
HOP: Hardware makes Obfuscation Practical

Kartik Nayak∗, Christopher W. Fletcher†, Ling Ren‡, Nishanth Chandran§, Satya Lokam§, Elaine Shi‖ and Vipul Goyal§
∗UMD – kartik@cs.umd.edu

†UIUC – cwfletch@illinois.edu
‡MIT – renling@mit.edu

§Microsoft Research – {nichandr, satya, vipul}@microsoft.com
‖Cornell University – rs2359@cornell.edu

Abstract— Program obfuscation is a central primitive in cryp-
tography, and has important real-world applications in protecting
software from IP theft. However, well known results from the
cryptographic literature have shown that software only virtual
black box (VBB) obfuscation of general programs is impossible.
In this paper we propose HOP, a system (with matching theoretic
analysis) that achieves simulation-secure obfuscation for RAM
programs, using secure hardware to circumvent previous impos-
sibility results. To the best of our knowledge, HOP is the first
implementation of a provably secure VBB obfuscation scheme in
any model under any assumptions.

HOP trusts only a hardware single-chip processor. We present
a theoretical model for our complete hardware design and prove
its security in the UC framework. Our goal is both provable
security and practicality. To this end, our theoretic analysis
accounts for all optimizations used in our practical design,
including the use of a hardware Oblivious RAM (ORAM), hard-
ware scratchpad memories, instruction scheduling techniques
and context switching. We then detail a prototype hardware
implementation of HOP. The complete design requires 72% of the
area of a V7485t Field Programmable Gate Array (FPGA) chip.
Evaluated on a variety of benchmarks, HOP achieves an overhead
of 8× ∼ 76× relative to an insecure system. Compared to all prior
(not implemented) work that strives to achieve obfuscation, HOP
improves performance by more than three orders of magnitude.
We view this as an important step towards deploying obfuscation
technology in practice.

I. INTRODUCTION

Program obfuscation [29], [4] is a powerful crypto-
graphic primitive, enabling numerous applications that rely
on intellectually-protected programs and the safe distribution
of such programs. For example, program obfuscation enables
a software company to release software patches without dis-
closing the vulnerability to an attacker. It could also enable a
pharmaceutical company to outsource its proprietary genomic
testing algorithms, to an untrusted cloud provider, without
compromising its intellectual properties. Here, the pharmaceu-
tical company is referred to as the “sender” whereas the cloud
provider is referred to as the “receiver” of the program.

Recently, the cryptography community has had new break-
through results in understanding and constructing program
obfuscation [21]. However, cryptographic approaches to-
wards program obfuscation have limitations. First, it is well-
understood that strong (simulation secure) notions of program
obfuscation cannot be realized in general [4] — although
they are desired or necessary in many applications such
as the aforementioned ones. Second, existing cryptographic
constructions of obfuscation (that achieve weaker notions of
security, such as indistinguishability obfuscation [22]) incur
prohibitive practical overheads, and are infeasible for most
interesting application scenarios. For example, it takes ∼ 3.3
hours to obfuscate even a very simple program such as an
80-bit point function (a function that is 0 everywhere except
at one point) and ∼ 3 minutes to evaluate it [37]. Moreover,
these cryptographic constructions of program obfuscation rely
on new cryptographic assumptions whose security is still
being investigated by the community through a build-and-break
iterative cycle [14]. Thus, to realize a practical scheme capable
of running general programs, it seems necessary to introduce
additional assumptions.

In this direction, there has been work by both the cryp-
tography and architecture communities in assuming trusted
hardware storing a secret key. However, proposals from the
cryptography community to realize obfuscation (and a closely
related primitive called functional encryption) have been
largely theoretical, focusing on what minimal trusted hardware
allows one to circumvent theoretical impossibility and realize
simulation-secure obfuscation [27], [15], [17]. Consequently
these works have not focused on practical efficiency, and
they often require running the program as circuits (instead of
as RAM programs) and also utilize expensive cryptographic
primitives such as fully homomorphic encryption (FHE) and
non-interactive zero knowledge proofs (NIZKs). On the other
hand, proposals from the architecture community such as Intel
SGX [42], AEGIS [53], XOM [38], Bastion [13], Ascend [18]
and GhostRider [40] are more practical, but their designs
do not achieve cryptographic definition of obfuscation. In
this paper, we close this gap by designing and implementing
a practical construction of program obfuscation for RAM
programs using trusted hardware.

Problem statement. The problem of obfuscation can be
described as follows. A sender, who owns a program, uses an
obfuscate procedure to create an obfuscated program. It then
sends this obfuscated program to a receiver who can execute
the program on inputs of her choice. The obfuscated program
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Fig. 1: Obfuscation Scenario. The sender obfuscates pro-
grams using the obfuscate procedure. It sends (possibly mul-
tiple) obfuscated program(s) to the receiver. The receiver can
execute any obfuscated program with any input of its choice.

should be functionally identical to the original program. For
any given input, the obfuscated program runs for time T (fixed
for the program) and returns an output.1 The receiver only has
a black box-like access to the program, i.e., it learns only
the program’s input/output behavior and the bound on the
runtime T . In obfuscation, the inputs/outputs are public (not
encrypted).

To make use of a trusted secure processor (which we
call a HOP processor), our obfuscation model is modified as
follows (cf. Figure 1). HOP processors are manufactured with
a hardwired secret key. The HOP processor (which is trusted)
is given to the receiver, and the secret key is given to the
sender. Using the secret key, the sender can create multiple
obfuscated programs using the obfuscate procedure and send
them to the receiver. The receiver then runs the execute pro-
cedure (possibly multiple times) to execute the program with
(cleartext) inputs of her choice. As mentioned, the receiver
(adversary) learns only the final outputs and nothing else. In
other words, we offer virtual blackbox simulation security,
where the receiver learns only as much information as if she
were interacting with an oracle that computes the obfuscated
program. In particular, the receiver should not learn anything
from the HOP processor’s intermediate behavior such as timing
or memory access patterns, or the program’s total runtime
(since each program always runs for a fixed amount of time
set by the sender).

Key distribution with public/private keys. We assume sym-
metric keys for simplicity. HOP may also use a private/public
key distribution scheme common in today’s trusted execution
technology. The obfuscate and execute operations can be de-
coupled from the exact setup and key distribution system used
to get public/private keys into the HOP processor. A standard
setup for key distribution [28], [42] is as follows: First, a
trusted manufacturer (e.g., Intel) creates a HOP processor with
a unique secret key. Its public key is endorsed/signed by the
manufacturer. Second, the HOP processors are distributed to
receivers and the certified public keys are distributed to senders
(software developers). The modification to our scheme in the
public key setting is described in Appendix B. Note that the
key goal of obfuscation is to secure the sender’s program
and this relies on the secrecy of the private key stored in
the processor. Thus, it is imperative that the sender and the
manufacturer are either the same entity or the sender trusts
the manufacturer to not reveal the secret key to another party.

Non-goals. We do not defend against analog side channels

1T is analogous to a bound on circuit size in the cryptography literature.

such as measuring power analysis or heat dissipation, we also
do not defend against hardware fault injection [8], [3], [34].
We assume that the program to be obfuscated is trustworthy
and will not leak sensitive information on its own, including
through possible software vulnerabilities such as buffer over-
flows [7]. There exist techniques to mitigate these attacks, and
we consider them to be complementary to our work.

Challenges. It may seem that relying on secure hardware
as described above easily ‘solves’ the program obfuscation
problem. This is not the case: even with secure hardware, it
is still not easy to develop a secure and practical obfuscation
scheme. The crux of the problem is that many performance
optimizations in real systems (and related work in secure
processors [18], [40], [45]) hinge on exploiting program-
dependent behavior. Yet, obfuscation calls for completely
hiding all program-dependent behavior. Indeed, we started this
project with a strawman processor that gives off the impression
of executing any (or every) instruction during each time step
– so as to hide the actual instructions being executed. Not
surprisingly, this incurs huge (∼ 10, 000×; c.f. Section III-B)
overheads over an insecure scheme, even after employing a
state-of-the-art Oblivious RAM [26], [19] to improve the effi-
ciency of accessing main memory. Moreover, in an obfuscation
setting, the receiver can run the same program multiple times
for different inputs and outputs. Introducing practical features
such as context switching — where the receiver can obtain
intermediate program state — enables this level of flexibility
but also enables new attacks such as rewinding and mix-and-
match execution. Oblivious RAMs, in particular, are not secure
against rewinding and mix-and-match attacks and an important
challenge in this work is to protect them against said attacks
in the context of the HOP system.

A. Our Contributions

Given the above challenges, a primary goal of this paper
is to develop and implement an optimized architecture that is
still provably secure by the VBB obfuscation definition. We
stress that all the performance optimizations made in the paper
are included and proven secure in our theoretic analysis: we
want our practical design to match the theory to the extent
possible. We view this as an important step towards deploying
obfuscation technology in practice.

In more detail, we make the following contributions:

1. Theoretical contributions: We provide the first theoretic
framework to efficiently obfuscate RAM programs directly on
secure hardware. One goal here is to avoid implicitly trans-
forming the obfuscated program to its circuit representation
(e.g., [17]), as the RAM to circuit transformation can incur
a polynomial blowup in runtime [23]. We also wish for our
analysis to capture important performance optimizations that
matter in an implementation; such as the use of a cryptographic
primitive called Oblivious RAM [25], [26], on-chip memory,
instruction scheduling, and context switching. As a byproduct,
part of our analysis achieves a new theoretical result (extending
[27]): namely, how to provide program obfuscation for RAM
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programs directly assuming only ‘stateless’ secure hardware.2
We also show interesting technical subtleties that arise in
constructing efficient RAM-model program obfuscation from
stateless hardware. In particular, we highlight the different
techniques used to overcome all possible forms of rewinding
and mix-and-match attacks (which may be of independent
interest). Putting it all together, we provide a formal proof of
security for the entire system under the universally composable
(UC) simulation framework [10].

2. Implementation with trusted hardware: We design and
implement a hardware prototype system (called HOP) that
attains the definition of program obfuscation and corresponds
to our theoretic analysis. To the best of our knowledge, this
effort represents the first implementation of a provably secure
VBB obfuscation scheme in any model under any assump-
tions. For performance, our HOP prototype uses a hardware-
optimized Oblivious RAM, on-chip memory and instruction
scheduling (our current implementation does not yet support
context switching). As mentioned earlier, our key differentiator
from prior secure processor work is that our performance op-
timizations maintain program privacy and exhibit no program-
dependent behavior. With these optimizations, HOP performs
5× ∼ 238× better than the baseline HOP design across
simple to sophisticated programs while the overhead over
an insecure system is 8× ∼ 76×. The program code size
overhead for HOP is only an additive constant. Our final design
requires 72% area when synthesized on a commodity FPGA
device. Of independent interest, we prove that our optimized
scheme always achieves to within 2× the performance of a
scheme that does not protect the main memory timing channel
(Section III-C).

II. RELATED WORK

Obfuscation. The formal study of virtual black-box (VBB)
obfuscation was initiated by Hada [29] and Barak et al. [4].
Unfortunately, Barak et al. showed that it is impossible to
achieve program obfuscation for general programs. Barak
et al. also defined a weaker notion of indistinguishability
obfuscation (iO), which avoids their impossibility results.
Garg et al. [22] proposed a construction of iO for all circuits
based on assumptions related to multilinear maps. However,
these constructions are not efficient from a practical standpoint.
There are constructions for iO for RAM programs proposed
where the size of the obfuscated program is independent of
the running time [6], [11], [36]. However, by definition, these
constructions do not achieve VBB obfuscation.

In order to circumvent the impossibility of VBB obfusca-
tion, Goyal et al. [27] considered virtual black-box obfuscators
on minimal secure hardware tokens. Goyal et al. show how
to achieve VBB obfuscation for all polynomial time com-
putable functions using stateless secure hardware tokens that
only perform authenticated encryption/decryption and a single
NAND operation. In a related line of work, Döttling et al. [17]
show a construction for program obfuscation using a single
stateless hardware token in universally input-oblivious models

2Roughly speaking, a HOP processor which allows the host to arbitrary
context switch programs on/off the hardware is equivalent to ‘stateless’
hardware in the language of prior work [27], [15]. This is explained further
in Section III.

of computation. Bitansky et al. [5] show a construction for
program obfuscation from “leaky” hardware. Similarly, Chung
et al. [15] considered basing the closely related primitive of
functional encryption on hardware tokens. Unfortunately, all
the above works require the obfuscated program run using a
universal circuit (or similar model) to achieve function privacy.
They do not support running RAM programs directly. This
severely limits the practicality of the above schemes, as we
demonstrate in Section VI-E.

Oblivious RAMs. To enable running RAM programs directly
on secure hardware, we use a hardware implementation of
Oblivious RAM (ORAM) to hide access patterns to external
memory. ORAM was introduced by Goldreich and Ostrovsky
where they explored the use of tamper-proof hardware for
software protection [26]. Recently, there has been a lot of
work in making ORAMs practical. In this paper, we use an
efficient hardware implementation of Path ORAM [52] called
Tiny ORAM [20], [19].

Secure processors. Secure processors such as AEGIS [53],
XOM [38], Bastion [13] and Intel SGX [42] encrypt and
verify the integrity of main memory. Applications such as
VC3 [48] that are built atop Intel SGX can run MapReduce
computations [16] in a distributed cloud setting while keeping
code and data encrypted. However, these secure processors
do not hide memory access patterns. An adversary observing
communication patterns between a processor and its memory
can still infer significant information about the data [43], [58].

There have been some recent secure processor proposals
that do hide memory access patterns [18], [41], [40], [45].
Ascend [18] is a secure processor architecture that protects
privacy of data against physical attacks when running arbitrary
programs. Phantom [41] similarly achieves memory oblivious-
ness, and has been integrated with GhostRider [40] to perform
program analysis and decide whether to use an encrypted RAM
or Oblivious RAM for different memory regions. They also
employ a scratchpad wherever applicable. Raccoon [45] hides
data access patterns on commodity processors by evaluating
all program paths and using an Oblivious RAM in software.

The primary difference between the above schemes and
HOP is the following. All of the above schemes focused on
protecting input data, while the program is assumed to be
public and known to the adversary. GhostRider [40] even
utilizes public knowledge of program behavior to improve
performance through static analysis. Conversely, obfuscation
and HOP protect the program and the input data is controlled
by the adversary. We remark, however, that HOP can be
extended to additionally achieve data privacy simply by adding
routines to decrypt the (now private) inputs and encrypt the
final outputs before they are sent to the client (now different
from the HOP processor owner). Naturally, the enhanced
security comes with additional cost. We evaluate this overhead
of additionally providing program-privacy by comparing to
GhostRider in Section VI-E.

Secure computation. There is a line of work addressing
how to build a general purpose MIPS processor for garbled
circuits [51], [56]. When one party provides the program, the
system is capable of performing private function secure func-
tion evaluation (PF-SFE). Similarly, universal circuits [55],
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[35], [33] in combination with garbled circuits (which can
be evaluated efficiently with techniques in [30]) or other
multiparty computation protocols can be used to hide program
functionality from one of the parties. The work of Katz [32]
relies on trusted hardware tokens to circumvent the theoretical
impossibility of UC-secure multi-party computation under
dishonest majority. However, all the above results are in the
context of secure computation, which is inherently interactive
and only allows one-time use, i.e., for every input, both parties
are involved in the computation. On the contrary, obfuscation
requires that a party non-interactively execute the obfuscated
program several times on multiple inputs.

Heuristic approaches to obfuscation. There are heuristic
approaches to code obfuscation for resistance to reverse engi-
neering [58], [31], [47]. These works provide low overheads,
but do not offer any cryptographic security.

Terminology: Hardware Tokens. Trusted hardware is widely
referred to as hardware tokens in the theoretical literature [32],
[27], [17], [15]. Secure tokens are typically assumed to be
minimal trusted hardware that support limited operations (e.g.,
a NAND gate in [27]). However, running programs in practice
requires full-fledged processors. In this paper, we refer to HOP
as “secure hardware” or a “secure processor”. As a processor,
HOP will store a lot more internal state (e.g., a register file,
etc.). We note that from a theoretic perspective, both HOP and
‘simple’ hardware tokens require a number of gates which is
polylogarithmic in memory size.

Terminology: Stateful vs. Stateless tokens. The literature
further classifies secure tokens as either stateful tokens or
stateless. A stateful token maintains state across invocations.
On the other hand, a stateless token, except for a secret key,
does not maintain any state across invocations. While HOP
maintains state across most invocations for better performance,
we will augment HOP to support on-demand context switching
— giving the receiver the ability to swap out an obfuscated
program for another at any time (Section III-E), which is
common in today’s systems. In an extreme scenario, the
adversary can context switch after every processor cycle. In
this case, HOP becomes equivalent to a “stateless” token from
a theoretical perspective [27], [15], and our security proof will
assume stateless tokens.

III. OBFUSCATION FROM TRUSTED HARDWARE

In this section, we describe the HOP architecture. We
will start with an overview of a simple (not practical) HOP
processor to introduce some key points. Each subsection after
that introduces additional optimizations (some expose security
issues, which we address) to make the scheme more practical.
We give security intuition where applicable, and formally
prove security for the fully optimized scheme in Section IV.

A. Execution On-Chip

Let us start with the simplest case where the whole obfus-
cated program and its data (working set) fit in a processor’s
on-chip storage. Then, we may architect a HOP processor to
be able to run programs whose working sets don’t exceed
a given size. In the setup phase, first, the sender correctly

determines a value T – the amount of time (in processor
cycles) that the program, given any input, runs on HOP. Then,
the sender encrypts (obfuscates) the program together using
an authenticated encryption scheme. T is authenticated along
and included with the program but is public. The obfuscated
program is sent to the receiver. The receiver then sends the
obfuscated program and her own input to the HOP processor.
The HOP processor decrypts and runs the program, and returns
a result after T processor cycles. The HOP processor makes
no external memory requests during its execution since the
program and data fit on chip. Security follows trivially.

B. Adding External Memory

Unfortunately, since on-chip storage is scarce (commercial
processors have a few MegaBytes of on-chip storage), the
above solution can only run programs with small working
sets. To handle this, like any other modern processor, the
HOP processor needs to access an external memory, which
is possibly controlled by the malicious receiver.

When the HOP processor needs to make an access to this
receiver memory, it needs to hide its access patterns. For the
purposes of this discussion, the access pattern indicates the
processor’s memory operations (reads vs. writes), the memory
addresses for each access and the data read/written in each
access. We hide access pattern by using an Oblivious RAM
(ORAM), which makes a polylogarithmic number of physical
memory accesses to serve each logical memory request from
the processor [52]. The ORAM appears to HOP as an on-chip
memory controller that intercepts memory requests from the
HOP processor to the external memory. That is, the ORAM is
a hardware block on the processor and is trusted. (More formal
definitions for ORAM are given in Section IV-A.)

Each ORAM access can take thousands of processor cy-
cles [19]. Executing instructions – once data is present on-
chip – is still as fast as an insecure machine (e.g., several
cycles). To hide when ORAM accesses are actually needed,
HOP must make accesses at a static program-independent
frequency (more detail below). As before, HOP runs for T
time on all inputs and hence achieves the same privacy as the
scheme in Section III-A.

Generating T and security requirements. When accessing
receiver-controlled memory, we must change T to represent
some amount of work that is independent of the external
memory’s latency. That is, if T is given in processor cycles,
the adversary can learn the true program termination time by
running the program multiple times and varying the ORAM
access latency each time (causing a different number of logical
instructions to complete each time). To prevent this, we change
T to mean ‘the number of external memory read/writes made
with the receiver.’

Integrity. To ensure authenticity of the encrypted program in-
structions and data during the execution, HOP uses a standard
Merkle tree (or one that is integrated with the ORAM [46])
and stores the root of a Merkle tree internally. The receiver
cannot tamper with or rewind the memory without breaking
the Merkle tree authentication scheme.

Efficiency. While the above scheme can handle programs with
large working sets, it is very inefficient. The problem is that
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each instruction may trigger multiple ORAM accesses. To give
off the impression of running any program, we must provision
for this worst case: running each instruction must incur the cost
of the worst-case number of ORAM accesses. This can result
in ∼ 10, 000× slowdown over an insecure processor.3 The
next two subsections discuss two techniques to securely reduce
this overhead by over two orders of magnitude. These ideas
are based on well-known observations that many programs
have more arithmetic instructions than memory instructions,
and exhibit locality in memory accesses.

C. Adding Instruction Scheduling

The key intuition behind our first technique is that many
programs execute multiple arithmetic instructions for every
memory access. For example, an instruction trace may be
the following: ‘A A A A M A A M’, where A, M refer to
arithmetic and memory instructions respectively.

Our optimization is to let the HOP processor follow a fixed
and pre-defined schedule: N arithmetic instructions followed
by one memory access. In the above example, given a schedule
of A4M , the processor would insert two dummy arithmetic
instructions to adhere to the schedule. A dummy arithmetic
instruction can be implemented by executing a nop instruction.
The access trace observable to the adversary would then be:

A A A A M A A A A M
The bold face A letters refer to dummy arithmetic instructions
introduced by the processor.

Likewise, if another part of the program trace contains a
long sequence of arithmetic instructions, the processor will
insert dummy ORAM accesses to adhere to the schedule.

Gains. For most programs in practice, there exists a schedule
with N > 1 that would perform better than our baseline
scheme from Section III-B. For (N+1) instructions, the base-
line scheme performs (N+1) arithmetic and memory accesses.
With an ANM schedule, our optimized scheme performs only
one memory access which translates to a speedup of N× in
the best case, when the cost of the memory access is much
higher than an arithmetic instruction. To translate this into
performance on HOP - given that HOP must run for T time
- consider the following: If N > 1 does improve performance
for the given program on all inputs, it means the sender can
specify a smaller T for that program, while still having the
guarantee that the program will complete given any input. A
smaller T means better performance.

Setting N and security intuition. We design all HOP proces-
sors to use the same value of N for all programs and all inputs
(i.e., N is set at HOP manufacturing time like the private key).
More concretely, we set

N =
ORAM latency

Arithmetic latency

In other words, the number of processor cycles spent on
arithmetic instructions and memory instructions are the same.
For typical parameter settings, N > 1000 is expected. While

3Our ORAM latency from Section VI is 3000 cycles. The RISC-V
ISA [12] we adopt can trigger 3 ORAM accesses, one to fetch the instruction,
1 or 2 more to fetch the operand, depending on whether the operand straddles
an ORAM block boundary.

this may sound like it will severely hurt performance given
pathological programs, we show that this simple strategy does
“well” on arbitrary programs and data, formalized below.

Claim: For any program and input, the above N results in
≤ 50% of processor cycles performing dummy work.

We refer the reader to Appendix A for a proof of this
claim. We consider this proof to be of independent interest.
The claim implies that in comparison to a solution that
does not protect the main memory timing channel, our fixed
schedule introduces a maximum overhead of 2× given any
program – whether they are memory or computation intensive.
Said another way, even when more sophisticated heuristics
than a fixed schedule are used for different applications, the
performance gain from those techniques is a factor of 2 at
most.

Security. We note that our instruction scheduling scheme does
not impact security because we use a fixed, public N for all
programs.

D. Adding on-chip Scratchpad Memory

Our second optimization adds a scratchpad: a small unit of
trusted memory (RAM) inside the processor, accesses to which
are not observable by the adversary.4 It is used to temporarily
store a portion of the working set for programs that exhibit
locality in their access patterns.

Running programs with a scratchpad. We briefly cover
how to run programs using a scratchpad here. More
(implementation-specific) detail is given in Section V-A.
At a high level, data is loaded into the scratchpad from
ORAM/unloaded to ORAM using special (new) CPU instruc-
tions that are added to the obfuscated program. These instruc-
tions statically determine when to load which data to specified
offsets in the scratchpad. Now, the scratchpad load/unload
instructions are the only instructions that access ORAM (i.e.,
are the only ‘M’ instructions). Memory instructions in the
original program (e.g., normal loads and stores) merely lookup
the scratchpad inside the processor (these are now considered
‘A’ instructions). We will assume the program is correctly
compiled so that whenever a program memory instruction
looks up the scratchpad, the data in question has been put
there sometime prior by a scratchpad load/unload instruction.

Security intuition. When the program accesses the scratchpad,
it is hidden from the adversary since this is done on-chip. As
before, the only adversary-visible behavior is when ORAM is
accessed and this will be governed by the program-independent
schedule from Section III-C.

Program independence. We note that HOP with a scratchpad
is still program independent. Multiple programs can be written
(and obfuscated) for the same HOP processor. One minor
limitation, however, is that once an obfuscated program is
compiled, it must be compiled with ‘minimum scratchpad size’
specified as a new parameter and cannot be run on HOP

4We remark that we use a software-managed scratchpad (as opposed to
a conventional processor cache) as it is easier to determine T when using a
scratchpad.
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processors that have a smaller scratchpad. This is necessary
because having a smaller scratchpad will increase T by some
unknown amount. If the program is run on a HOP processor
with a larger scratchpad, it will still function but some scratch-
pad space won’t be used.

Gains. In the absence of a scratchpad, the ratio of arithmetic
to memory instructions is on average 5:1 for our workloads.
When using a scratchpad, a larger amount of data is stored
by the processor, thus decreasing memory accesses. This
effectively decreases the execution time T of the program and
substantially improves performance for programs with high
locality (evaluated in Section VI-C).

E. Adding context switching and stateless tokens

A problem with the proposals discussed so far is that once
a program is started, it cannot be stopped until it returns a
response. But a user may wish to concurrently run multi-
ple obfuscated programs for a practical deployment model.
Therefore, we design the HOP processor to support on-demand
context switch, i.e., the receiver can invoke a context switch at
any point during execution. This, however, introduces security
problems that we need to address.

A context switch means that the current program state
should be swapped out from the HOP processor and replaced
with another program’s state. Since such a context switch can
potentially happen at every invocation, the HOP processor no
longer stores state and is a stateless token. In such a scenario,
we design it to encrypt all its internal state, and send this
encrypted/authenticated state (denoted state) to the receiver
(i.e., the adversary) on a context switch. Whenever the receiver
passes control back to the token, it will pass back the encrypted
state as well, such that the token can “recover” its state upon
every invocation.

Challenges. Although on the surface, this idea sounds easy
to implement, in reality it introduces avenues for new attacks
that we now need to defend against. For the rest of the paper,
and in-line with real processors, we assume the only data
that remains in HOP is the per-chip secret key (Section I).
A notable attack is the rewinding attack. In this attack, instead
of passing to the token the correct and fresh encrypted state
as well as fresh values of memory reads, a malicious receiver
can pass old values.5 The receiver can also mix-and-match
values from entirely different executions of the same program
or different programs. The rest of the section outlines how to
prevent the above attacks. We remark that while the below have
simple fixes, the problems themselves are easy to overlook and
underscore the need for a careful formal analysis. Indeed, we
discovered several of these issues while working through the
security proof itself.

5Here is a possible attack by which the adversary can distinguish between
two access patterns. Consider the access pattern {a, a} i.e., accessing the
same block consecutively. If a tree-based ORAM [49] is used, after the first
access, the block is remapped to a new path l′ and the new path l′ would be
subsequently accessed. If the adversary rewinds and executes again, the block
may be mapped to a different path l′′. Thus, for two different executions, two
different paths (l′ and l′′) are accessed for the second access. Note that for
another access pattern {a, b} for a 6= b, the same paths would be accessed
even after rewinding, thus enabling the adversary to distinguish between access
patterns.

Preventing mix-and-match. To prevent this attack, we en-
force that the receiver must submit an encrypted state state,
corresponding to an execution at some point t, along with a
matching read from time t for the same execution. To achieve
this, observe that state is encrypted with a IND-CPA + INT-
CTXT-secure authenticated encryption scheme, and that the
state carries all necessary information to authenticate the next
memory read. The state contains information unique to the
specific program, the specific program execution, and to the
specific instruction that the token expects.

Preventing rewinding during program execution. An ad-
versary may try to gain more information by rewinding an
execution to a previous time step, and replaying it from
that point on. To prevent an adversary from learning more
information in this way, we make sure that the token simply
replays an old answer should rewinding happen — this way,
the adversary gains no more information by rewinding. To
achieve this, we make sure that any execution for a (program,
inp) pair is entirely deterministic no matter how many times
you replay it. All randomness required by the token (e.g., those
required by the ORAM or memory checker) are generated
pseudorandomly based on the tuple (K, HS , HR) where K is
a secret key hardwired in the token, HR is a commitment to
the receiver’s input and HS := digest(mem0) is a Merkle root
of the program.

Preventing rewinding during input insertion. In our setting,
the obfuscated program’s inputs inp are chosen by the receiver.
Since inputs can be long, it may not be possible to submit the
entire input in one shot. As a result, the receiver has to submit
the input word by word. Therefore the malicious receiver may
rewind to a point in the middle of the input submission, and
change parts of the input in the second execution. Such a
rewinding causes two inputs to use the same randomness for
some part of the execution.

To prevent such an input rewinding attack, we require
that the adversary submit a Merkle tree commitment HR :=
digest(inp) of its input inp upfront, before submitting a long
input word by word. HR uniquely determines the rest of
the execution, such that any rewinding will effectively cause
the token to play old answers (as mentioned above), and the
adversary learns nothing new through rewinding.

IV. FORMAL SCHEME

We now give a formal model for the fully optimized HOP
processor (i.e., including all subsections in Section III) and
prove its security in UC framework. Section IV-A describes the
preliminaries. Section IV-B describes the ideal functionality
for obfuscation of RAM programs. Sections IV-C and IV-D
describe our formal scheme and proof in the UC framework.

A. Preliminaries

The notations used in this section are summarized in
Table I. We denote the assignment-operator with :=, while we
use = to denote equality. Encryption of data is denoted by an
overline, e.g., state = EncK(state), where Enc denotes a IND-
CPA + INT-CTXT-secure authenticated encryption scheme and
K is the key used for encryption.
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TABLE I: Notations

K Hardwired secret key stored by the token
mem0 A program as a list of instructions
inp Input to the program
mem Memory required for program execution
outp Program output

`in, `out, w Bit-lengths of input, output, and memory word
N Number of words in memory
T Time for program execution

RAM.params {T,N, `in, `out, w}
oramstate State stored by ORAM
sstorestate State stored by sstore
HR Digest of receiver’s input, i.e., digest(inp)
HS Digest of sender’s program, i.e., digest(mem0)
H′ Merkle root of the main memory

Universal Composability framework. The Universal Com-
posability framework [10] considers two worlds – 1. real
world where the parties execute a protocol π. An adversary A
controls the corrupted parties. 2. ideal world where we assume
the presence of a trusted third party. The parties interact with
a trusted third party (also called ideal functionality F) with
a protocol φ. A simulator S tries to mimic the actions of A.
Intuitively, the amount of information revealed by π in the real
world should not be more than what is revealed by interacting
with the trusted third party in the ideal world. In other words,
we have the following: an environment E observes one of the
two worlds and guesses the world. Protocol π UC-realizes ideal
functionality F if for any adversary A there exists a simulator
S , such that an environment E cannot distinguish (except with
negligible probability) whether it is interacting with S and φ
or with A and π.

Random Access Machines. We now give definitions for
Random Access Machine (RAM) programs, a basic processor
model for RAM programs. Let RAM[Π, T,N, `in, `out, w]
denote a family of RAM programs with the following public
parameters: Π denotes the next instruction circuit; T denotes
the number of steps the program will be executed; w denote
the bit-width of a memory word; and N , `in and `out denote
the memory, input and output lengths respectively (in terms of
number of words).

We consider programs RAM := 〈cpustate,mem〉 ∈
RAM[Π, T,N, `in, `out, w] to be a tuple, where cpustate
denotes the CPU’s initial internal state, and mem denotes an
initial memory array. In these programs, for each step of the
execution, the next instruction function is executed over the
old cpustate and the most recently fetched w bit memory word
denoted rdata:

(cpustate, op) := Π(cpustate, rdata)

As a result, cpustate is updated, and a next read/write instruc-
tion op is fetched. Initially, rdata is set to 0.

On input inp, the execution of RAM[T,N, `in, `out, w] :=
〈Π, cpustate,mem〉 is defined as the following:

rdata := 0
mem[1..`in] := inp
for t ∈ [1, 2, . . . , T ]:

(cpustate, op) := Π(cpustate, rdata)
if op = (write, addr,wdata)
mem[addr] := wdata

else if op = (read, addr,⊥)
rdata := mem[addr]

Output rdata // rdata stores the output

For notational simplicity, we assume that output length
`out is small and can be stored in rdata. However, our
results can be extended easily to larger values of `out. For
succinctness, we denote (T, N, `in, `out, w) by RAM.params.
Wherever its clear from context, we abuse notation to denote
RAM[Π, T,N, `in, `out, w] as RAM.

Oblivious RAM. Let mem denote a memory array that
supports two types of operations: a) On (read, addr), it
outputs mem[addr]; b) On (write, addr,wdata), it sets
mem[addr] := wdata, and outputs ⊥. In this paper, we
define an Oblivious RAM as a stateful, probabilistic algorithm
that interacts with a memory array mem. It is denoted as
ORAMN,w where N and w are public parameters denoting
the memory capacity in terms of number of words, and the
bit-width of a word. mem denotes the initial state of the
memory, where all but the first N locations are set to 0.
An ORAM converts memory contents mem to mem′. An
ORAM takes two types of inputs: op := (read, addr), and
op := (write, addr,wdata). After receiving input opi, ORAM
interacts with mem′, and produces read/write operations into
mem′ as output, denoted by ~opi. These operations ~opi implic-
itly define memory contents of mem.

We say that an ORAM algorithm is correct, if for any n, for
any input sequence (op1, . . . , opn), ORAM outputs correctly.
In other words, the memory contents of mem implicitly defined
by mem′ after execution of ( ~op1, . . . , ~opn) is identical to the
memory contents of mem defined by executing (op1, . . . , opn)
on mem. We say that an ORAM scheme ORAM is oblivious
if there exists a polynomial-time simulator Sim such that
no polynomial time adversary A can distinguish between
the transcript of the real ORAM execution and a simulated
transcript that Sim outputs. Sim is given only N and w, even
when the simulated memory access are provided one-by-one
to A.

Remark: ORAM initialization. In this paper, we assume an
ORAM starts out with a memory array where the first N
words are non-zero (reflecting the initial unshuffled memory),
followed by all zeros. Most ORAM schemes require an initial-
ization procedure to shuffle the initial memory contents. In this
paper, we assume that the ORAM algorithm performs a linear
scan of first N memory locations and inserts them into ORAM.
This is used by the simulator in our proof to extract the input
used for execution of the program. We use the convention that
such initialization is performed by the ORAM algorithm upon
the first read or write operation — therefore our notation does
not make such initialization explicit. This also means that the
first ORAM operation will incur a higher overhead than others.
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FRAMobf [sender, receiver ]

On receive (“create”, RAM) from sender for the first time:
Create a unique nonce denoted pid
Store (pid,RAM), send (“create”, pid) to receiver

On receive (“execute”, pid, inp) from receiver:
assert (pid,RAM) is stored for some RAM
outp := RAM(inp), send outp to receiver

Fig. 2: Ideal Functionality FRAMobf . Although there can be
multiple instances of this ideal functionality, we omit writing
the session identifier explicity without risk of ambiguity. In
this paper, we adopt the same UC notational conventions as
Pass, Shi, and Tramer [44]. In particular, we parametrize each
functionality and protocol by its session identifier, and the
identifiers of the parties involved — although in this paper,
we omit writing the session identifier explicitly without risk
of ambiguity.

B. FRAMobf : Modeling Obfuscation in UC

The ideal functionality for obfuscation FRAMobf is described
in Figure 2. The sender sends the description of a RAM
program, RAM ∈ RAM and a program ID pid, using the
“create” query. The functionality stores this program, pid, the
sender and receiver. When the receiver invokes “execute” query
on an input inp, it evaluates the program on inp, and returns
output outp.

C. Scheme Description

We now provide the complete description of our scheme.
We model the secure hardware token through the Ftoken
functionality (Figure 3). Our construction realizes FRAMobf in
the Ftoken-hybrid model [27] and is described in Figure 4.

In order to account for all possible token queries that may
be required for an ORAM scheme, Ftoken relies on an internal,
transient instance of Finternal to execute each step of the
program evaluation. Each time Ftoken yields control to the
receiver, the entire state of Finternal is destroyed. Whenever
the receiver calls back Ftoken with state, Ftoken once again
creates a new, transient instance of Finternal, sets its state to
the decrypted state, and invokes Finternal to execute next step.

The sender. Let the program to be obfuscated be
RAM := 〈cpustate0,mem0〉 where mem0 is a list of program
instructions. The sender first creates the token containing a
hardwired secret key K where K := (K1,K2,K3). K1 is
used as the encryption key for encrypting state, K2 is used as
the key to a pseudorandom function used by the ORAM and
K3 is used as the key for a pseudorandom function used by
sstore (described later). This is modeled by our functionality
using the “store key” query (Figure 4 line 1). The sender
then encrypts mem0 (one instruction at a time) to obtain
mem0. It creates a Merkle root HS := digest(mem0), which
is used by Ftoken during execution to verify integrity of the
program. The sender creates an encrypted header header :=
EncK1(cpustate0, HS ,RAM.params) where RAM.params =
{T,N, `in, `out, w}. The sender sends header, mem0, and
RAM.params as the obfuscated program to the receiver. As the

obfuscated program consists of only the encrypted program
and metadata, for a program of size P bits, the obfuscated
program has size P +O(1) bits. In the real world, the sender
sends the hardware token implementing functionality Ftoken
to the receiver. The receiver can use the same stateless token
to execute multiple obfuscated programs sent by the sender.

Ftoken [sender, receiver ]
// Store the secret key K in the token
On receive (“store key”, K) from sender:

Store the secret key K, ignore future “store key” inputs
Send “done” to sender

// This step commits the receiver to his input through HR

On receive (“initialize”, header, HR) from receiver:
Parse K := (K1,K2,K3)
(cpustate0, HS ,RAM.params) := DecK1

(header); abort
if fail
state := {ssid := (HS , HR), time := 0,

rdata := 0, cpustate := cpustate0,
sstorestate := (“init”, HS , HR, H

′ := 0),
oramstate := “init”, params := RAM.params}

send state := EncK1(state) to receiver

On receive ( ) from Finternal: // ORAM queries
state := EncK1(Finternal.state)
send ( , state) to receiver

On receive ( , state) from receiver: // ORAM queries
state := DecK1

(state), abort if fail
Instantiate a new instance Finternal,
set Finternal.state := state, and Finternal.K := K
Send to Finternal

Finternal
Define Finternal.state

alias
:= (ssid, time, rdata, cpustate,

sstorestate, oramstate, params)

// execute program
On receive (“execute one step”) from Ftoken:

1: assert time ≤ params.T
2: (cpustate, op)← Π′(cpustate, rdata)
3: Send op to ORAM[PRFK2(ssid), oramstate] ⇔

sstore[PRFK3(ssid), sstorestate] ⇔ Ftoken, wait
for output from ORAM, abort if sstore aborts;
/* instantiate ORAM with state oramstate, instanti-
ate sstore with state sstorestate, connect ORAM’s
communication tape to sstore’s input tape, connect
sstore’s communication tape to caller Ftoken. This
represents a multi-round protocol. */

4: If op = (read, . . .), let rdata := output
5: time := time+ 1
6: If time = params.T : send (“okay”, rdata) to Ftoken

Else send (“okay”, ⊥) to Ftoken

Fig. 3: Functionality Ftoken. For succinctness, encryption
of some data is represented using an overline on it, e.g.,
state = EncK1

(state), where Enc denotes a IND-CPA + INT-
CTXT-secure authenticated encryption scheme. “ ” denotes a
wildcard field that matches any string.
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Protobf [sender, receiver ]
Sender:
On receive (“create”, RAM = 〈cpustate0,mem0〉) from env:

1: If not initialized: K := (K1,K2,K3)
$← {0, 1}3λ, send

(“store key”, K) to Ftoken, await “done”
2: mem0 := {EncK1(mem0[i])}i∈|mem0|
3: HS := digest(mem0) // HS : program Merkle root
4: header := EncK1(cpustate0||HS ||RAM.params)
5: Send (header,mem0,RAM.params) to receiver

Receiver:
On receive (“execute”, pid, inp) from env:

1: Await (header,mem0,RAM.params) from sender s.t.
RAM.params.HS = pid if not received already

2: Initialize mem := mem0||inp||~0
3: Send (“initialize”, header, HR := digest(inp)) to Ftoken,

await state from Ftoken
4: for t in {1, . . . , T}:
5: Send (“execute one step”, state) to Ftoken
6: Await (oper, state) from Ftoken; // state overwritten

with the received value
7: Until oper = (“okay”, ), repeat: //multiple memory

requests for the RAM step due to ORAM
8: perform the operation oper on mem and let the

response be res
9: forward (res, state) to Ftoken, and await

(oper, state) from Ftoken;
10: Parse oper := (“okay”, outp), output outp

Fig. 4: Protocol Protobf . Realizes FRAMobf in the Ftoken-
hybrid model.

The receiver. On the receiver’s side, the token functionality
makes use of an ORAM and a secure store sstore. The token
functionality (trusted hardware functionality) is modeled by an
augmented RAM machine.

1) ORAM. ORAM takes in [κ := PRFK2
(ssid), oramstate]

(where ssid := (HS , HR)) as internal secret state of the
algorithm. κ is a session-specific seed used to generate all
pseudorandom numbers needed by the ORAM algorithm
— recall that all randomness needed by ORAM is replaced
by pseudorandomness to avoid rewinding attacks. As men-
tioned in Section IV-A, we assume that the ORAM initial-
ization is performed during the first read/write operation. At
this point, the ORAM reads the first N memory locations
to read the program and the input, and inserts them into
the ORAM data structure within mem.

2) Secure store module sstore. sstore is a stateful deter-
ministic secure storage module that sits in between the
ORAM module and the untrusted memory implemented
by the receiver. Its job is to provide appropriate mem-
ory encryption and authentication. sstore’s internal state
includes κ := PRFK3

(ssid) and sstorestate. sstorestate
contains a succinct digest of program, input and memory to
perform memory authentication. κ is a session-specific seed
used to generate all pseudorandom numbers for memory
encryption.
At the beginning of an execution, sstorestate is initialized

1

. . .
cs0
rd0

cs1
op1

cs2 csN−1 csN
opNΠ1 Π2 ΠN

op

Scratchpad

rd1 op2 opN−1 rdN−1rd2

cpustatecpustate
rdata

Fig. 5: Augmented Random Access Machine. In this figure,
cpustatei is denoted by csi and rdatai is denoted by rdi.

to sstorestate := (HS , HR, H
′ := 0), where HS denotes

the Merkle root of the encrypted program provided by the
sender, HR denotes the Merkle root of the (cleartext) input
and H ′ denotes the Merkle root of the memory mem. By
convention, we assume that if a Merkle tree or any subtree’s
hash is 0, then the entire subtree must be 0. The operational
semantics of sstore is as follows: upon every data access
request (read, addr) or (write, addr,wdata):
• If addr is in the mem0 part of the memory (the sender-

provided encrypted program), interact with mem and use
HS to verify responses. Update HS appropriately if the
request type is write.

• If addr is in the inp part of the memory (the receiver-
provided input), interact with mem and use HR to verify
responses.

• Otherwise, interact with mem and use H ′ to verify
responses. Update H ′ appropriately.

Upon successful completion, sstore outputs the data fetched
for read requests, and outputs 0 or 1 for write requests.
Note that the sstore algorithm simply aborts if any of the
responses fail verification.

3) Augmented Random Access Machines. We now extend
the RAM model to support instruction scheduling and
a scratchpad (Sections III-C and III-D). RAM can be
augmented to use a next instruction circuit Π′ := ΠN for
a fixed N , with the following modifications:

a) Π′ is a combinational circuit, which consists of N next-
instruction circuits Πi cascaded as shown in Figure 5.

b) The Πi’s use an additional shared memory, referred to as
scratchpad. Each Πi (except Π1) operates on the output
of Πi−1 and an operand rdatai−1 read from scratchpad.
The next instruction circuit Π′ outputs opN to retrieve
rdata from mem, which is subsequently used by Π1.

On input inp, the execution of RAM[T,N, `in, `out, w] :=
〈Π′, cpustate,mem〉 is similar to what was defined in
Section IV-A but uses Π′ as the next instruction circuit. The
augmented random access machine RAM′ models a RAM
that performs N instructions followed by an ORAM access.
If some opi cannot be served by the scratchpad, subsequent
Πj for i+ 1 ≤ j ≤ N do not update cpustatej and output
opN = opi to load the required data in scratchpad.
Remark. For augmented random access machines that uses
a scratchpad, rdata would typically be larger than a memory
word (e.g. 512 bits).

We now explain how the receiver executes the program
using the token described in Figure 3 and protocol in Figure 4.

Program execution. For ease of explanation, let us first
assume that the ORAM is initialized and contains the program
and input. The execution for any input proceeds in T time steps
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(Figure 4 line 4). At each time step, the receiver interacts with
the token with two types of queries. For each type of query,
Ftoken decrypts state (aborts if decryption fails), instantiates
Finternal with state and forwards the request to Finternal. At
the end of query, the state is sent to the receiver along with
the query response.

• Execute one step: This is shown in Figure 3 and Figure 4
line 5. When this query is invoked, Finternal executes
the next instruction circuit Π′ of the RAM machine to
obtain an updated cpustate and an op ∈ {read, write}.
Once operation op is performed by the ORAM algorithm,
Finternal updates state.time to reflect the execution of the
instruction (Figure 3 line 5). The message “okay” is then
sent to the receiver. At time = T , Finternal returns the
program output to the receiver (Figure 3 line 6).

• ORAM queries: ORAMs can use a multi-round protocol
(with possibly different types of queries) to read/write
(Figure 3 line 3). It interacts with mem stored at the
receiver through Ftoken (Figure 4 lines 7-9). To account for
instantiation of any ORAM, Ftoken is shown to receive any
query from receiver (indicated by wildcard ( ) in Figures 3
and 4). These queries are sent to Finternal and vice-versa.

For each interaction with mem, sstore encrypts (resp. de-
crypts) data sent to (resp. from) the receiver. Moreover, sstore
authenticates the data sent by the receiver. This completes the
description of execution of the program.

Initialization. To initialize the execution, the receiver first
starts by storing the program and input inp in its memory
mem := mem0||inp||~0. It commits to its input by invoking
“initialize” (Figure 4 line 3) and sending a Merkle root
of its input (HR = digest(inp)) along with header :=
EncK1

(cpustate0||HS ||RAM.params). Ftoken initializes the
parameters, creates state and sends it to the receiver.

The ORAM and sstore are initialized during the first
invocation to “execute one step”, i.e., t = 1 in Figure 4, line 4.
The required randomness is generated pseudorandomly based
on (K2, HS , HR) for ORAM and (K3, HS , HR) for sstore.
As mentioned in Section IV-A, during initialization, ORAM
in Ftoken reads mem0 word by word (not shown in figure).
For each word read, sstore performs Merkle tree verification
with HS := digest(mem0). Similarly, when the input is read,
sstore verifies it with HR := digest(inp). sstorestate and
oramstate uniquely determine the initialization state. Hence,
if the receiver rewinds, the execution trace remains the same.
The commitment HR ensures that the receiver cannot change
his input after invoking “initialize”. This completes the formal
scheme description of the UC functionality Ftoken.

D. Proof of Security

Theorem 1. Assuming that Enc is an INT-CTXT + IND-
CPA authenticated encryption scheme, ORAM satisfies obliv-
iousness (Section IV-A), sstore adopts a semantically secure
encryption scheme and a collision resistant Merkle hash tree
scheme and the security of PRF, the protocol described in
Figures 3 and 4 UC realizes FRAMobf (Figure 2) in the Ftoken-
hybrid model.
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Instruction
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Fig. 6: HOP Architecture

Proof. We refer the reader to the full version of the paper for
a detailed proof of security.

V. IMPLEMENTATION

The final architecture of HOP (with the optimizations
from Section III) is shown in Figure 6. We now describe
implementation-specific details for each major component.

A. Modified RISC-V Processor and Scratchpad

We built HOP with a RISC-V processor which implements
a single stage 32bit integer base user-level ISA developed
at UC Berkeley [12]. A RISC-V C cross-compiler is used
to compile C programs to be run on the processor. The
RISC-V processor is modified to include a 16 KB instruction
scratchpad and a 512 KB data scratchpad (Section III-D). The
RISC-V processor and the compiler are modified accordingly
to accommodate the new scratchpad load/unload instructions
(described below). While HOP uses a single stage RISC-V
processor, our system does not preclude additional hardware
optimizations in commodity processors such as multi-issue,
branch predictor, etc. Our only requirement to support such
processor structures is the ability to calculate, for that program
over all inputs, a suitably conservative maximum runtime T .

New scratchpad instructions. For our prototype, we load
the scratchpad using a new instruction called spld, which is
specified as follows:

spld addr,#mem, spaddr

In particular, addr is used to specify the starting address of the
memory that needs to be loaded in scratchpad. #mem is the
number of memory locations to be loaded on the scratchpad
starting at addr and spaddr is the location in scratchpad
to store the loaded data. When the processor intercepts an
spld instruction, it performs two operations: 1. It writes back
the data stored in this scratchpad location to the appropriate
address in main memory (ORAM). 2. It reads #mem memory
locations starting at main memory address addr into scratch-
pad locations starting at spaddr. Of course, spld’s precise
design is not fundamental: we need a way to load an on-chip
memory such that it is still feasible to statically determine T .

Example scratchpad use. Figure 7 shows an example sce-
nario where spld is used. The program shows a part of the code
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1: int decompress(char *chunk) {
2: int compLen = 0;
3: // initial processing
4: burrowsWheeler(chunk, compLen);
5: // more processing
6: writeOutput(chunk);
7: return compLen;
8: }
9: void main() {

10: char *inp = readInput();
11: for (i = 0; i < len(inp); i += len) {
12: spld(inp + i, CSIZE, 0);
13: len = decompress(inp + i);
14: }
15: }

Fig. 7: Example program using spld: bzip2

used for decompressing data using the bzip2 compression
algorithm. The algorithm decompresses blocks of compressed
data and outputs data of size CSIZE independently. Each block
of data may be read and processed multiple times during
different steps of compression (run-length encoding, Burrows-
Wheeler transform, etc.). Hence, each such block is loaded
into the scratchpad (line 12) before processing. This ensures
that every subsequent access to this data is served by the
scratchpad instead of memory (thereby reducing expensive
ORAM accesses). After decompressing the block, spld is
executed for the next block of compressed data.

B. ORAM Controller

We use a hardware ORAM controller called ‘Tiny ORAM’
from [19], [20]. The ORAM controller implements an ORAM
tree with 25 levels, having 4 blocks per bucket. Each block
is 512 bits (64 Bytes) to match modern processor cache line
size. This corresponds to a total memory of 4 GB. The ORAM
controller uses a stash of size 128 blocks and an on-chip
position map of 256 KB. For integrity and freshness, Tiny
ORAM uses the PosMap MAC (PMMAC) scheme [19]. We
note that PMMAC protects data integrity but does not achieve
malicious security. We estimate the cost of malicious security
using a hardware Merkle-tree on ORAM in Table II. We
disable the PosMap Lookaside Buffer (PLB) in Freecursive
ORAM to avoid leakage through the total number of ORAM
accesses.

C. Encryption Units

For all encryption units, we use tinyaes from Open-
Cores [2]. The encryption units communicate with the external
DRAM (bandwidth of 64 Bytes/cycle) as well as the host
processor. Data is encrypted before writing to the DRAM.
Similarly, all data read from the DRAM is decrypted first
before processed by the ORAM controller. Another encryption
unit is used to decrypt the obfuscated program before loading
it into the instruction scratchpad.

VI. EVALUATION

We now present a detailed evaluation of HOP for some
commonly used programs, and compare HOP to prior work.

TABLE II: Resource allocation and utilization of HOP on
Xilinx Virtex V7485t FPGA. For each row, first line indicates
the estimate. % utilization is mentioned in parentheses. LUT:
Slice LookUp Table, FFs: Flip-flops or slice registers, BRAM:
Block RAM.

LUT FFs LUT-Mem BRAM

Total Estimate 169472 51870 81112 566.5
(% Utilization) (55.8%) (8.5%) (62.0%) (55.0%)

HOP Estimate 103462 39803 38725 437
(% Utilization) (34.0%) (6.6%) (47.7%) (42.4%)

(HOP− ORAM) Estimate 21626 6579 1 83
(% Utilization) (7.1%) (1.1%) (∼0%) (8.1%)

Estimate with Merkle tree 221041 81410 81126 566.5
(% Utilization) (72.8%) (13.4%) (62.0%) (55.0%)

A. Methodology

We measure program execution time in processor cycles,
and compare with our own baseline scheme (to show the effec-
tiveness of our optimizations), an insecure processor as well as
related prior work. For each program, we choose parameters so
that our baseline scheme requires about 100 million cycles to
execute. We also report processor idle time, the time spent on
dummy arithmetic instructions and dummy memory accesses
to adhere to an ANM schedule (Section III-C).

For the programs we evaluate (except bzip2; c.f., Sec-
tion VI-D), we calculate T manually. We remark that the
average input completion time and worst case time are very
similar for these programs. To find T for larger programs,
one may use established techniques in determining worst case
execution time (e.g., a tool from [54]).

In our prototype, evaluating an arithmetic instruction takes
1 cycle while reading/writing a word from the scratchpad
takes 3 cycles. Given the parameters in Section V-B, an
ORAM access takes 3000 cycles. For our HOP configurations
with a scratchpad, we require both scratchpad read/writes and
arithmetic instructions to take 3 cycles in order to hide which is
occurring. Following Section III-C, we set N = 3000 when not
using a scratchpad; with a scratchpad, we use N = 1000. For
our evaluation, we consider programs ranging from those with
high locality (e.g., bwt-rle) to those that show no locality
(e.g., binsearch).

B. Area Results

We synthesized, placed and routed HOP on a Xilinx Virtex
V7485t FPGA for parameters described in Section V. HOP
operates at 79.3 MHz on this FPGA. The resource allocation
and utilization figures are mentioned in Table II. The first
three rows represent the total estimate, estimate for HOP
(i.e. excluding RISC-Vprocessor, and the scratchpad) and an
estimate for HOP that does not account for ORAM. The last
row shows the total overhead including an estimate for a
Merkle tree scheme. Excluding the processor, scratchpad and
ORAM, HOP consumes < 9% of the FPGA resources. We see
that the total area overhead of HOP is small and can be built
on a single FPGA chip.
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Fig. 8: Execution time for different programs with (i) baseline
scheme, (ii) ANM schedule and (iii) Scratchpad + ANM .

C. Main Results

Figure 8 shows the execution time of HOP variants relative
to an insecure processor. For each program, there are three
bars shown. The first bar is for the baseline HOP scheme
(i.e., Section III-B only); the second bar only uses an ANM
schedule without a scratchpad (adds Section III-C); and the
third bar is our final scheme that uses a scratchpad and the
ANM schedule (adds Section III-D). All schemes are relative
to an insecure processor that does not use ORAM or hide what
instruction it is executing. We assume this processor uses a
scratchpad that has the same capacity as HOP in Section V-A.
The time required to insert the program and data is not shown.

Comparison of HOP variants. As can been seen in the figure,
the ANM schedule without a scratchpad gives a 1.5× ∼ 18×
improvement. Adhering to an ANM schedule requires some
dummy arithmetic or memory instructions during which the
processor is essentially idle. We observe that for our programs,
the idle time ranges between 43% and 49.9% of the execution
time, consistent with the claim in Section III-C.

Effect of a scratchpad. The effect of a scratchpad largely
depends on program locality. We thus classify programs in
our evaluation into four classes:

1) Programs such as binsearch, heappop do not show
locality. Thus, a scratchpad does not improve performance.

2) Programs such as sum, findmax stream (linear scan)
over the input data. Given that an ORAM block is larger
than a word size (512 bits vs 32 bits in our case), a
scratchpad in these streaming applications can serve the
next few (7 with our parameters) memory accesses after
spld. A larger ORAM block size can slightly benefit these
applications while severely penalize programs with no
locality, and therefore is not a good trade-off.

3) Programs that maintain a small working set at all times will
greatly benefit from a scratchpad. We evaluate one such
program bwt-rle, which performs Burrows-Wheeler
transform and run length encoding, and is used in com-
pression algorithms.

4) Lastly, some programs are a mix of the above cases — some
data structures can be entirely loaded into the scratchpad
whereas some cannot (e.g. a Radix sort program).

Comparison to insecure processor. The remaining perfor-
mance overhead of the optimized HOP (the third bar) comes
from several sources. First, the performance of ORAM: The
number of cycles to perform a memory access using ORAM
is much higher than a regular DRAM. In HOP, an ORAM
access is 40× more expensive than an insecure access. Second,
dummy accesses to adhere to a schedule: As shown in Sec-
tion III-C, the performance overhead due to dummy accesses
≤ 2×. For programs such as bwt-rle, HOP has a slowdown
as low as 8×. This is primarily due to the reduction in ORAM
accesses by maintaining a small working set in the scratchpad.

D. Case Study: bzip2

To show readers how our system performs on a realistic
and complex benchmark, we evaluate HOP on the open-source
algorithm bzip2 (re-written for a scratchpad, cf. Figure 7).
We evaluate the decompression algorithm only, as the decom-
pression algorithm’s performance does not heavily depend on
the input if one fixes the input size [1]. This allows us to run
an average case input and use its performance to approximate
the effect of running other inputs. To give a better sense for
how the optimizations are impacted by different inputs, we
don’t terminate at a worst-case time T but rather terminate as
soon as the program completes.

We run tests on two inputs, both highly compressible
strings. For the first input, HOP achieves 106× speedup over
the baseline scheme and 17× slowdown over the insecure
version. For the second input, HOP achieves 234× speedup
over the baseline and 8× slowdown over the insecure version.
Thus, the gains and slowdowns we see from the prior studies
extend to this more sophisticated benchmark.

E. Comparison with Related Work

We now compare against prior work on obfuscation with
hardware (these prior works were not implemented) and sev-
eral works with related threat models.

1) Comparison to prior obfuscation from trusted hardware
proposals [15], [17], [27]: We now compare against [15],
[17], [27] which describe obfuscation using trusted hardware.
Note that none of these schemes were implemented.

Part of the proposals in [15], [17] require programs to
be run as universal circuits under FHE while [27] evaluates
programs as universal circuits directly on hardware (i.e., by
feeding the encrypted inputs of each gate into a stateless
hardware unit: where it decrypts the inputs, evaluates the gate,
and re-encrypts the output). We will now compare HOP to
these circuit-based approaches. Again, we stress that all of
[15], [17], [27] require the use of trusted hardware for their
complete scheme and thus can be viewed similarly to HOP
from a security perspective.

Table III shows the speedup achieved by HOP relative
to universal circuits run under FHE (left) and bare hardware
(right). We assume the cost of a universal circuit capable of
evaluating any c gate circuit is 18 ∗ c ∗ log c gates [39]. We
compare the approaches on the findmax and binsearch
benchmarks, using a dataset size of 1 GB for each. We show
findmax as it yields a very efficient circuit and a best-case
situation for the circuit approach (relative to the correspond-
ing RAM program); binsearch shows the other extreme.
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For [15], [17], we assume a BGV-style FHE scheme [9],
using the NTRU cryptosystem, with polynomial dimension and
ciphertext space parameters chosen using [24], to achieve 80
bits of security.6 For [27], we assume each NAND gate takes
20 cycles to evaluate (10 cycles for input decryption with AES,
0 cycles for evaluation, 10 cycles for re-encryption). For HOP,
we assume the parameters from Section V.

FHE [15], [17] Hardware [27]
On + Off On On + Off On

findmax 1 ∗ 109 2 ∗ 109 4 ∗ 103 1 ∗ 104
binsearch 4 ∗ 109 4 ∗ 1015 6 ∗ 103 1 ∗ 1010

TABLE III: HOP speedup (×) relative to universal circuit ap-
proaches. findmax and binsearch are over 1 GB datasets.

In the Table, On+Off (‘online and offline’) assumes one
search query is run: in that case, HOP’s performance is reduced
due to the time needed to initially load the ORAM. The On
(‘online only’) column shows the amortized speedup when
many search queries are made without changing the underlying
search database (i.e., without re-loading the ORAM each time).
This shows an inherent difference to works based on universal
circuits: those works represent programs as circuits, where
optimized algorithms such as binsearch do not see speedup.
In all cases, HOP shows orders of magnitude improvement to
the prior schemes.

We note that our comparison to [15], [17] is conserva-
tive: we only include FHE’s time to perform AND/OR gate
operations and not the cost of auxiliary FHE operations (re-
linearization, modulus switching, bootstrapping, etc). Lastly,
FHE is only one part of [15], [17]: we don’t include the cost
of NIZK protocols, etc. which those schemes also require.

2) Comparison with iO [37]: We compare HOP with an
implementation of indistinguishability obfuscation (iO) that
does not assume a trusted hardware token. Note that while
VBB obfuscation is not achievable in general, iO is a weaker
notion of obfuscation. With [37], evaluating an 80-bit point
function (a simple function that is 0 everywhere except at one
point) takes about 180 seconds while HOP takes less than a
msec, which is about 5-6 orders of magnitude faster.

3) Comparison with GhostRider [40]: Recall from Sec-
tion II that GhostRider protects input data to the program
but not the program. Since our privacy guarantee is strictly
greater than GhostRider, we now compare to that work to
show the cost of extra security. Note: we compare to the
GhostRider compiler and not the implementation in [40] which
uses a different parameterization for the ORAM scheme. This
comparison shows the additional cost that is incurred by HOP
to hide the program. We don’t show the full comparison for
lack of space, but point out the following extreme points: For
programs with unpredictable access patterns (binsearch,
heappop), GhostRider outperforms HOP by ∼ 2×. HOP’s
additional overhead is from executing dummy instructions to

6When represented as circuits, both findmax and binsearch look like
a linear PIR. Over a 1 GByte dataset, we evaluate this function with a 10-
level FHE circuit, which gives an FHE polynomial dimension (n) of ∼ 8192
and ciphertext space q of ∼ 2128 (using terminology from [9]). With these
parameters, a single polynomial multiplication/addition using NTL [50] costs
14 ms / .4 ms on a 3 GHz machine.

adhere to a particular schedule. For programs with predictable
access patterns (sum, findmax, hist), GhostRider’s per-
formance is similar to that of an insecure processor.

F. Time for Context Switch

Since it was not required for our performance evaluation,
we have not yet implemented context switching (Section III-E)
in our prototype. Recall, context switching means the receiver
interrupts the processor, which encrypts and writes out all the
processor state (including CPU state, instruction scratchpad,
data scratchpad, ORAM position map and stash) to DRAM.
We estimate the time of a context switch as follows. The total
amount of data stored by our token is ∼ 800 KB (Section V).
Assuming a DRAM bandwidth of 10 GB/s and a matching
encryption bandwidth, it would take ∼ 160µs to perform a
context switch to run another program. Note that this assumes
all data for a swapped-out context is stored in DRAM (i.e.,
the ORAM data already in the DRAM need not be moved).
If it must be swapped out to disk because the DRAM must
make room for the new context, the context switch time grows
proportional to the ORAM size.

VII. PRACTICAL DEPLOYMENT AND APPLICATIONS

In this section, we present practical deployment consider-
ations and potential applications for a HOP processor.

Parties involved in the system. In a practical deployment,
there would be three parties involved in this system: The
sender is a software provider (e.g. Microsoft), the receiver
is the end user and the manufacturer is a hardware company
(e.g., Intel, TSMC). Software providers are incentivized to use
this framework to hide the IP of their proprietary programs so
as to sell those programs to customers without being pirated.
Hardware manufacturers are incentivized to provide security
in order to retain the software providers as customers (e.g.,
Intel SGX was initially envisioned as a buy-in service).

Potential applications. The focus of this paper is to build
hardware that satisfies the definition of VBB obfuscation.
Thus, our model assumes obfuscation of ‘batch programs’ –
those which take inputs, and compute non-interactively until
a result is produced. Some examples of such programs are
compilers, compression algorithms, machine learning algo-
rithms, etc. In our setting, the program itself should contain
some sensitive IP (to warrant obfuscation). Given the pervasive
nature of batch programs, we see HOP being applicable in
both commercial and military settings. We note that even the
military outsources its fabrication (and therefore its trust) to
external foundries (e.g., global foundries handles runs for the
NSA).

Beyond batch programs, it is possible to support streaming
applications with little change to the model. In particular, while
HOP runs, it can accept streams of public data (e.g., a video
feed) in a similar fashion to Stream Ascend [57]. Importantly,
this has no impact on security, as long as HOP doesn’t change
its observable behavior given the data in the stream and the
program accepts this data at fixed intervals of time.
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VIII. CONCLUSION

This paper makes two main contributions. First, we con-
struct an optimized hardware architecture - called HOP - for
running obfuscated RAM programs. We give a matching theo-
retic model for our optimized architecture and prove it secure.
A by-product of our analysis shows the first obfuscation for
RAM programs using ‘stateless’ tokens. Second, we present
a complete implementation of our optimized architecture and
evaluate it on real-world programs. The complete design
requires 72% the area of a V7485t Field Programmable Gate
Array (FPGA) chip. Run on a variety of benchmarks, HOP
achieves an average overhead of 8× ∼ 76× relative to an
insecure system. To the best of our knowledge, this effort
represents the first implementation of a provably secure VBB
obfuscation scheme in any model under any assumptions.
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APPENDIX A
PROOF OF SCHEDULE OVERHEAD

Claim: For any program and input, the setting of N from
Section III-C results in ≤ 50% of processor cycles performing
dummy work. In other words, the schedule incurs ≤ 2× per-
formance overhead relative to the best possible A-M schedule
(which is insecure over the timing channel) and incurs no
dummy work.

Proof: Without loss of generality, we break up a program
into a sequence of instruction epochs, where each epoch
consists of a continuous run of arithmetic instructions followed

by a continuous run of memory instructions. Denote the i-th
epoch as AniMpi . For example, the program

A A A A M A A M M M
has 2 epochs, with n1 = 4, p1 = 1, n2 = 2, p2 = 3.

Without loss of generality, we align the start of each
epoch with the beginning of an ANM schedule. Given our
choice of N , we examine the number of processor cycles
spent doing dummy operations in each epoch. For the rest
of the analysis, we abbreviate |M | = ORAM latency and
|A| = Arithmetic latency.

Consider the start of epoch i (i.e., the first A instruction).
To progress from the start of the epoch to the first M
instruction (excluded) in the epoch, we perform |A|∗N∗bni

N c+
|A| ∗ (ni mod N) real cycles and |M | ∗ bni

N c+ |A| ∗ (N − (ni
mod N)) dummy cycles worth of work. To progress from the
first M instruction (including) to the end of the epoch, we
perform |M | ∗ pi real cycles and |A| ∗ N ∗ (pi − 1) dummy
cycles worth of work. Note that by our definitions of epochs,
we have that pi ≥ 1.

Also note that |M | = |A|∗N by our choice of N . Combin-
ing these two time periods, we spend |M |∗(bni

N c+pi)+|A|∗(ni
mod N) real cycles and |M | ∗ (bni

N c+pi−1)+ |A| ∗ (N− (ni
mod N)) dummy cycles worth of work.

APPENDIX B
OBFUSCATION IN THE PUBLIC-KEY SETTING

For the sake of simplicity, we describe our construction and
proof in the model where a single sender embeds a symmetric
key into a secure processor and provides this to the receiver
along with the obfuscated program to execute. However, we
note that we can extend our results to reuse the token and allow
multiple senders to obfuscated the program for a receiver. For
example, suppose two senders S1 and S2 would like to both
send encrypted programs to be executed by a receiver R on a
hardware token (provided by a trusted hardware manufacturer).
The hardware would then be initialized with a secret key skenc
of a public-key CCA secure encryption scheme (with public
key pkenc) along with a verification key vksig of a signature
scheme (with signing key sksig). The signing key sksig would
be owned by a trusted certificate authority and would also be
stored in the token. Now, in our construction, we would replace
the symmetric key CCA secure authenticated encryption with
a public key CCA secure encryption, where all ciphertext are
authenticated with a signature scheme. When S1 wishes to
send an obfuscated program P1 to a receiver R, S1 would
pick a signing key/verification key pair (skS1 , vkS1). S1 will
obtain a signature of vkS1 from the trusted certificate authority
(denote this signature by σ and note that this signature will
verify under the verification key vksig). Now, S1 will encrypt
P1 with pkenc and authenticate all ciphertexts with skS1

and
provide these ciphertexts along with σ to the receiver. The
receiver will feed in encrypted ciphertexts along with σ to
the token. The token, when decrypting ciphertexts, will first
check the validity of vkS1 by verifying σ and the signatures
of all the ciphertexts. If all the checks pass, the token will
decrypt the ciphertexts using skenc. When encrypting state to
be sent back to the receiver, the token will encrypt it with
pkenc and sign it with sksig. This will mimic the symmetric
key CCA secure authenticated encryption scheme that we use
in our single sender/receiver scheme.
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