuring only aligned control transfers are made.

Shepherding memory access. In general, there are two types
of memory access instructions: (1) explicit memory accessing
instructions (e.g., mov, inc, add instructions with memory
operands in x86) and (2) stack accessing instructions (e.g.,
implicit stack pointer adjusting instructions including push, pop,
call, ret, etc., or explicit stack pointer adjusting instructions
including sub, add, etc. with a stack register operand).

In order to prevent read or write attempts through the first
type of instruction, SGX-Shield makes sure that a memory
address to be accessed is always higher than the NRW
boundary (i.e., the operand should not point to code pages).
To avoid extra memory dereferences and thus optimize the
performance, SGX-Shield reserves the register r15 to hold the
NRW boundary, which is initialized by the secure in-enclave
loader before executing the target program. To minimize the

1 ; Before enforcing non-writable code
2 mov [rdx+0x10], rax
3

4 ; After enforcing non-writable code
5 ; (r15 is initialized to hold the NRW boundary)
6 ; (enforce rdx >= r15)
7 lea r13, [rdx+0x10] ; r13 = rdx+0x10
8 sub r13, r15 ; r13 = r15 - r13
9 mov r13d, r13d ; r13 = r13 & 0xffffffff

10 mov [r15 + r13], rax ; *(r15+r13) = rax

Fig. 5: Instrumenting explicit memory access instructions to enforce
non-writable code. Since the instruction tries to write to where rdx
points, SGX-Shield enforces that rdx always points to the location
higher than the NRW-boundary. r15 is initialized to hold the NRW
boundary value by the secure in-enclave loader. It is assumed that
r13 is an available register (or spilled beforehand) and thus used as a
temporary register.

number of instrumented instructions, we transform the original
instruction such that it accesses memory using a positive offset
from the NRW boundary. We then enforce that the maximum
positive offset is smaller than 232 − 1 to ensure that the
instruction never accesses memory beyond the NRW boundary.

Figure 5 shows how an mov instruction that writes to address
rdx+0x10 is instrumented. SGX-Shield enforces that rdx+0x10
is always higher than r15. For this, it first moves the value of
rdx+0x10 to r13 (line 7), subtracts it from r15 (line 8), and
clears high 32-bits of r13 (line9). After this point, if rdx+0x10
≥ r15, r13 will hold the positive offset from the NRW boundary,
and the next instruction (line 10) performs the memory write
operation as intended. Otherwise, if rdx+0x10 ≤ r15, r13 will
hold the AND-masked value (line 9) because a subtraction in
line 8 results in a negative value (i.e., the most-significant bit
is set). Therefore, this offense is properly guarded, as it does
not overwrite the code page under SGX-Shield.

To enforce non-writable code pages on stack accessing
instructions, SGX-Shield makes sure that a stack pointer (i.e.,

7

1 ; Before enforcing non-writable code
2 sub rsp, 0x40
3

4 ; After enforcing non-writable code
5 ; (r15 is initialized to hold the NRW boundary)
6 ; (enforce rsp >= r15)
7 sub rsp, r15 ; rsp = rsp - r15
8 sub rsp, 0x40 ; rsp = rsp - 0x40
9 mov esp, esp ; rsp = rsp & 0xffffffff

10 lea rsp, [rsp + r15] ; rsp = rsp + r15

Fig. 6: Instrumenting stack access instructions to enforce non-writable
code. Since a value of rsp is changing, SGX-Shield enforces that rsp
≥ NRW-boundary always holds.

1 ; Before enforcing aligned indirected branch
2 jmp rax
3

4 ; After enforcing aligned indirected branch
5 ; (enforce rax % [random unit size] = 0)
6 and rax, $-0x20 ; rax = rax && 0xffffffffffffffe0
7 jmp rax ; jump to the address pointed by rax

Fig. 7: Instrumenting indirect branches to enforce aligned jumps. This
makes sure that there is no branch to an offset in the middle of bundled
instructions, i.e., bypassing the enforcement of the non-writable code.

rsp) never points to code pages. To handle instructions that
adjust stack pointers implicitly, we simply map a guard page
(i.e., no permission is granted) at the top and bottom of
the stack area. Because these instructions shift the stack
pointer with a small fixed offset and access the stack, the
guard page would always be hit if any of them accesses
beyond the legitimate stack range. Note, this guarded page
scheme on stack instructions optimizes the performance of
SGX-Shield. This is because conceptually it replaces a large
number of instrumented instructions with two guarded memory
pages along with retrofitting the existing exception handling
mechanism. In the case of instructions explicitly adjusting stack
pointers, SGX-Shield explicitly instruments them, as shown
in Figure 6. This is similar to our instrumentation techniques
for explicit memory accesses in that both of them compute the
positive offset values from the NRW-boundary.

Ensuring aligned control transfer. Because x86 and x86-
64 ISA have variable length instructions, code alignment
is critical; unexpected instructions can be executed when
alignment is broken. This would violate our enforcement on
memory accesses, as these instructions would perform memory
accesses not guarded by SGX-Shield. SGX-Shield resolves this
issue by restricting the control transfers only to the entry point
of the randomization unit. As a result, it enforces that there
is only one way to decode instructions, ensuring that only
shepherded memory access takes place. This enforcement is
performed for all control transfer instructions, including indirect
branches as well as return instructions. In the case of indirect
branches, masking operations are added as shown in Figure 7
so that the destination only points to one of the randomization
unit’s entry points. In the case of a return instruction, it is first
replaced with equivalent instructions, pop reg and jmp reg,
where reg can be any available register. Then, the latter jmp
instruction is instrumented as it is done for indirect branch
instructions. Finally, to enable efficient masking on control
transfer, our implementation aligns the randomization unit to
its size (i.e., if the size of a randomization unit is 32-bytes, an
entry point address of a randomization unit ends with five zero
bits).

E. Isolating Access to Security-Critical Data

By its design, SGX places the page for the State Save Area
(SSA) at a known location and does not permit its relocation, as
described in C4 (§III). In order to prevent attackers from abusing
this non-randomizable data location, SGX-Shield implements
software fault isolation (SFI) to isolate SSA. In particular, since
we already mark the memory page for SSA as non-executable,
we prevent the target enclave program from reading or writing
to SSA.

We found that SGX-Shield can easily retrofit its software
data execution prevention (DEP) mechanism (§IV-D) to achieve
this requirement. Our software DEP mechanism ensures that
no read or write accesses are permitted to pages lower than
the NRW boundary. Therefore, as shown in §IV-D, we place
SSA below the NRW boundary, thereby isolating SSA from
being read or written.

F. Performance Optimization

A general goal of our optimization is to reduce the number
of checks while preserving the same security guarantees, as the
checks instrumented by SGX-Shield directly impact runtime
performance. In particular, we focus on two types of checks,
both of which were identified as major performance bottlenecks
during our preliminary performance evaluation: (1) masking
operations onto memory read/write instructions for software-
DEP (§IV-D) and (2) a jump operation replacing fall-through
cases for randomization units (§IV-C).

First, we remove redundant masking operations within a
loop. More precisely, we observed that the target address of a
memory read or write instruction within a loop either reuses the
same address or simply increases through the loop counter, for
example, functions manipulating string or buffer (e.g., memset,
memcpy, memmove) loops over a buffer using a pointer convoluted
with a loop counter. Therefore, we develop a simple loop
analysis considering data dependency, which identifies a range
of addresses referenced inside. Next, if such a range can be
found conservatively, then we replace masking operations inside
a loop with two masking operations outside a loop — masking
only on the minimum and maximum address value before
entering the loop. It is worth noting that this replacement has
to be performed in the same randomization unit or more strict
control-flow integrity has to be given to this randomization unit.
Otherwise, an adversary may jump into the randomization unit,
which allows avoiding masking operations before executing
memory read/write instructions.

Second, we also minimize the number of fall-through cases
if possible. Specifically, we instructed the compiler to avoid
emitting jump or switch tables, as we observed that these were
a major source of conditional jumps, which results in a huge
number of fall-through cases.

V. IMPLEMENTATION

SGX-Shield consists of 23,068 lines of code (see Table II),
where 2,753 lines of code contributes to the secure in-enclave
loader that is running within an enclave. We implement secure
in-enclave loaders (i.e., dynamic loaders) for both Linux and
Windows, where the ELF format is used to build an enclave

8

of Files LoC Base Framework

Preparation 13 2,304 LLVM Backend
Bootstrapping∗ 19 1,625 Intel SGX SDK
Secure in-enclave loader∗ 15 2,753 Intel SGX SDK
Windows version 12 3,514 Intel SGX SDK
Others 71 12,872 -

Total 130 23,068 -
∗ indicates Linux version of SGX-Shield

TABLE II: The implementation complexity of SGX-Shield. We
implement the preparation based on LLVM 4.0. We implement the
runtime supports (i.e., bootstrapping and secure in-enclave loader)
both in Linux and Windows.

program2. Once the enclave program is compiled as an ELF
format, we can run it regardless of the platform.

Preparation. The preparation phase includes an LLVM
compiler 4.0, a static linker, and a sign tool of Intel SGX
SDK for Linux. By modifying the backend of LLVM [6],
we insert two kinds of instructions: (1) unconditional jump
instructions (instead of fallthrough) at the end of randomization
units and (2) instructions to enforce the software-DEP (i.e.,
masking the target memory address to access). In addition, the
LLVM emits each randomization unit as a symbol. The fine-
grained symbol information is used in the secure in-enclave
loading. The software-DEP currently enforces only the memory
write protection. To prevent reading the code, the code page
is added as writable and executable, but not readable, through
EADD. As the relocation does not read the code, non-readable
code pages do not cause faults.
The current version of SGX-Shield supports only static linking.
We implement a static linker from scratch. While linking
relocatables generated by the LLVM, it keeps the fine-grained
symbol and relocation information for the fine-grained ASLR.
We modify Intel SGX SDK for Linux to provide the enclave
program with sufficient code and data pages for shuffling. We
embed the binary of enclave program into the binary of secure
in-enclave loader as a section using the objcopy command.
Since the source code for Intel SGX SDK for Windows is not
available, we implement a PE editor that adds dummy memory
sections to the secure in-enclave loader to provide enough code
and data regions.

Bootstrapping. The bootstrapping simply creates an enclave
and loads the secure in-enclave loader to the enclave. We
implemented a simple program that conducts the bootstrapping
in both Linux and Windows.

Secure in-enclave loader. The secure in-enclave loader
is a dynamic loader that conducts the randomization unit-
level memory object loading and relocations. It resolves the
relocation information for all the memory references including
the absolute addresses and the PC-relative addresses. We
implemented these from scratch and made a best effort to
reduce the size of the trusted computing base. In the current
version, the core part (i.e., parsing the ELF file, randomly
loading, and relocation) is written in a single C file with 384
LoC.

2 In Windows, the secure in-enclave loader is compiled as a PE format, but
it loads the ELF format executable.

1 ; gadget #1
2 pop rdi ; src. of memcpy(), the address in enclave to leak
3 pop rsi ; dst. of memcpy(), the address in host
4 ret ; jump to gadget2
5

6 ; gadget #2
7 pop rdx ; len. of memcpy()
8 ret ; jump to memcpy()

Fig. 8: Gadgets for CFI-bypassing ROP. The attacker needs to correctly
guess four address values to launch a successful attack: the address of
gadget #1, gadget #2, and memcpy(), and the address in the enclave
to leak (i.e., rdi). We assume that an attacker already knows the
implementation details of memcpy() in that rsi, rdi, and rdx were
used for corresponding function parameters.

Windows version. In order to support Windows enclave
programs, we implemented a separate PE editor, bootstrapping
program, and secure in-enclave loader. The PE editor embeds
dummy sections in the secure in-enclave loader to reserve
enough code and data pages. The bootstrapping program and
the secure in-enclave loader for Windows are almost the same
as those for Linux, but we only solve the compatibility issues,
including type definitions and system calls.

Others. The rest of the components of SGX-Shield are libraries
used by an enclave program and debugging tools. We port
musl-libc [5] as a libc and mbedTLS [4] as a TLS library to
SGX-Shield. Since libc code often invokes system calls, we
replace those system calls to trampolines/springboards.

VI. EVALUATION

In this section, we evaluate SGX-Shield by answering the
following questions:

1) How effectively does SGX-Shield defend against various
types of memory-based attacks (§VI-A1)?

2) How much randomness does SGX-Shield show in its
address space layouts (§VI-A2)?

3) How much performance overhead would SGX-Shield
impose in running the micro-benchmarks (§VI-B1)?

4) How much performance overhead would SGX-Shield
impose in running typical workloads for SGX (§VI-B2)?

Experimental setup. All our experiments were conducted on
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz (Skylake with
8MB cache) with 32GB RAM. We ran Ubuntu 14.04 with Linux
3.19 64-bits3, and installed Intel SGX SDK and device drivers
released by Intel [28]. In the entropy analysis (§VI-A2) and the
micro-benchmark (§VI-B1), we used nbench [2] benchmark
suites.

A. Security Evaluation

This subsection evaluates how many security guarantees
are offered by SGX-Shield. We first evaluate the practical
security aspects of SGX-Shield by measuring the possibility of
successful memory corruption-based attacks (§VI-A1). Then,
we evaluate the theoretical and general security aspects of
SGX-Shield by measuring the entropy (§VI-A2).

3 We also performed the same evaluation in the Windows version of
SGX-Shield. While the result is almost same, we do not show it in this
paper because of the page limitation.

9

Exploitation technique

Attack model Ret-to-func ROP CFI-bypassing ROP

Remote 0/214 (48-bits) 0/214 (88-bits) 0/214 (108-bits)
Passive kernel 214/214 (0-bits) 214/214 (0-bits) 214/214 (0-bits)
Active kernel 214/214 (0-bits) 214/214 (0-bits) 214/214 (0-bits)

(a) Intel SGX SDK (baseline)

Exploitation technique

Attack model Ret-to-func ROP CFI-bypassing ROP

Remote 0/214 (48-bits) 0/214 (88-bits) 0/214 (108-bits)
Passive kernel 0/214 (20-bits) 0/214 (60-bits) 0/214 (80-bits)
Active kernel 148/214 (7-bits) 0/214 (21-bits) 0/214 (28-bits)

(b) SGX-Shield

TABLE III: Security effectiveness of SGX-Shield against memory
corruption-based attacks. For each attack model, we launched 214

attacks to the vulnerable enclave program running with either the
current Intel SGX SDK or SGX-Shield. In each cell, x/y (z-bits)
denotes the following: x - the number of successful attacks; y - the
total number of attacks we tried; and z - the theoretical number of
bits that the attack needs to bruteforce.

1) Effectiveness against Memory Corruption Attacks: In
order to see how effective SGX-Shield is in stopping memory
corruption-based attacks, we launched an attack against a
vulnerable enclave program while running either Intel SGX
SDKs and SGX-Shield. We assume following the three attack
models in which each has different prior-knowledge on memory
address layouts according to their inherent runtime constraints:
(1) a remote attack, which launches an attack through network
sockets serviced by a vulnerable enclave program. This model
is a blind attack (i.e., it knows nothing related to the address
layouts); (2) a passive kernel attack, which has the privilege of
an underlying operating system but does not intervene a page
fault handling mechanism. Since the kernel executes EEINIT
and EADD, this attack model has information on the base address
and the size of an enclave; (3) an active kernel attack, which
not only has the privilege of an underlying operating system
but also actively intervenes the page fault handling mechanism.
The active intervention on the page fault follows the controlled
side-channel attack [61], which grants additional information on
which memory page is being accessed by an enclave program
(more details are discussed in §VII).

In order to focus on ASLR-related issues, we wrote an
easily exploitable victim program with a simple stack-overflow
vulnerability. Then, for each attack model, we run the following
four exploitation techniques, where each imposes different
difficulties in guessing address values: (1) return-to-function,
which requires inferring a single address value (i.e., a function
address); (2) ROP, which requires three ROP gadgets (i.e., need
to infer three address values). The gadgets are the same as
the ones in RIPE benchmark [60], but we replaced call with
syscall to work in an SGX environment; (3) CFI-bypassing
ROP, which requires four ROP gadgets (i.e., need to infer four
address values as shown in Figure 8). This CFI-bypassing ROP
manipulates only the data flow, so it would not be detected by
CFI techniques [7] but requires more gadgets than non-CFI-
bypassing ROP.

As expected, the current Intel SGX SDK was effective
against a remote attack model, but ineffective against passive
and active attack models. As shown in Table III, in the case

SGX SDK SGX-Shield

RU-64 RU-32

HRel 0.0 0.9989 0.9993
HAbs 0.9869 0.9999 0.9999

(a) Code pages

Stack Heap Global

HRel SGX SDK 0.0 0.0 0.0
SGX-Shield 0.9886 0.9995 0.9967

HAbs SGX SDK 0.9869 0.9869 0.9869
SGX-Shield 1.0000 1.0000 1.0000

(b) Data pages

TABLE IV: The ASLR entropy on code and data pages while running
the nbench binary 1,800 times. The higher entropy value indicates
more randomness on address layouts. HRel denotes entropy for relative
addresses and HAbs denotes entropy for absolute addresses. SGX SDK
denotes the baseline results using the existing Intel SGX Linux SDK.
RU-64 and RU-32 represent the configured size of a randomization
unit, 64- and 32-bytes, respectively.

of the remote attack model, all our attack attempts (214 times)
failed, as theoretically an attacker has to try about 247, 287,
and 2107 times to achieve a 50% successful attack probability
per exploitation technique, respectively. In the case of passive
and active kernel attack models, since the attacker is already in
possession of required address values for all three exploitation
techniques, exploitation attempts were always successful for
all 214 attacks that we tried.

With SGX-Shield, however, the probabilistic defense nature
of ASLR is regained for all attack models and exploitation
techniques. In the remote attack model, SGX-Shield showed
the same security results as the Intel SGX SDK. In the case of
the passive kernel attack, all 214 attack attempts failed. If the
size of a randomization unit is 32 bytes, there are 220 possible
entry points that attackers have to bruteforce for each address
value (i.e., 32 MB/32 B = 225/25, as the code or data region size
is 32 MB). Thus, theoretically the attacker has to guess 220, 260,
and 280 address values for each exploitation technique. In the
active kernel attack, the attacker now may know which memory
page is responsible for executing certain code in the worst case
of SGX-Shield. However, since SGX-Shield still shuffles both
code and data pages in the memory page, the unknown bits for
a single address value would be 7 (i.e., 4 KB/32 B = 212/25,
as the memory page size is 4 KB and the randomization unit
size is 32 B). Therefore, a theoretical bound of SGX-Shield’s
security guarantee is 27, 221, and 228, for each exploitation
technique, respectively. Accordingly, this theoretical estimation
is also evidenced by our real attack trials — while successful
attacks were observed 148 times for return-to-function, all
failed for ROP and CFI-bypassing ROP. Although SGX-Shield’s
probabilistic bound against the return-to-function exploitation
technique can be a security concern, we believe the security
benefit of SGX-Shield is still valuable considering that return-
to-function is difficult to be a general exploitation in practice.

2) Entropy Analysis: We measure the randomness of the
address space layout using the notion of entropy [15]. The
entropy captures the uncertainty of a given random variable,
and we apply this by considering possible address values
as a random variable. Specifically, let ARU be a discrete
random variable with the absolute entry point addresses
{a1, a2, ..., an} for a certain randomization unit RU across
n different runs, and p(ai) is a probability mass function (pmf).
Then, HAbs(ARU), the normalized address space layout entropy
of the randomization unit RU, is defined as:

HAbs(ARU) = −
n∑

i=1

p(ai)
ln p(ai)

lnn
.

10

Moreover, due to the normalization factor lnn,
0 ≤ HAbs(ARU) ≤ 1

always holds. HAbs(ARU) is zero when the randomization unit
is always mapped to the same address for all n runs. It is
one when all runs always result in a different address. We also
measure the entropy on the relative address to better understand
the randomness of our ASLR scheme when the base address
of an enclave memory is known. This entropy is resented as
HRel(ARU).

Using these two entropy measures, we computed the entropy
for code pages and data pages, as shown in Table IV: SGX
SDK denotes the baseline results; for the entropy of code
pages, we configured the size of the randomization unit as 32-
or 64-bytes (i.e., RU-32 and RU-64); for the entropy of data
pages, we measured it for stack, heap, and global data objects.
Note, especially for data pages, we computed the entropy by
replacing an entry point address of a randomization unit into
the base address of each data object.

Code page entropy. HRel in Table IV-(a) shows the effective-
ness of SGX-Shield’s approach against strong adversaries. As
expected, while Intel SGX Linux SDK provides no randomness
(i.e., the entropy value is zero), SGX-Shield provides a very
high degree of randomness. This is because the SDK picks a
random base address and loads the program to the base address
in a deterministic way. Smaller randomization units (RU-32)
provide a higher degree of randomness (compared to RU-64).

On the other hand, if the attacker is completely blind, then
both Intel SGX Linux SDK and SGX-Shield provide good
randomness, as shown in HAbs.

Data page entropy. We now describe the entropy of
SGX-Shield compared to Linux SGX SDK for data objects, in-
cluding stack, heap, and global variables, as shown in Table IV-
(b). Similar to the code page entropy, Linux SGX SDK shows
no randomness on all data pages against strong adversaries
(i.e., HRel is zero for stack, heap, and global). In contrast,
SGX-Shield shows very high randomness across all data objects.
Stack object shows the least randomness among these. The
reason is that SGX-Shield still needs to allocate the continuous
space to preserve the functionality of stack, even though it picks
stack’s base address at random and imposes no alignment on the
base address in order to maximize the randomness. Assuming
blind attackers with no information, Intel SGX SDK shows
reasonable randomness, but SGX-Shield shows close to perfect
randomness given the number of sample runs (HAbs). Across
all 1,800 runs, SGX-Shield exhibited unique and random base
addresses for all data objects.

B. Performance Overhead

We now evaluate the performance overhead imposed by
SGX-Shield. In order to understand the performance as-
pects in the worst-use-cases as well as typical-use-cases, we
run SGX-Shield on both the micro-benchmark and macro-
benchmark.

1) Micro-benchmark: We run each testcase of the nbench
benchmark suites [2] 200 times and report the median value.
In each run, nbench iterates through its task at least 10,000
times, and it returns the average time to perform the task once.
To clearly see where the performance overhead comes from,

SGX-Shield

Benchmark Baseline RU-64 RU-32

(µs) ASLR ASLR&DEP ASLR ASLR&DEP

Num sort 1262 -1.22% 1.88% 3.65% 2.30%
String sort 6077 2.62% 18.98% 7.29% 31.67%
Fp emu. 12140 0.81% 10.05% 5.78% 29.77%
Assignment 43613 1.28% 1.79% 6.89% 3.89%
Idea 387 -0.14% -0.55% -0.72% -0.67%
Huffman 445 2.85% 15.29% 28.65% 25.96%
Neural net 34618 2.10% 7.26% 8.73% 22.20%
Lu decomp. 1080 0.09% 0.39% 2.08% 2.52%

Average 0.00% 1.05% 6.89% 7.80% 14.71%

TABLE V: Runtime performance overhead of SGX-Shield when
running nbench. Baseline column is a native run under SGX without
SGX-Shield and it is measured in microseconds. All columns in
SGX-Shield are represented with relative overheads in a percentage
compared to the baseline. RU-64 and RU-32 denote a size of
a randomization unit, 32- and 64-bytes, respectively. ASLR and
ASLR&DEP denote before and after applying SGX-Shield’s DEP and
SFI techniques, respectively. The average relative standard deviation
is 0.71% (the maximum is 2.45%).

we run SGX-Shield with various settings, changing the size of
randomization units and opt out software-DEP and SFI.

Table V shows the performance overhead imposed by
SGX-Shield in running nbench. An elapsed time in microsec-
onds is represented in the baseline column, while all other
columns under SGX-Shield are represented in a relative
overhead compared to the baseline in a percentage. In this
table, RU-32 and RU-64 denote the size of a randomization
unit, 32- and 64-bytes, respectively.

As the size of a randomization unit becomes smaller,
the performance overhead increases. More specifically, before
applying DEP and SFI, RU-32 imposes 6.75% more overhead
compared to RU-64 (i.e., from 1.05% to 7.80%). Once DEP
and SFI are applied, RU-32 imposes 7.82% more overhead (i.e.,
from 6.89% to 14.71%). This additional overhead is expected,
as SGX-Shield introduces more randomization units in RU-32,
and thus instruments more unconditional branches. Moreover,
a smaller randomization unit implies a negative impact on
code cache performance, as there will be more frequent control
transfers.

DEP and SFI techniques of SGX-Shield also slow the
execution of nbench. With RU-64, SGX-Shield shows 1.05%
overhead if DEP and SFI were not applied. If these were applied
together, SGX-Shield showed 6.89% overhead on average.
Similarly, with RU-32 SGX-Shield showed 7.80% and 14.71%
overhead on average before and after applying DEP and SFI,
respectively. In other words, the performance overhead of
SGX-Shield’s DEP and SFI is 5.84% and 6.91% in RU-32
and RU-64, respectively.

To better understand the performance impacts of
SGX-Shield, we also counted the number of executed instruc-
tions in runtime while running the benchmarks. The perfor-
mance overhead that SGX-Shield imposes is directly related
to the number of executed instructions. To implement fine-
grained randomization, SGX-Shield instruments a terminator
instruction at the end of a randomization unit. This alone results
in 8.86% or 13.1% more executed instructions on average (See
Table VI). Moreover, to implement DEP and SFI, SGX-Shield

11

SGX-Shield

Benchmark Baseline RU-64 RU-32

ASLR ASLR&DEP ASLR ASLR&DEP

Num sort 5,245 K 6.55% 21.38% 14.68% 28.36%
String sort 38,017 K 81.89% 274.49% 97.29% 314.47%
Fp emu. 66,553 K 7.07% 23.37% 14.46% 35.84%
Assignment 301,104 K 8.16% 7.73% 13.26% 15.95%
Idea 224,000 K 5.80% 6.47% 13.57% 12.79%
Huffman 295,379 K 6.23% 12.07% 13.44% 19.14%
Neural net 263,275 K 8.76% 21.56% 18.86% 32.82%
Lu decomp. 7,967 K 7.43% 9.22% 17.27% 21.73%

Average 16.49% 47.04% 25.35% 60.14%

TABLE VI: The number of instructions executed in runtime while
running nbench

SGX-Shield

RU-64 RU-32

Baseline ASLR ASLR&DEP ASLR ASLR&DEP

instr. 29 k 37 k 42 k 39 k 45 k
RU - 5,663 5,938 8,430 9,161
Binary size 212 KB 548 KB 584 KB 724 KB 792 KB
— code+data 131 KB 160 KB 177 KB 170 KB 193 KB
— metadata 68 KB 374 KB 391 KB 541 KB 586 KB

TABLE VII: A static overhead of SGX-Shield to the nbench binary.
Note that the nbench benchmark suites contain a single binary, which
takes an argument to specify a certain testcase. # instr. denotes the
number of instructions in a binary; # RU. denotes the number of
randomization units that SGX-Shield generated. Binary size denotes
a size of a binary, including code and data as well as metadata;
code+data denotes a size of both code and data segments in a binary.
metadata denotes a size of symbal, relocation, and string table in a
binary.

instruments many memory accessing instructions. This further
increases the number of executed instructions by 30.55% and
34.79% for RU-64 and RU-32, respectively. The results show
that DEP and SFI have a stronger impact on the number of
executed instructions.

In terms of memory overhead, SGX-Shield actually imposes
fixed overhead due to over-estimation. More precisely, in the
current version of SGX-Shield, it imposes total 64 MB memory
overheads (i.e., 32 MB for code pages and 32 MB for data pages).

Looking into more detail on possible factors of memory
overhead, while SGX-Shield preserves the size of data objects,
it enlarges the size of code due to the randomization unit-level
ASLR and software-DEP. Particularly, ASLR also increases
the size of metadata including fine-grained symbol, string, and
relocation table entries. Table VII shows that the increased
binary size is mainly from more metadata.

Based on these evaluation results, we recommend that RU-
64 with DEP and SFI would be a reasonable configuration. The
address space layout showed fairly good randomness compared
to RU-32, and its runtime performance is 7.82% faster than
RU-32.

2) Macro-benchmark: In order to see how SGX-Shield
would work with real-world workloads, we ran an HTTPS
server within an enclave. We ported mbedTLS [4], which
is an open source Transport Layer Security (TLS) library.
mbedTLS also includes a sample HTTPS server, where its work
process can be broken into the following two parts: (1) SSL
handshaking, an initial and fixed cost for a request and (2)
reading an HTML file and then sending it to the client. mbedTLS

Total Request Time (A) SSL Handshaking (B)

RU­64 ASLR RU­64
ASLR&DEP

RU­32 ASLR RU­32
ASLR&DEP

0%

2%

4%

6%

8%

2.72.7

1.81.8

7.6

6.2

3.5
3.1

S
lo
w
do
w
n
fa
ct
or
 (%

)

Fig. 9: Performance overheads in running an HTTPS server with
mbedTLS. Each bar represents the slowdown factor (%) of SGX-Shield
compared to the baseline (i.e., Intel SGX SDK for Linux): the bar
on the left (marked as A) shows the slowdown in the total elapsed
time for a request, and the bar on the right (marked as B) shows the
slowdown in the elapsed time for SSL handshaking. We ran 50 times
and report the median value. The median of the total elapsed time
in the baseline is 1.1 second, while the one for SSL handshaking is
0.359 second. The average relative standard deviation is 3.35% (the
maximum is 5.83%).

provides authentication and key sharing mechanisms for SSL
handshaking, and it also encrypts (or decrypts) messages on
sending (or receiving). We ran this HTTPS server, which serves
the HTML file of 12KB size. The average round-trip time (RTT)
between the server and the client was 175.5 ms, an average of
50 times running a ping command with 0.32% average relative
standard deviation.

Figure 9 shows the overheads of requesting the HTML
file from the HTTPS server. We computed the median of 50
times of the requests and plotted the slowdown factor as a
percentage between the baseline (i.e., Intel SGX SDK for
Linux) and SGX-Shield: the first bar (marked as A) represents
the slowdown in the total request, and the second bar (marked
as B) represents the slowdown during the SSL handshaking.

Overall, SGX-Shield imposed negligible overheads in the
total request time, from 1.8% to 2.7%, depending on the setting.
This performance number is much better compared to the micro-
evaluation results, and we suspect this is because the total
request time is dominated by the network latency, which is
independent of SGX-Shield’s extra work with instrumentation.
This can be supported by the increased slowdown numbers
in SSL handshaking, which is less related to the network
operations and more related to computational jobs, ranging from
3.1% to 7.6%. Similar to the micro-evaluation results, enabling
DEP incurred more slowdowns due to its extra instrumentation
for software-based DEP — 0.4% increases in RU-64 and 1.4%
increases in RU-32. According to these results, we believe
SGX-Shield would be fast enough to run realistic workloads
for SGX while providing ASLR security guarantees together.

VII. DISCUSSION ON CONTROLLED SIDE-CHANNEL
ATTACKS

The controlled side-channel [61] allows an attacker to infer
data values at runtime by observing coarse-grained execution
flows (i.e., a sequence of page faults). If an application running
within an enclave exhibits control-flow dependencies relying
on specific data values, this attack is indeed possible because

12

page resources are managed by adversaries (i.e., the kernel) in
the SGX model.

While this attack is not directly related to breaking ASLR, it
can still be applied to partially infer address layout information.
In other words, although the kernel does not know memory
layouts after in-enclave loading, it may infer some layout
information by observing (or intentionally triggering) page
faults. For example, assume that there are four code objects (A,
B, C, and D) and a global variable (v), and A has the branch: if
v is 1, jump to B; if v is 0, jump to C, and then jump to D. In
this case, if the attacker observes the number of page faults as
2, she/he may conclude that x is 1. On the other hand, if the
number of page faults is 3, she/he may conclude that x is 0.

SGX-Shield’s design decisions on randomization units
effectively thwart this side-channel attack, as shown in §VI-A1.
Specifically, because SGX-Shield randomly places multiple
randomization units in a memory page, when the size of the
randomization unit is 32 bytes, an attacker needs to bruteforce
27 times (i.e., 4KB/32bytes = 212/25, as the memory page size
is 4 KB) to guess a single address value, while each failure
would end up crashing a target enclave program. Considering
the number of address values that need to be guessed in
practical memory corruption exploits (e.g., three or more in
ROP [17, 18, 60]), we believe this probabilistic defense against
the controlled side-channel would be effective and reasonable
in practice.

VIII. RELATED WORK

Secure systems based on Intel SGX. The early adoption
of Intel SGX focused on the cloud environment to cover
security problems from an untrusted cloud platform (e.g., cloud
provider). Haven [12] is a system to securely run the entire
library OS (LibOS) in an enclave as a guest OS to prevent access
from untrusted software with a malicious purpose. Similar to
SGX-Shield, the LibOS loads the actual target programs at
runtime. However, it does not support ASLR, which leads to
several threats as mentioned in §IV-A. Additionally, the TCB
of Haven is very large (more than 200MB) because of the
nature of OS, while the TCB of SGX-Shield is only 8KB
(1821 instructions in the x86-64 assembly). To reduce the TCB
size of the libOS approach, Scone [9] suggests the container
based sandbox in an enclave.

Starting from the cloud environment, the systems and
frameworks that apply Intel SGX to enhance security have
been proposed. VC3 [46] is a secure data processing framework
based on the Hadoop framework [1] to keep the confidentiality
and integrity of the distributed computations on the untrusted
cloud. VC3 suggests a self-integrity invariant that prevents
an enclave program from reading from or writing to the
non-enclave memory region. It basically aims to avoid data
leakages and memory corruptions. This technique is similar
to software-DEP or SFI of the SGX-Shield, but the one of
SGX-Shield aims to prevent an attack from injecting code to
execute. Ryoan [26] also adopts SFI in SGX to guarantee data
privacy between multiple distrusted parties. The S-NFV system
architecture [52] proposed a new design of the secure Network
Function Virtualization (NFV) system based on the Intel SGX.
Kim et al. [33] suggest security enhancements of the network
systems such as software-defined inter-domain routing and
peer-to-peer anonymity networks by adopting the Intel SGX.

OpenSGX [31] is a software platform that emulates the
SGX hardware and provides basic software components (e.g.,
system call interface and debugging support) and toolchains.

Security issues of Intel SGX. While Intel SGX provides
the protection of the program against access from privileged
software and hardware, several studies argue the vulnerabil-
ities of the enclave program as an open problem. Attackers
can perform various types of Iago attacks [19] through the
communication channel between the enclave program and the
external world. Moreover, potential side-channels [61] (e.g.,
page fault) exist that helps the untrusted privileged software
to guess the secret data of the program. To address this
problem, Shinde et al. [54] designed a defense mechanism
that enforces a program to access its input-dependent pages
in the same sequence regardless of the input variable. This
approach, called deterministic multiplexing, ensures that the OS
cannot distinguish the enclave execution.Since the performance
overhead of Shinde et al. [54] is too expensive in practice (4000
times without developer’s help), T-SGX [53] suggests a defense
based on Intel Transactional Synchronization Extensions (TSX)
to hide page faults against the untrusted kernel.

Also, incorrect use of SGX instructions or bugs related to
memory accesss inside the enclave makes enclave programs
vulnerable. To handle this problem, Moat [56] suggests a new
programming model that checks services related to the security
of the SGX program (e.g., remote attestation and cryptographic
sealing). It not only verifies the confidentiality of an enclave
program, but also checks whether the enclave program actually
leaks the data. Rohit et al. [55] introduce a runtime library that
offers an interface to securely communicate with the external
party of the enclave. It also provides core services for the secure
memory management and runtime checks for verification.

Commodity TEEs and software-based solutions. While
much commodity hardware, including Intel SGX [30, 39] and
ARM TrustZone [8],provide Trusted Execution Environments
(TEEs), Sancus [43] designs a hardware architecture for TEEs.
To the best of our knowledge, Secure OS of the ARM TrustZone
does not support ASLR and software DEP [51]. However,
applying ASLR and software DEP to ARM TrustZone is another
research issue to be explored with different challenges (e.g.,
different side-channel) compared to SGX-Shield.

There are several approaches to shield applications from
untrusted privileged software in the software manner [22, 25, 35,
63]. Minibox [35] ensures mutual distrust between the program
code and the OS on top of a trusted hypervisor with small
TCB (pieces of application logic). CloudVisor [63] protects
the virtual machines of customers by separating resource
management from the virtualization layer. InkTag [25] proposes
the defense mechanism against compromised system call
interfaces to protect persistent storage, and Virtual Ghost [22]
similarily protects the memory from the host OS using compiler
instrumentation.

ASLR and runtime re-randomization. ASLR is applied
to commodity OS [3, 44] to defend against return-to-libc
[42] and return-oriented-programming (ROP) attacks [49]
by obfuscating locations of code gadgets. However, several
ways to bypass ASLR have been reported [36, 48, 50, 58],
stemming from the low entropy of randomness [36, 50] and
memory disclosures [48, 58]. To address the low entropy issue,

13

many fine-grained ASLR techniques [13, 23, 24, 32, 45, 59]
claim that randomizing the code in various fine-grained units
(e.g., basic block or instruction level) can be a solution. Several
studies [10, 21, 38] show that the encryption of visible pointers
and non-readable executable pages prevents attackers from
abusing memory disclosures.

The runtime re-randomization [14, 34, 37] is a strong
defense mechanism against both brute-force attacks and memory
disclosure exploits. In particular, RUNTIMEASLR [37] and
Oxymoron [11] aim to protect from attacks using random
memory corruption tests during the process forks [16]. By re-
randomizing the memory layout of child processes, attackers
cannot guess the memory layout of the parent process. Similar
to process fork, in Android system address space of the user
process is copied from a pre-initialized process called Zygote
that makes the memory layouts of user processes the same at
the initial state. Morula [34] re-randomizes the child process
to mitigate this problem.

Software DEP. The software DEP design of SGX-Shield is
inspired by Native Client (NaCL) [47, 62]. NaCl [62] proposes
an efficient SFI mechanism based on masking instructions and
adopting the memory segment of an x86 system. The goal
of NaCl is to sandbox a memory region in a user process to
run a third-party component such as an untrusted library in
the region. The next version of NaCl [47] extends it to ARM
and x86-64 architectures. The instrumentation of software DEP
in SGX-Shield is similar to NaCl on x86-64, but we cannot
assume that the base address of data pages is aligned with
4GB, while NaCl for x86-64 makes the assumption. Because
of this limitation, our software DEP has a penalty to add one
more sub instruction for the instrumentation.

IX. CONCLUSION

In this paper, we identified fundamental challenges in
enabling ASLR for the SGX environment. We took the real-
world example, Linux and Windows SDKs for Intel SGX, and
found its critical security limitations. This paper also proposes
a solution, SGX-Shield, a new ASLR implementations for SGX
programs. SGX-Shield incorporates a secure in-enclave loader,
software DEP, and software fault isolation to provide secure
ASLR for SGX. The evaluation that we conducted on the real
Intel SGX hardware demonstrates SGX-Shield’s effectiveness
in both security and performance.

X. ACKNOWLEDGMENT

We thank the anonymous reviewers and our proofreader,
Tricia Grindel, for their helpful feedback. This work was
supported in part by BSRP (NRF-2015R1D1A1A01058713),
Office of Naval Research Global (ONRG), IITP (B0101-15-
0557) funded by the Korea Government (MEST), KAIST
Venture Research Program for Graduate & Ph.D students, and
NSF awards DGE-1500084, CNS-1563848 and CRI-1629851.

REFERENCES

[1] “Apache hadoop project.” [Online]. Available: http://hadoop.apache.org/
[2] “Linux/unix nbench.” [Online]. Available: http://www.tux.org/~mayer/

linux/bmark.html
[3] “Documentation for the pax project (address space layout randomization),”

2003. [Online]. Available: https://pax.grsecurity.net/docs/aslr.txt

[4] “mbedtls,” 2016. [Online]. Available: https://tls.mbed.org/
[5] “musl-libc,” 2016. [Online]. Available: https://www.musl-libc.org/
[6] “Writing an llvm backend,” 2016. [Online]. Available: http://llvm.org/

docs/WritingAnLLVMBackend.html
[7] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity

principles, implementations, and applications,” ACM Transactions on
Information and System Security (TISSEC), vol. 13, no. 1, p. 4, 2009.

[8] T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security,” ARM white paper, vol. 3, no. 4, pp. 18–24, 2004.

[9] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. OâĂŹKeeffe, M. L. Stillwell et al., “Scone: Secure
linux containers with intel sgx,” in Proceedings of the 12th Symposium
on Operating Systems Design and Implementation (OSDI), Savannah,
GA, Nov. 2016.

[10] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 21st ACM Conference on
Computer and Communications Security, Scottsdale, Arizona, Nov. 2014.

[11] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained memory
randomization practical by allowing code sharing,” in Proceedings of the
23rd Usenix Security Symposium (Security), San Diego, CA, Aug. 2014.

[12] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with haven,” in Proceedings of the 11th Symposium
on Operating Systems Design and Implementation (OSDI), Broomfield,
Colorado, Oct. 2014.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for
comprehensive protection from memory error exploits.” in Proceedings
of the 14th Usenix Security Symposium (Security), Baltimore, MD, Aug.
2005.

[14] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security,
Denver, Colorado, Oct. 2015.

[15] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. springer New York, 2006.

[16] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Proceedings of the 35th IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, May 2014.

[17] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses,” in Proceedings of the 23rd Usenix Security Symposium
(Security), San Diego, CA, Aug. 2014.

[18] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security, Chicago, Illinois, Oct. 2010.

[19] S. Checkoway and H. Shacham, Iago Attacks: Why the System Call API
is a Bad Untrusted RPC Interface, Houston, TX, Mar. 2013.

[20] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Usenix Security Symposium (Security), San Antonio, TX, Jan.
1998.

[21] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May
2015.

[22] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting
applications from hostile operating systems,” 2014.

[23] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in Proceedings of the 21st Usenix Security Symposium (Security),
Bellevue, WA, Aug. 2012.

[24] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in Proceedings of the 33rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2012.

[25] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “Inktag:
Secure applications on an untrusted operating system,” in Proceedings

14

http://hadoop.apache.org/
http://www.tux.org/~mayer/linux/bmark.html
http://www.tux.org/~mayer/linux/bmark.html
https://pax.grsecurity.net/docs/aslr.txt
https://tls.mbed.org/
https://www.musl-libc.org/
http://llvm.org/docs/WritingAnLLVMBackend.html
http://llvm.org/docs/WritingAnLLVMBackend.html

of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Houston,
TX, Mar. 2013.

[26] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in Proceedings of
the 12th Symposium on Operating Systems Design and Implementation
(OSDI), Savannah, GA, Nov. 2016.

[27] Intel, Intel Software Guard Extensions Enclave Writer’s Guide,
2015, https://software.intel.com/sites/default/files/managed/ae/48/
Software-Guard-Extensions-Enclave-Writers-Guide.pdf.

[28] ——, Intel Software Guard Extensions Evaluation SDK for Windows OS,
2016, https://software.intel.com/en-us/sgx-sdk-support/documentation.

[29] ——, Intel(R) Software Guard Extensions SDK for Linux* OS, 2016,
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_
reference_for_linux_os_pdf.pdf.

[30] ——, Intel Software Guard Extensions Programming Reference (rev2),
Oct. 2014.

[31] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim,
B. B. Kang, and D. Han, “Opensgx: An open platform for sgx research,”
in Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2016.

[32] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (aslp): Towards fine-grained randomization of commodity
software,” in Annual Computer Security Applications Conference. IEEE,
2006, pp. 339–348.

[33] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A first step towards
leveraging commodity trusted execution environments for network
applications,” in Proceedings of the 14th ACM Workshop on Hot Topics
in Networks (HotNets), Philadelphia, PA, Nov. 2015.

[34] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened aslr on android,” in Proceedings of the 35th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2014.

[35] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“Minibox: A two-way sandbox for x86 native code,” in Proceedings of
the 2014 ATC Annual Technical Conference (ATC), Philadelphia, PA,
Jun. 2014.

[36] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha, “Launching return-
oriented programming attacks against randomized relocatable executables,”
in Trust, Security and Privacy in Computing and Communications
(TrustCom), 2011 IEEE 10th International Conference on. IEEE, 2011,
pp. 37–44.

[37] K. Lu, S. Nürnberger, M. Backes, and W. Lee, “How to make aslr win
the clone wars: Runtime re-randomization,” Feb. 2016.

[38] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “Aslr-guard:
Stopping address space leakage for code reuse attacks,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security,
Denver, Colorado, Oct. 2015.

[39] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in HASP@ ISCA, 2013, p. 10.

[40] I. Molnar, “Exec shield,” new Linux security feature, 2003.
[41] ——, “Nx (no execute) support for x86, 2.6.7-rc2-bk2,” LWN.net, 2004.
[42] Nergal, “The advanced return-into-lib(c) exploits: Pax case study,”

Phrack. [Online]. Available: http://phrack.org/issues/58/4.html
[43] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,

C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base.” in Proceedings of the 22th Usenix Security
Symposium (Security), Washington, DC, Aug. 2013.

[44] S. A. T. R. Ollie Whitehouse, Architect, “An analysis of address space
layout randomization on windows vista,” White paper, 2007.

[45] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proceedings of the 33rd IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2012.

[46] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud

using sgx,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

[47] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,
and B. Chen, “Adapting software fault isolation to contemporary cpu
architectures.” in Proceedings of the 19th Usenix Security Symposium
(Security), Washington, DC, Aug. 2010.

[48] F. J. Serna, “The info leak era on software exploitation,” Black Hat USA,
2012.

[49] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, Alexandria, VA,
Oct.–Nov. 2007.

[50] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings of
the 11th ACM Conference on Computer and Communications Security,
Washington, DC, Oct. 2004.

[51] D. Shen, “Attacking your trusted core: Exploiting trustzone on android,”
Blackhat, 2015.

[52] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-nfv: Securing
nfv states by using sgx,” in Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network Function
Virtualization. ACM, 2016, pp. 45–48.

[53] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” in Proceedings
of the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2017.

[54] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing your
faults from telling your secrets: Defenses against pigeonhole attacks,”
arXiv preprint arXiv:1506.04832, 2015.

[55] R. Sinha, M. Costa, A. Lal, N. Lopes, S. Seshia, S. Rajamani, and
K. Vaswani, “A design and verification methodology for secure isolated
regions,” in Proceedings of the 2016 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Jun. 2016.

[56] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave programs,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security, Denver, Colorado,
Oct. 2015.

[57] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA, May
2013.

[58] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System Security. New York, NY,
USA: ACM, 2009.

[59] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 19th ACM Conference on Computer and Communica-
tions Security, Oct. 2012.

[60] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“Ripe: Runtime intrusion prevention evaluator,” in Proceedings of the
27th Annual Computer Security Applications Conference. ACM, 2011,
pp. 41–50.

[61] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in Proceedings of
the 36th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[62] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable,
untrusted x86 native code,” in Proceedings of the 30th IEEE Symposium
on Security and Privacy (Oakland), Oakland, CA, May 2009.

[63] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: retrofitting protec-
tion of virtual machines in multi-tenant cloud with nested virtualization,”
in Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), Cascais, Portugal, Oct. 2011.

15

https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/en-us/sgx-sdk-support/documentation
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
http://phrack.org/issues/58/4.html

	Introduction
	Background
	Technical Challenges
	Design
	Threat Model
	Multistage Loader
	Fine-grained Randomization for Enclaves
	Software DEP in Enclaves
	Isolating Access to Security-Critical Data
	Performance Optimization

	Implementation
	Evaluation
	Security Evaluation
	Effectiveness against Memory Corruption Attacks
	Entropy Analysis

	Performance Overhead
	Micro-benchmark
	Macro-benchmark

	Discussion on Controlled Side-channel Attacks
	Related work
	Conclusion
	Acknowledgment

