
Hey, My Malware Knows Physics!
Attacking PLCs with Physical Model Aware Rootkit

Luis A. Garcia
Rutgers University

l.garcia2@rutgers.edu

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ahmad.sadeghi@trust.tu-darmstadt.de

Ferdinand Brasser
Technische Universität Darmstadt

ferdinand.brasser@trust.tu-darmstadt.de

Osama Mohammed
Florida International University

mohammed@fiu.edu

Mehmet H. Cintuglu
Florida International University

mcint015@fiu.edu

Saman A. Zonouz
Rutgers University

saman.zonouz@rutgers.edu

Abstract—Trustworthy operation of industrial control systems
(ICS) depends on secure code execution on the embedded pro-
grammable logic controllers (PLCs). The controllers monitor and
control the underlying physical plants such as electric power
grids and continuously report back the system status to human
operators.

We present HARVEY, 1 a PLC rootkit that implements a
physics-aware stealthy attack against cyberphysical power grid
control systems. HARVEY sits within the PLC’s firmware below
the control logic and modifies control commands before they are
sent out by the PLC’s output modules to the physical plant’s
actuators. HARVEY replaces legitimate control commands with
malicious, adversary-optimal commands to maximize the damage
to the physical power equipment and cause large-scale failures. To
ensure system safety, the operators observe the status of the power
system by fetching system parameter values from PLC devices.
To conceal the maliciously caused anomalous behavior from
operators, HARVEY intercepts the sensor measurement inputs to
the PLC device. HARVEY simulates the power system with the le-
gitimate control commands (which were intercepted/replaced with
malicious ones), and calculates/injects the sensor measurements
that operators would expect to see. We implemented HARVEY
on the widely spread Allen Bradley PLC and evaluated it on a
real-world electric power grid test-bed. The results empirically
prove HARVEY’s deployment feasibility in practice nowadays.

I. INTRODUCTION

Industrial control systems (ICS) interconnect, control and
monitor industrial environments such as electrical power gen-
eration, transmission and distribution, chemical production,
oil and gas refining and transport, and water treatment and
distribution. In recent years, ICS have received considerable
attention due to security concerns originated by the trend to
connect ICS to the Internet [22]. In particular, critical infras-
tructures connected to and controlled by ICS substantiate these
security concerns. Nevertheless, the ICS market is expected to
grow to $10.33 billion by 2018 [47].

1Harvey Dent (Two-Face) is a fictional super-villain adversary of the
superhero Batman. The right half of his face looks normal/benign, unlike
the hideously scary left side of his face.

Nation-state ICS malware such as the Stuxnet worm [24]
against Iranian nuclear uranium enrichment facilities and
BlackEnergy crimeware [23] against the Ukranian train railway
and electricity power industries show that targeted attacks on
critical infrastructures can evade traditional cybersecurity de-
tection and cause catastrophic failures with substantive impact.
The discovery of Duqu [14] and Havex [43] show that such
attacks are not isolated cases as they infected ICS in more than
eight countries.

ICS security has been traditionally handled using network
security and information technology (IT) practices [52]. ICS
security goals, however, differ from traditional IT security
goals due to additional requirements and conditions of op-
eration. The interconnection of the physical world and virtual
world, bridged by cyberphysical systems (CPS), is a unique
feature of ICS compared to traditional IT infrastructures.
And unlike most traditional IT systems, high availability is
critical for ICS. A process failure can have fatal consequences
threatening human lives and resulting in immense financial
loss.2

ICS are monitored and operated in a centralized fashion:
embedded CPS, known as programmable logic controllers
(PLC), are connected to a central control terminal (human-
machine interface HMI) through which a human operator can
supervise the system. PLCs are digital computing devices used
for automating industrial electromechanical processes. They
control the state of the output ports based on signals received
from the input ports and stored programs, and operate typi-
cally under hard environmental conditions, such as excessive
vibration and high noise [9], [20]. PLCs control standalone
equipment and discrete manufacturing processes. Their logical
behavior with regard to inputs and outputs can be programmed
by the operator.

The main goal of sophisticated attackers is to remain
stealthy from ICS operators. In particular, the HMI’s view of
the system should not indicate any effect caused by attacks.
For this, the adversary can either compromise and manipulate
the HMI itself, or launch a more sophisticated attack on
PLCs. A prominent example of HMI related attacks is the
infamous Stuxnet [24]. However, HMIs are often based on
commodity computer systems for which a wide variety of
security solutions exist, including anti-virus software, security
enhanced operating systems, run-time attack protections, and
many more. This makes the HMI an unattractive attack target.
On the other hand, although many PLC related attacks have

2ICS are also not what is usually considered Internet of Things (IoT) as
there are substantial differences (cf. Section VIII-A).

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23313

been published in recent years [8], [12], [32], [44], they have
limitations with regard to stealthiness and result in obvious
effects, such as disrupting the operation of PLCs [44]. Other
attacks operate on the PLC’s application level (called control
logic), which allows the operator to detect their presence
through the PLC’s remote management capabilities [12], [32].

Goals and Contributions. In this paper we present a novel
class of stealthy PLC attacks that we refer to as Man-in-
the-PLC. Our exploit intercepts the PLC’s input and output
values, provides an arbitrary view of the system to the control
logic (i.e., the program running on the PLC), and simulates a
semantically correct system state towards the central control
unit while changing the actual system state. We provide the
following main contributions:

• We present a novel attack class on industrial control
systems: a cyber-physical attack which is completely
invisible to the control center of an ICS.

• We reverse engineered the central control loop mechanism
of a widely deployed Allen Bradley 1769-L18ER-BB1B
CompactLogix 5370 L1 Rev. B PLC.

• We developed a prototype implementation of HARVEY,
and tested and evaluated it on an Allen Bradley PLC.
Allen Bradley is one of the most used ICS suppliers in
the United States.

• We evaluate our attack in a real power grid test environ-
ment.

We would like to stress that our main contribution and
novelty of our rootkit lies in its physics-awareness. This makes
our solution more general than all solutions published before,
including real world attacks like Stuxnet [24]. To be able
to implement and evaluate our prototype, we had to reverse
engineer the PLC to gain the required insight into its inner
working, in particular, the PLC’s control of input and output
lines, and the connection between the firmware and control
logic programs.

Following the standard responsible disclosure policies, we
have taken necessary steps and have contacted the vendor,
Allen Bradley, informing them about the possibility of such
malicious exploits against their controllers. Allen Bradley gave
us clearance to publish our findings.

The remainder of the paper is structured as follows. First,
we provide the reader with a background on industrial control
systems in general and programmable logic controllers in
particular, and present our system model and adversary model
in Section II. In Section III, we explain the general concept of
HARVEY before providing details on the physics-aware data
manipulations of our attack in Section IV. In Section V, we
describe how we reverse engineered the firmware of an Allen
Bradley PLC and implemented our rootkit. In Section VI, we
provide an extensive evaluation for our physics-aware PLC
rootkit against a real power grid test-bed. Section VII provides
a review of related work in the area of ICS security. We discuss
our findings and possible mitigation strategies in Section VIII,
and conclude in Section IX.

II. BACKGROUND AND SYSTEM MODEL

In this section, we provide basic knowledge for the rest of
the paper. We provide detailed information about industrial
control systems (ICS) and programmable logic controllers
(PLC), and we define the system model and adversary model
we will consider throughout the paper.

Firmware

CPU OutputInput Hardware

Control Logic
O1

O2

I1
I2
I3
I4

HMIICS Network

Sensor Actuator

Virtual World

Physical World

Output
Module

Input
Module

Scan Cycle

Fig. 1: PLC Architecture

A. Background

An ICS is a distributed system which is composed of
physical components, like sensors and actuators, which interact
with the physical system (e.g., power grid) and cyber com-
ponents (e.g., cyber-networks and servers). Although ICS are
largely self-contained, interfaces exist through which external
components can interact with the systems. For instance, a
human operator can monitor the systems state and influence
it through a human-machine interface (HMI). Most PLCs are
connected to the ICS via an Ethernet network, and hence, often
indirectly connected to the Internet. It is also quite common
that PLCs are directly connected to the Internet [32].

Centralized operation and maintenance is an essential fea-
ture of ICS. An operator can program and monitor PLCs and
the applications running on them remotely, i.e., retrieve the
status of a PLC and re-program it over the network. The
information which can be retrieved from the PLC contains,
among others, the control logic applications on the PLC. All
applications, including their source code and further meta
information, can be loaded from a PLC.3

Programmable Logic Controllers (PLC). Programmable
logic controllers (PLC) are cyber-physical systems that are
used to control industrial appliances. PLCs have input and
output modules to interact with the physical world. They can
translate physical inputs, mostly current on a wire, into digital
values and vice versa. Connected to physical appliances such
as sensors and actuators, PLCs can convert sensor readings into
digital values, process the readings with the built-in computing
unit, and forward the outputs to the physical world. The logical
behavior of PLCs, i.e., the processing of the input data, is
programmable.

Such control loops can be either local, i.e., the inputs and
outputs are handled by a single PLC, or distributed, i.e., the
inputs are read by one PLC and forwarded over the network
to another PLC.

The two main software components of a PLC, control logic
and firmware, are shown in Figure 1. The firmware is acting
as a kind of operating system (OS). The firmware contains,
among other functionality, modules to read and write the inputs
and outputs of the PLC from/to the physical world. These
modules can be seen as drivers for the I/O hardware. Control
logic programs can be considered the PLC’s application layer.
The firmware provides services to read from input lines and
write to output lines of the PLC. They are used by the control

3This enables the operator to detect malicious modification of the PLC on
the control logic layer.

2

Physical
System

(Power Grid)

Central
Control

HMI

Operator

Sensor / Actuator
HMI: Human-Machine Interface
PLC: Programmable Logic Controller

Fig. 2: System Model

logic to program the behavior of the PLC. The control logic
programs are executed repeatedly in fixed intervals, called
scan cycles. The control logic program reads input values
from memory and stores the output values to memory. The
underlying firmware is responsible for the interchange of
these updated values to and from the PLC’s general purpose
input/output (GPIO) ports, i.e., the interface to the physical
system, as well as the reporting mechanisms of the PLC, i.e.,
the LED display on the device and the HMI. The scan cycle
is illustrated by the white arrows in Figure 1.4

For instance, a pump can increase the pressure in a pipe. In
order to have a constant pressure in the pipe the pump must
be active until the predefined pressure is reached. Whether
the desired level has been reached is determined based on
sensor readings. However, the sensor and the pump are not
directly connected. The sensor measurements are read by the
PLC through its input lines. The value is then processed by the
control logic, and the result is translated back into the physical
system to steer the pump.

This approach allows for high flexibility, e.g., the sensor
and actuator (pump) might not operate in close proximity
and the sensor measurements have to be sent to the PLC
controlling the actuator. This can be done cost-efficiently
through existing computer networks, even over the internet.
Furthermore, processing data in the cyber network allows for
more complex relations between sensor measurements and
actions.

B. System Model

In this paper, we mainly consider large distributed ICSs
that are operated in a centralized manner. Figure 2 shows
an abstract view of our system model in which a physical
system is operated from a central control terminal. The control
terminal provides a HMI that allows an operator to monitor
the system and interact with the system (by sending control
commands). The connection between the control terminal in
the cyber world of the ICS and the physical world is provided
by PLCs. PLCs capture the physical system’s state by reading
measurements from sensors. Additionally, PLCs control the
system’s actuators, based on both the control actions generated
by their local control logic and the control commands sent from
the operator.

4PLCs can be programmed with multiple independent control logic appli-
cations which are executed sequentially within in each scan cycle.

C. Adversary Model and Assumptions

Stealthiness. The main goal of the adversary is to launch a
stealthy attack on an industrial control system (ICS).5 Stealthy
means that the attack does not cause unintentionally observable
effects. For instance, sensor readings analyzed by a system
operator or automated tools should align with what they are
expected to be. Real world examples like Stuxnet [24] have
shown that stealthy attacks have a more enduring impact on
a system than a short attack which will rapidly break down a
system.

The attack exploits the circumstance that in real world
systems the operator’s view of the entire system is limited to
the information provided by the HMI, i.e., he cannot directly
observe the physical system and detect attack effects through
an out-of-band channel like visual contact. This limitation
can be due to different reasons, e.g., in large and distributed
systems the operator is physically not capable of observing
the entire system, or the system operates in a hazardous
environment and for safety reasons the operator only has
remote access to the system.

PLC-only Attack. We assume that the adversary compro-
mises only PLCs and no other components of the ICS, hence
the name Man-in-the-PLC. In particular, we do not assume that
the adversary has manipulated the human-machine interface
(HMI), e.g., to hide suspicious activities from the operator.6
Besides an operator observing the HMI, the ICS might include
security mechanisms like SCADA-specific7 intrusion detection
systems (IDS) that monitor the system [52]. We assume the
adversary cannot compromise (all) monitoring entities (i.e.,
IDS systems) in an ICS in order to hide an attack.

Furthermore, ICS components like HMI’s are usually based
on commodity hardware and software, e.g., a workstation
PC running Windows operating system. Security solutions
for those systems already exist, e.g., anti-virus software and
automated software update solutions, increasing the probability
for detection of an attack.

Physical Model Extraction. We assume the adversary has
knowledge about the inner workings of his target and uses
this information to build a model of the correct behavior of
the target to be able to hide suspicious effects of the attack.
The adversary can get the required information, for instance,
through an insider, or through preceding information gathering
attacks [32]. Although physical model extraction is outside of
the scope of this paper, it is worth noting that monitoring
and management systems of the ICS can be leveraged to
extract information about the physical model. For instance, in
power systems, energy management systems (EMS) are used to
control the power grid infrastructure. An EMS is a collection of
computer-aided tools used by operators of electric utility grids
to monitor, control and optimize the performance of generation
and transmission systems. A typical suite of EMS applications
includes several components that feed sensor measurements
into state estimation systems, contingency analysis software,
optimal power flow control analysis software, as well as an
HMI. Hence, the power system topology information can be
extracted through insider intruders (e.g., Stuxnet [24]) or EMS
compromises. Additionally, unlike in purely-cyber settings, the
physical power system and its topology is often exposed to
outside world; therefore, physical system reconnaissance is
relatively simpler.

5Obviously the attacker could also use HARVEY’s capabilities to cause very
visible attacks if he chooses to.

6Stuxnet for instance utilized a compromised HMI to hide itself from the
operator [24].

7SCADA: supervisory control and data acquisition.

3

III. HARVEY: MODEL-AWARE ROOTKIT

The central property of our rootkit HARVEY is the fact that
it takes into account the physical topology of the industrial
control system (ICS) it infects. This gives HARVEY unique
capabilities. Most importantly, it allows our rootkit to be
stealthy. HARVEY is completely invisible to the ICS’s virtual
world. This means that the effects of attacks launched by
HARVEY can neither be detected by human operators monitor-
ing system measurements nor by security tools like intrusion
detection systems (IDS) monitoring the ICS network. This
makes HARVEY uniquely powerful and goes beyond attacks
known today.

The idea of our model-aware rootkit is to infect the
firmware of a programmable logic controller (PLC), allowing
HARVEY to control all inputs and outputs of the PLC. The
control logic program gets access to the PLC’s input values
through the firmware from the physical world, processes them,
and then provides outputs that are forwarded to the physical
world through the firmware. The control logic can also interact
with other cyber components in the industrial control system
(ICS) over network.

Because HARVEY lives in the firmware layer and intercepts
the control and information flow of the firmware, it is com-
pletely transparent to the control logic. Each output which is
passed from the control logic to the firmware is captured by
HARVEY and can be changed, e.g., to maximize the effects
of the attack. Similarly, HARVEY can change the input values
seen by the control logic arbitrarily, e.g., to hide effects of its
attack.

HARVEY only compromises the PLC’s firmware, hence, it
cannot be detected by the operator’s PLC management tools. In
contrast, malware that operates on the control logic level can be
detected through the PLC’s remote management capabilities.
Control logic malwares need to rely on additional techniques
or assumptions to hide themselves from the operator. Stuxnet
compromised the operators workstation to hide itself [24];
Brüggemann and Spenneberg rely on the observation that they
can cause the operator’s remote management software to crash
by manipulating meta-data stored on the PLC [12].

Although our Man-in-the-PLC rootkit cannot be detected
directly by the operator, it could still be detected indirectly
through the effects it causes. To prevent unintended, possibly
suspicious effects in the ICS, HARVEY does not change input
and output values arbitrarily. Instead, our rootkit acts according
to a model of the target system which ensures that the opera-
tor’s view of the system stays consistent with his expectations.
This means that if the malware’s goal is to increase the pressure
in a pipe to damage it, it is not sufficient to activate the pump
by setting the output of the PLC accordingly. A sensor would
measure the increasing pressure and would alert the operator or
trigger an automatic safety mechanism. Hence, for the attack
to be successful, the malware must also ensure that sensor
readings presented to the operator are not suspicious, e.g., hide
the increasing pressure.

Since our rootkit uses a model to manipulate inputs and
outputs of a PLC in a coordinated fashion, it can present a
normal operation view towards the cyber world while manip-
ulating the physical world.

Model. The model according to which our malware is operat-
ing can be created and/or obtained in different ways. HARVEY
essentially makes use of the same models that are used to
control the underlying physical platform legitimately. However,
the malware optimizes the control commands for an adversarial
objective function.

For attacks on simple systems the model would be simple,
too, and can be created manually. For more complex systems
the model can be created with automated tools.8 The attacker’s
advantage is that he does not need to have a comprehensive
model of the entire system. She only needs a model for parts
of the system her attack will operate in. For instance, if the
attacker aims to damage a specific pipe in a large plant, she
only needs a model covering those components that her attack
will effect, which might be as few as a single pump and a
single sensor. Additionally, the model can also incorporate
the deployed (if any) intrusion detection sensors to ensure the
malicious control commands do not trigger the alerts.

In Section VI, we will present our evaluation results of
our model-aware malware on a real power grid. It shows that
manipulations in the physical world can be hidden from the
cyber world.

PLC Infection. Our rootkit works by compromising a PLC’s
firmware, which the attacker can achieve in different ways.
The attack can use the built-in firmware update mechanism
to replace the firmware on a PLC. Depending on the PLC
model, firmware updates are not secure against manipulations.9
Firmware updates can be deployed over the network for most
PLCs. Hence, PLCs which are reachable by the attacker over
the network can be compromised directly.

The attacker can also compromise PLCs locally. Many
PLCs allow firmware updates from local media such as SD
cards. Additionally, the attacker can use hardware interfaces
like JTAG10 to connect to the PLC and manipulate its firmware.
An attack has recently been presented that shows the ease of
JTAG implantation [25]. In Section V we describe in detail
our attack on a PLC through its JTAG interface.11

Lastly, if the previous attack methods are not available,
the adversary could facilitate run-time attacks, e.g., net-
work exploits. To the best of our knowledge, there are no
PLCs available that have run-time attack mitigation tech-
niques deployed. This means that attacks like code injec-
tion are likely to succeed on PLCs. Remote code execu-
tion vulnerabilities on PLCs have been issued just this past
year, e.g., CVE-2016-0868, CVE-2016-5645 and all vulner-
abilities associated with the FrostyURL vulnerability, such
as CVE-2015-6490, CVE-2015-6492, CVE-2015-6491, CVE-
2015-6488, and CVE-2015-6486. However, even in the pres-
ence of protection mechanisms, the developments in the desk-
top and server world have shown that attackers will find new
means of circumventing these protection mechanisms. Code
reuse attacks, like return oriented programming (ROP), have
already been applied on embedded systems [27].

IV. PHYSICS-AWARENESS

This section explains how HARVEY manipulates the control
actuation actions and sensor measurements within a PLC.

Figure 3 shows how HARVEY manipulates data streams to
damage the physical plant while ensuring the operators see
what they would expect to see based on their inputs to the
system. HARVEY performs the attack through manipulation

8Related work focusing on modeling industrial control systems is described
in Section VII.

9We will elaborate on our findings on firmware update security in Section V.
10Joint Test Action Group (JTAG) is an IEEE standard for testing and

debugging integrated circuits.
11Note that the goal of our work is to show the effectiveness of physics-

aware malware, providing novel infection vectors were not the scope of our
efforts.

4

Physical	 System	
(e.g.,	 power	 system)	

…	
Sensors	 Actuators	

…	

PLC	 Firmware	 Rootkit	 (Power	 System	 Model)	

Legi>mate	 Control	 Logic	

actual	 measurements	 adversary-‐op5mal	 	
malicious	 control	

fake	 legi5mate-‐looking	 	
measurements	

legi5mate	 control	

Legi5mate-‐Looking	 Interface	

Operator	

Fig. 3: HARVEY Two-Way Data Manipulation Attack

of data in both directions: i) control commands sent by the
operators and/or the control logic on the PLC to the actuators
deployed on the physical plant; and ii) sensor measurements
from the deployed sensors to the operators. The control
commands are corrupted to damage the physical system and
cause system failures, whereas the sensor measurements are
corrupted to evade the operator detection of the caused failures.

A. Control: Malicious Plant Actuation

In real-world control systems, e.g., power systems, the
system dynamics continuously change due to various factors,
e.g., electricity consumption changes by the civilians. Such
changes require updated control of the physical system to
ensure it maintains its core functionalities. For instance, in the
power grid control systems, the generation set-points (control
commands) are updated dynamically by the controllers to
ensure the amount of power that is consumed equals the
generated amount by the generators.

The control of the physical plant is often performed based
on the models of the underlying physical dynamics, e.g.,
fluid dynamics for the water networks and Kirchhoff laws
for the power systems. The models encode the correlations
between the system parameters due to the physics laws caused
by inter-component connections and dependencies. The most
popular generic modeling follows linear dynamical state-based
formalism ẋ = f (x,u), where

f (x,u) = Ax+Bu+ω (1)

y =Cx+ ε. (2)

The matrices A,B,C represent the dynamics of the physical
system, x is the state vector of the system, y is the sensor mea-
surements sent to the PLC, and u are the control outputs from
the PLC to the actuators. ω and ε encode the noise in system
dynamics and the sensor measurements, respectively. The PLC
control logic receives the sensor measurements y and calculates
the corresponding optimal control commands u∗ to maximize
a domain-specific objective function u∗ = argmaxu obj(x, f),
e.g., the minimum total generation cost in power systems.
The calculated control commands are sent to the PLC output
modules through its firmware facilities.

HARVEY sits within the firmware and intercepts the output

module write requests, and replaces them with malicious
control output u∗m. It calculates the malicious control outputs
through similar logic as the legitimate controller with only
one difference: it calculates the control outputs that minimize
the corresponding objective function u∗ = argminu obj(x, f) to
maximize the damage on the physical plant. HARVEY writes
the calculated commands to the corresponding PLC output
ports that are connected to the physical plant actuators. The
corrupted control commands drive the plant towards unsafe
states leading to potential physical failures, e.g., power system
blackouts.

It is noteworthy that HARVEY’s malicious control output
calculation can also incorporate additional constraints that
may be introduced to evade the detection of the attack. For
instance, in a water plant, the constraints may avoid an extreme
increase of the pump rotation speed because of its potentially
noticeable noise. Additionally, without the loss of generality,
the linear model mentioned above can be replaced with either
simpler or more complicated models used by the PLC control
logic depending on the specific control system domain (see
Section VI for an empirical power system case study.)

B. Monitoring: Sensor Data Corruption

The control command manipulation attack, discussed
above, causes unsafe physical plant states, but it does not
contain the necessary amount of stealth for practical real-world
deployment. Hence, it can be easily detected by the control
system operators, who continuously monitor the real-time
physical plant state on the human-machine interface (HMI)
screens. The HMI screens are frequently updated automatically
by fetching the PLC’s memory for the most recent physical
system sensor measurements that have been delivered to the
PLC’s input module.

To evade the detection, HARVEY intercepts the sensor mea-
surements on the PLC and replaces them with fake values that
would make the underlying physical system status look normal
to the operators. Stuxnet implemented an innovative system
status record-and-replay attack. The worm would record the
plant dynamics for 13 days before it injected malicious control
logic on the PLC. Once the attack started on the plant
(malicious control logic execution on the PLC), Stuxnet would
replay the recorded data stream back to the operator screens.

Such record-and-replay attacks would work in specific
control system plants with static and stationary low-pace
dynamics such as uranium enrichment, which was Stuxnet’s
target. However, the sole record-and-replay attack would not
be practical and can be easily detected if used in typical
control systems with high-pace dynamics such as a power grid.
In power grids, the operators constantly change the system
configuration/topology and parameter values as a result of
many external unpredictable factors, such as real-time demands
by the end-point electricity consumers and real-time climate
for renewable energy sources such as solar and wind generation
plants. Therefore, a replay of a previously recorded sensor
measurement stream back to the operators is very unlikely
to match exactly the expected status of the power system
following the operator’s most recent control commands.

HARVEY addresses the challenge above in highly dynamic
control system environments through real-time and lightweight
physical plant simulation within the PLC firmware. HARVEY
takes the legitimate controller commands that either the oper-
ator or the legitimate controller logic on the PLC issues to be
sent to the output modules and actuators. HARVEY then simu-
lates the physical plant dynamics by solving the corresponding
plant models (e.g., Equation (1)). Through the simulation of the

5

physical system, HARVEY essentially calculates how the power
system would “look” if the legitimate control commands would
really be sent to the deployed actuators. HARVEY replaces the
actual sensor measurements with their corresponding simulated
fake values before they are written to the PLC memory. The
following PLC memory reads by the operators’ HMI software
would be receiving the fake measurements. Hence, the HMI
screens would show a legitimate-looking physical system state
to the operators.

The fabricated PLC memory values are used as sensor mea-
surements by the legitimate control logic that is developed by
the operators and runs on top of the malicious PLC firmware.
Consequently, the legitimate control logic will calculate control
commands that satisfy the operators’ expectations on the HMI
screens. It is noteworthy that HARVEY does not replace the
legitimate control logic execution. Instead, it runs its malicious
code in parallel to the legitimate control logic, and hence
the outputs from both executions are calculated and used
for different purposes (i.e., for faking the physical system
appearance and damaging its actual components).

C. Distributed Monitoring and Control

In practice, a large-scale control system is often maintained
by a set of distributed PLCs, each in charge of their assigned
local “zone”. As an example, in power systems, the electricity
grid is typically partitioned into several sub-areas each main-
tained by a separate controller [28]. In water plant facilities,
the water treatment is often performed in a sequence of several
serial phases such as chlorination, pH control, filtration, and
disinfection. Individual phases are usually operated by separate
control logic programs either all on the same PLC or each sit-
ting on a separate PLC. For real-time monitoring and control,
each PLC takes the monitoring and control responsibility of
its associated zone independently such that its local sensor
measurements suffice for its zonal control operations.

The distributed monitoring and control paradigm is tradi-
tionally employed to ensure real-time and reliable operation;
however, it can be leveraged by the PLC firmware attacks such
as HARVEY to ensure its stealthiness against large-scale control
systems even when one or just a few of PLCs are infected.
Put in other words, to perform an attack against a large-scale
platform, the adversaries do not have to compromise all the
controllers to maintain stealth.

V. HARVEY IMPLEMENTATION

This section describes our rootkit implementation for an
Allen Bradley 1769-L18ER-BB1B CompactLogix 5370 L1
Rev. B. It is noteworthy that the attack implementation is
explained specifically for the PLC model above. The PLC soft-
ware/hardware architectures are fundamentally similar across
various vendors. Hence, the proposed techniques can be gen-
eralized to other widely-used industrial PLCs.

HARVEY deeply interferes with the core functionality of
the PLC’s firmware. This interference allows complex behavior
manipulations of the PLC, which is required for stealthy con-
trol system attacks as described in the previous section. Since
the firmware of PLC is not openly available, we had to reverse
engineer it as the first step of our prototype implementation.
Most techniques in this multi-step process are known but
nonetheless technically challenging and needed.

Device Selection and Specification. Before we get into the
analysis details of the Allen Bradley 1769-L18ER-BB1B Com-
pactLogix 5370 L1 Rev. B, we shortly explain which criteria

Fig. 4: LM3S2793 JTAG Pins and Their Connections to the
10-pin ARM-JTAG Connector.

we used to select the target device for our implementation. On
one hand, groundwork on reverse engineering Allen Bradley
PLCs had been done before by the Air Force Institute of
Technology [7], [44]. On the other hand, unlike Siemens
PLCs–which have received a lot attention in recent years–
Allen Bradley PLCs are mostly uncharted. Nevertheless, Allen
Bradley is one of the largest vendors for industrial control
systems internationally. In particular, the CompactLogix L1
series is widely used in several safety-critical infrastructure
applications such as power grids, water plants, oil&gas refiner-
ies, and medical devices (e.g., the Adept Viper S650 surgical
assistant robot).

The 1769-L18ER-BB1B CompactLogix 5370 L1 Rev. B
is based on a Texas Instruments Stellaris LM3S2793 Micro-
controller,12 which uses the ARM Cortex-M3 instruction set
architecture (ISA).

Two sets of pins from the processor’s pin configuration
were of relevance to our work: (1) the processors pins asso-
ciated with the JTAG interface, and (2) the input/output port
pins of the processor.

Joint Test Action Group (JTAG) is commonly used to refer
to IEEE Standard 1149.1 [1]. JTAG can be used as a hardware
debugging interface in the processor.13 We used JTAG to
develop our HARVEY prototype, as the JTAG connection
allowed us to read out the CPU’s memory, including flash
memory, read-only memory (ROM) and static random access
memory (SRAM). Although HARVEY is not limited to JTAG
as method to infect a PLC exploring further infection paths is
out of scope in this work.

Figure 4 shows the PLC’s CPU, i.e., a Texas Instruments
LM3S2793. The CPU’s pin allocations are marked as well as
the connection of the JTAG pins to the solder pad on the right
side of the board.

A. Preparation

The ultimate goal of our work was to modify the firmware
of the PLC to manipulate input and output values of the PLC
without changing the PLC’s control logic. To accomplish that

12The processor’s data sheet can be found online and reveals important
details about the processor [49].

13Although the JTAG header was physically compatible to typical ARM
Cortex-M3 10-pin JTAG connection, the pin configuration was different.

6

TABLE I: TI LM3S2793 Memory Map

Start End Description
0x00000000 0x0001FFFF On-chip Flash
0x00020000 0x00FFFFFF Reserved
0x01000000 0x1FFFFFFF ROM
0x20000000 0x2000FFFF On-chip SRAM
0x20010000 0x21FFFFFF Reserved
0x22000000 0x221FFFFF Bit-band alias of

SRAM
... ...

0x4005C000 0x4005CFFF GPIO Port E (AHB)
0x4005D000 0x4005DFFF GPIO Port F (AHB)
0x4005E000 0x4005EFFF GPIO Port H (AHB)
0x4005F000 0x4005FFFF GPIO Port G (AHB)

... ...

we had to find the firmware functions which are responsible
for handling the PLC’s inputs and outputs.

The first step in analyzing the firmware of our prototyping
platform was to obtain images of the firmware. We used two
approaches: (1) We downloaded firmware update packages
from the vendor’s website and extracted the firmware images
from them.14 (2) We extracted the firmware from the PLC’s
memory using the JTAG interface of the PLC’s main processor.

Firmware Images. Allen Bradley PLCs (at least Compact-
Logix L1 and ControlLogix L61 models) have two firmwares.
(1) A base firmware which is shipped with the PLC which
provides a minimal function set of the PLC, and (2) a full
flashed firmware which provides all functionality for operation.
The latter will be referred to as full firmware for the rest of
the paper, while the first we call base firmware.

The base firmware can only be extracted from the PLC’s
memory as it is not contained in the firmware update package.
The base firmware is intended to have one central functionality:
to recover the PLC in case an update of the full firmware did
not succeed. Hence, the base firmware should not be updated.

The full firmware of the PLC can be updated, with several
versions are available for download from the vendor’s web-
site [42]. It can be updated remotely over Ethernet or locally
via USB or SD card.

Memory Layout and I/O mapping. The TI LM3S2793 maps
all flash memory, ROM, SRAM as well as peripheral devices
into one contiguous memory address space. Table I shows parts
of the memory map of the CPU [49].

B. I/O Interception

To recover the functionality of the firmware we use offline
as well as online analysis of the firmware. Offline analysis
was done with standard reverse engineering tools such as hex
editors and dis-assemblers. The online analysis was possible
due to the JTAG connection we could establish with the PLC.

Offline Firmware Analysis. We disassembled the downloaded
and extracted firmware binary files from the firmware update
file. However, only a small portion of the code was initially
disassembled correctly, to improve the results we utilized

14Vendors like Siemens encrypt their firmware images in update packages.
However, the key to decrypt them have been published [8]. The firmware
images associated with our PLC are not encrypted.

techniques presented in [7]. This code provided a greater
insight of higher level functionality of the firmware, but the
memory we extracted directly from the CPU through the JTAG
interface proved to be more fruitful. Using the JTAG-extracted
memory files, we first aimed to get a general understanding
of the functionality of the firmware. Using the ARM Cortex-
M3 documentation, we were able to identify the nested vector
interrupt controller (NVIC) table. This table contained the ad-
dress of the reset handler, i.e., where the device starts execution
after a reset. Using this address, we were able to follow the
boot sequence and disassemble the core functionality in the
PLC’s flash memory as well as all functions called in SRAM
and ROM.

More importantly, we used the ROM data sheets for
Stellaris LM3S devices to identify calls to the micro-
controller’s built-in functions [48]. This helped to iden-
tify when important calls to functions that interacted
with system peripherals were executed. Identifying these
functions gave us a basic understanding as to how the
firmware was configuring the controller. Specifically, the
functions to control the CPU’s general purpose input/output
(GPIO) ports, such as the ROM GPIOPinTypeGPIOInput,
ROM GPIOPinTypeGPIOOutput, ROM GPIOPinWrite and
ROM GPIOPinRead functions, provided us with functions to
look out for as we disassembled the firmware.

One other detail worth mentioning is that we were able to
find where the NVIC table was being re-based after the initial
boot sequence. Typically the NVIC is re-based to address
0x4000 in ARM Cortex-M3 processors. This was confirmed in
our dis-assembly as the vector table offset (located at address
0xE000.ED08) was set to 0x4000 at the end of the boot
sequence. By knowing where the NVIC is, we knew where the
addresses of the interrupt service routines (ISR) specified in
the LM3S2793 documentation were located. In the following
section, we will see the significance of this detail.

Online Firmware Analysis. The JTAG connection of the PLC
allowed us to analyze and debug firmware during its execution.
We could set break points, step through functions, read and
write memory and modify registers of the CPU while it is
executing. We used this to follow the control flow of the
firmware and discover reachable code sections.

Through the analysis we could identify the main loop
of the firmware. We coupled our online analysis with our
offline analysis to step through functions and follow along the
disassembled paths. By knowing the boundaries of the main
loop, we could investigate where the interaction between the
LEDs/HMI and the GPIO Ports occurred. The PLC is equipped
with LEDs, one per I/O pin. Similarly, the input values sent
to the HMI allow the operator to observe the system state.

When the PLC is power-cycled, an LED sequence is
generated where each LED associated to the embedded I/O
is sequentially blinked, starting from the Input Ports to the
Output Ports. This sequence is relatively slow and involves a
sleep period. This allowed us to halt the processor in between
two LEDs being blinked. After stepping through the LED
sequence, we were able to determine the subroutine associated
with sending the LED values over I2C. Additionally, we
identified the address where the I/O values are stored before
they are sent to the LEDs. We confirmed this by modifying the
associated registers (while the CPU was halted) and stepping
through to force arbitrary values different from the typical LED
sequence. Although this confirmed that we could control what
values were being sent to the LEDs, we still needed to take
control of the interchange between the LEDs/HMI and the
GPIO Ports.

7

We found that the main loop has one reference to this
LED update function. We noticed that before this update
function, a few timer interrupts were being disabled. Using
the information from the re-based NVIC table as well as the
data sheet, we were able to find the associated ISRs located
in SRAM. In particular we found that the Timer 0A ISR was
responsible for the interchange between the GPIO Pins and the
LEDs/HMI.

As described in Section II-A PLCs operate on the basis of
so-called scan cycles, i.e., in fixed intervals inputs are read,
the control logic is executed, and the results are written back.
We are careful to identify this main loop as being directly
correlated to the scan cycle. The Timer 0A ISR seems to be
independent of the scan cycle as it is set to run every 0.25 µs.
It is only interrupted when updating the LED values. Because
this process has not been fully reverse-engineered, we cannot
make much stronger inferences than those already mentioned.

C. I/O Interception Code Modifications

As described in the previous section, we identified the exact
two subroutines where the values from GPIO Ports E and F are
being forwarded to the PLC memory associated with the input
values, i.e., the input values sent to the control logic program,
the LEDs and the HMI, as well as where the output values
from the PLC memory are forwarded to the associated output
memory for the LEDs, HMI, and GPIO Ports G and H.

For the output update routine, HARVEY uses the physical
models to send legitimate-looking data to the LEDs/HMI,
and sends malicious values to GPIO Ports G and H. For the
input update routine, HARVEY uses the legitimate input data
from GPIO Ports E and F to update the malicious model and
possibly coordinate with the output modifications. HARVEY
again uses the physical models to report legitimate-looking
input values to the LEDs/HMI. The input values, which the
control logic might report, e.g., to the system operator, can be
crafted such that they correspond to the observation HARVEY
makes on the control logic’s output, as described in Section IV.

I/O Interception Details. In order to implement our attacks,
we modified two subroutines within the Timer 0A ISR that are
responsible for the interchange of values to and from the GPIO
Ports. Figure 5 shows the aforementioned first attack scenario
where we reported false output values to the LEDs and HMI.

The figure shows the original subroutine that was responsi-
ble for forwarding an updated output value from memory to the
GPIO Ports G and H. The subroutine first updates the address
corresponding to the LED and HMI output, =LED Output, and
then calculates the correct values to send to the GPIO Ports.
For our attack, we first modified an arbitrary location of usable
(or re-usable) memory in SRAM and injected our malicious
assembly code. Once the malicious code was written, we
modified the subroutine to branch to our malicious code. The
malicious code would then branch back to the subsequent
instructions once the appropriate values were modified. In our
attack scenario, a safe system state with Output Port 0 high
would have a “0” at the least significant bit, representing the
0 port, and the rest of the bits would be set to 1, i.e., a value
of 0xFFFFFFFE. In our attack, we want to set Output Port
0 to low and Output Port 1 to high, i.e., write a value of
0xFFFFFFFD to the associated memory address. We chose to
branch to an arbitrary memory location to prove that we can
make use of the available memory to implement more complex
attacks. Figure 6 shows the second attack implemented in a
similar fashion.

Fig. 5: Original GPIO-output update ISR assembly code com-
pared to modified subroutine with branch to malicious code.

Fig. 6: Original GPIO-input update ISR assembly code com-
pared to modified subroutine with branch to malicious code.

In this case, the goal was to fake the input values being sent
to the LED’s/HMI as well as the actual ladder logic program
running on the PLC. With no inputs, the expected value would
be 0xFFFFFFFF. In our attack, we disregard the values read
from the GPIO Ports E and F and simply wrote a value of
0xFFFFFFFC to the input LEDs, setting Input Port 0 and Input
Port 1 to high.

D. Firmware Update

We believe that the built-in remote firmware update func-
tionality of PLCs is the most likely method for an attacker to
compromise a device. This is based on observations in related
work that firmware updates are not protected against malicious
modifications [7], [44]. For our PLC model, the situation is
different. Firmware updates are protected by cryptographic
means. Firmware updates are delivered together with certifi-
cates in the X.509 standard [16]. The certificate contains a
SHA-1 [37] hash of the firmware binary file and is signed
with 1024bit RSA [41]. Although the certificate is self-signed,
the PLC will abort the update process when provided with a
self-signed certificate using a different key than the original
one. This makes it practically impossible for an attacker to
change the firmware and install it on the PLC. To succeed,

8

the attacker has two options, (1) he could attempt to find a
pre-image hash collision for the SHA-1 hash of the benign
firmware binary, or (2) he could factorize the public key used
to sign the certificate.

However, an attacker can always compromise a device
through the JTAG interface, like we did.

VI. EVALUATIONS

We evaluated several aspects of HARVEY. On one hand,
we evaluated the effects of HARVEY on the individual pro-
grammable logic controllers (PLC), its influence on execution
times and its memory consumption. On the other hand, we
evaluated HARVEY in a real-world power system to empirically
prove that HARVEY can (1) maximize the effects on the
physical system, and (2) hide its malicious effects from the
operator.

A. PLC Evaluation

Our PLC model is equipped with an ARM Cortex-M3
processor with 64KB RAM [49]. It has 512KB memory for
user programs (control logic), as well as 16 DC digital inputs
and 16 DC digital outputs.

Experimental Setup. To evaluate the effects of HARVEY
on a PLC we set it up with a typical control logic.
We installed a control logic program for a PID (propor-
tional–integral–derivative) controller which is shipped by the
vendor of our PLC as a standard control logic instruction used
in many environments.

In order to model fake input and output values, we used a
custom implementation of a PID controller. Figure 9 shows an
extract of its assembler code. The code represents a sample
PID update function that takes in the current system error
and the difference in time since the last iteration and updates
the control output based on the summation of the scaling
terms. These scaling terms are determined by the type of PID
controller. In this case, we defined proportional, derivative
and integration error terms to be summed for the control
output. A windup guard is used to set a maximum value for
the integration term. We compiled this code using a pre-built
GNU toolchain for ARM Cortex-M3 processors as well as the
StellarisWare libraries for our processor.

To validate the modifications of HARVEY we had to
compare the physical outputs of the PLC with the information
provided to the operator. To measure the physical output of the
PLC we wired it to a voltmeter. To determine the operator’s
view of the system state, we used the built-in LEDs of the
PLC as well as the online monitoring provided by the vendor’s
control logic development suite, which we will refer to as our
HMI. The PLC has a dedicated LED per input and output pin
which lights up according the logical state of the pin, i.e., when
there is current on the pin the LED will turn on, otherwise,
the LED will be off. On the HMI side, online updates of the
downloaded control logic program are displayed in real-time.

We used HARVEY to break the relationship between the
displayed system state and the actual inputs and outputs on
the physical pins of the PLC.

Attack. We were able to change the LED and HMI states of the
PLC arbitrarily and independently of the state of the input and
output pins. Similarly, we were able to set the output values
of pins regardless of the commands sent by the control logic.

31,74 31,03

0,18 0,25
0

5

10

15

20

25

30

35

PID (DINT) PID (REAL) Relay Logic Attack
Code

Timer 0A Interrupt

Ex
ec

u
ti

o
n

 T
im

e
(µ

s)

Fig. 7: Feasibility Analysis: Performance Overhead

Execution Time. To evaluate the performance of HARVEY, we
measured its execution time and compared it to the execution
time of the PID control logic. The measurements are provided
in Figure 7, depending on the mode the PID control logic takes
between 31.03µs and 31.74µs. The timer A0 interrupt handler,
which controls the input/output interchange between the GPIO
ports and the LEDs/HMI, takes only 0.25µs, which is two
orders of magnitude faster. Our attack code, which implements
a simple relay logic, takes only 0.18µs.

As described in Section II-A PLCs work in scan cycles.
This means inputs are read and outputs are written at a fixed
rate, while the control logic gets executed in between. The
control logic execution time may not exceed the scan cycle
length, otherwise it gets interrupted. Usually, the execution
time of control logic is well below the length of a scan
cycle. This means that HARVEY can utilize the time difference
between control logic execution length and scan cycle length.

If the unused time of a scan cycle is not sufficient for
HARVEY, there are several potential solutions that can be
implemented to influence the length of a scan cycle. For
instance, HARVEY’s periodic execution depends on a timer
interrupt configuration. Because HARVEY is executing within
the firmware, the timer interrupt configuration can be modi-
fied to better suit the attacks needs. Similarly, the reporting
mechanisms for the control logic/HMI also depend on the
timer interrupt configurations that are implemented within the
firmware. Therefore, there are several permutations of an attack
vector that would allow HARVEY to execute in a timely fashion
with a reasonable amount of independence from the scan cycle
duration.

Memory Consumption. Our PLC has a finite amount of
memory which must be shared between the benign firmware
and HARVEY. Although the firmware initially occupies most
parts of the memory, large parts are never used. These sections
were determined during our online analysis. Furthermore, we
examined subroutines that were no longer called after the ini-
tial boot sequence. Once the PLC reached the aforementioned
main loop, we were able to identify the subset of subroutines
that were called by the PLC during the boot sequence but
were no longer referenced within the main loop. We refer
to this memory as reusable memory. We verified that these
functions were no longer used by setting breakpoints at the
function addresses as well as any referenced locations within
the subroutine. We consider unused memory as memory parts
which contain regular patterns that indicate that the memory
is not used, for instance, memory sections filled with all
0x00000000 or all 0xFFFFFFFF. Additionally, we found large
chunks of memory that contain what seems to be garbage code
that is never referenced throughout the firmware execution.

For the practical feasibility of HARVEY, Figure 8 lists

9

228 92 24 1932 54063

1970

0

10000

20000

30000

40000

50000

60000

PID (DINT) PID (REAL) Relay Logic
Attack Code

PID Attack Code Available
Memory

C
o

d
e

Si
ze

 (
B

yt
es

)

Instruction/Code Unused Memory Reusable Memory

Fig. 8: Available Memory vs. Malware Size

the memory consumption of the PID control logic as well as
reusable and unused memory in the firmware. It also shows
the memory consumption of the custom PID update function
we used as the adversary’s system model in our setup.

HARVEY can utilize the unused memory as well as the
reusable memory parts, which is significant portion of the
PLC’s memory (56.033Bytes out of 65.536Bytes).

B. Real-World Power System Case Study

We evaluated HARVEY on a real-world power system test-
bed, where distributed PLCs with installed PID modules along
with more complicated control algorithms (discussed below)
maintain safe power system operation.

The electricity grid is modeled using the mathematical
power flow equations (physical Kirchhoff laws):

f p
i =−Pg

i +Pl
i + ∑

k∈C
|Vi||Vk|(Gik cosθik +Bik sinθik), (3)

which mandate how the sensor measurements (e.g., real/re-
active power values on i-th power node (bus) Pi/Qi, power
bus voltages Vi, inter-bus phase angles θi j, and the admittance
(inverse resistance) parameters (Gi j,Bi j) on the transmission
line between the buses i and j correlate due to well-known
physics Kirchhoff laws. Pg

i represents the amount of power
that is injected to the i-th power bus by a generator, and Pl

i is
the amount that is consumed by the end-users at that bus.

Optimal power flow (OPF) is the most widely used control
algorithm that is used in practice nowadays to calculate the op-
timal control commands continuously. In power systems, OPF
finds an optimal power generation set-point that minimizes
total cost c while meeting operational safety constraints [2].
The control commands typically include power output (set-
points) of generators [19]. The OPF’s equality constraints are
the power balance equations at each bus in the system. Its
inequality constraints are the network operating safety limits
such as line flow capacities and generator power output limits:

min
u

c(x,u)

s.t. Pg
i −Pl

i = ∑
k
|Vi||Vk|(Gik cosθik +Bik sinθik)

Qg
i −Ql

i = ∑
k∈C
|Vi||Vk|(Gik sinθik−Bik cosθik)

Pg
l ≤ Pgmax

l
∀i, j ∈ N, ∀l ∈ G, ∀k ∈C

(4)

where u denotes the controls commands to be calculated; x
represents dependent variables; V and θ denote the bus voltage
magnitudes and angles, respectively.

pid_update

PUSH {R4-R6}

(collapsed code)

STRD.W R3, R4, [R7,#0x30]

(collapsed code) ;integration with windup guarding

BEQ loc_81D0

LDR R3,=windup_guard ;int_error>windup_guard

 ;int_error=windup_guard

(collapsed code)

LDR R3,=int_error ;int_error >= windup_guard

(collapsed code)

B loc_81F2

LDR R3,=int_error ;int_error-=windup_guard

(collapsed code)

B loc_81F2

LDR R3,=prev_error ;differentiation

(collapsed code)

STRD.W R3,R4,[R7#0x28]

LDR R3,=proportional_gain ;scaling

(collapsed code)

BL _muldf3

(collapsed code)

LDR R3,=integral_gain

LDRD.W R0,R1,[R3]

LDR R3,=int_error

(collapsed code)

BL _muldf3

(collapsed code)

LDR R3,=derivative_gain

(collapsed code)

BL _muldf3

(collapsed code)

LDR R2,=control ;summation of terms(control=p+i+d)

(collapsed code)

LDR R2,=prev_error ;prev_error=curr_error

(collapsed code)

POP {R4-R7,PC}

Fig. 9: Injected Malicious PID Controller

The legitimate OPF’s objective is to minimize the cost
while ensuring the system operates safely. HARVEY imple-
ments a modified version of the algorithm, malicious optimal
power flow (mOPF), to maximize the cost without the need
for compliance with safety constraints:

max
u

c(x,u)

s.t. Pg
i −Pl

i = ∑
k
|Vi||Vk|(Gik cosθik +Bik sinθik)

Qg
i −Ql

i = ∑
k∈C
|Vi||Vk|(Gik sinθik−Bik cosθik)

∀i, j ∈ N, ∀l ∈ G, ∀k ∈C

(5)

where the calculated control commands would maximize the
amount of possible damage to the power system. The calcu-
lated commands are used as set-points to be maintained by
the inner-loop PID controllers. Please note that the specific
objective function for different malicious goals can be simply
used instead in the formulation above.

Our power system test-bed implements IEEE nine-node
(bus) benchmark topology [15] including three synchronous
power generators and controlled by nine distributed PLCs.
Figure 10 shows the test-bed (top right), its cyber network
topology (top middle), power system topology (top left), Lab-
View control diagram (bottom right), supervisory control and
data acquisition device interconnections (bottom middle), and
monitoring and control operations (bottom left). The model
has three substations and corresponding loads (which con-
sume power). The power nodes are connected through power
transmission lines. To follow real world implementations, we
equipped each substation with protection functions such as
over-current, voltage and frequency, i.e., the substation will
open a transmission line if they carry current beyond its physi-

10

	

IEEE 9 Bus
Power System
Control Area

1

2

Gen 1

7
3

9

Gen 2

Substation 3

Gen 3

8

4

Substation 1
65 Substation 2

PMU

PMU PMU

PMU

PMU PMU

Power System Control Area
 Control Plane

Substation 1
 Router

Substation 3
Router

 Communication
Link

Substation 2
Router

IEDs

Distribution
Lines

Generation
Unit

SCADA

PLC
Main	 Control	 Unit

IED 2
Substation

Measurement

IED 1
Substation

Measurement

IED 3
Substation

Measurement

PLC
Central Controller

OPC UA
Middleware

Information Exchange

HIL
Simulation

SCADA PDCMaster SCADA
Control Center

System
Operator

Grid Control
Applications

State Estimation

Load Shedding

Wide Area Monitoring and Control

Event Analysis and Disturbance Recording

Protection

Power Flow

Ethernet
Fiber Optic

Fig. 10: The Evaluation Smart Grid Test-Bed

cal capacity or cause over-voltage or over-frequency situations.
To monitor the power system, the voltage and current sensors
(phasor measurement units PMUs) send their measurements to
PLC controllers that act as monitoring/control agents and are
responsible for all operational functions in the system.

On the cyber end, the testbed includes a human-machine
interface (HMI) server to provide the system status to the op-
erators through its connections to the PLC. The data exchange
between different field devices is established by open platform
communications (OPC) Client I/O servers [38]. Kepware OPC
Server provides embedded drivers to connect to the PLC. The
testbed employs a ReLab device driver to connect to and obtain
measurements (IEEE C37.118) from PMU sensors. Briefly,
using Kepware’s IEC 61850 MMS clients, the KEPServerEX
OPC Server drivers create an interface for any of the OPC
clients running in the network.

We evaluated HARVEY for two attack scenarios.

Steady-state system malicious attack: Repeated heavy load
circuit breaker open/close triggering without loss of power
system stability. In this scenario, the malicious PLC firmware
randomly (blindly) selects a circuit breaker to attack and
triggers the opening/closing of the breaker several times, i.e.,
a transmission line opened and closed repeatedly. The power
system was able to withstand this attack scenario without
losing the stability since the target circuit breaker load was
in the limits of power system generation reserve capacity. The
SEL-451 PMU is located on generator 1 bus, and the 421-PMU
is located at generator 2 bus. Figure 11 shows the power system
status during the attack that starts at 11.29.30 PM. The circuit
breaker was opened and closed three times sequentially within
ten seconds. The heavy loading in the system deteriorated the
system frequency (Figure 11a) and voltage (Figure 11b). The
AC phase angle difference between generator 1 and generator
2 exceeded permissible limits (Figure 11c). The power flow
magnitudes (Figure 11d) also violated safety thresholds tem-
porarily. As shown, although the instant voltage and frequency
of the system exceeded permissible limits, the power system
was able to withstand this type of attack. During the attack,
HARVEY was able to run the power system model on the
PLC in parallel and generate fake legitimate-looking sensor

measurements to be viewed by the operators. Figure 12 shows
the results (before the noise was added for the presentation
clarity). As the attack on the physical plant would result in
noticeable side effects such as equipment operational noise,
HARVEY’s outputs show a minor system perturbation within
safety limits that is normally observed on daily dynamic power
system operations. From the operators’ viewpoint, the system
acts safely and no corrective action is needed.

Adversary–optimal control attack: optimal malicious attack
using real-world control algorithms. In this attack scenario,
HARVEY implements a real-world power system controller
algorithm, called optimal power flow (OPF) [10], that is
widely used in power system control centers internationally.
OPF is implemented as a linear programming function: it
typically finds the optimal power system control strategy that
minimizes the overall cost while ensuring the system safety.
The system safety is usually defined by a set of lower and
upper bound thresholds for various system parameters such
as power transmission line current capacities, and minimum/-
maximum allowed system frequency 59.5-61Hz (60Hz is the
nominal power grid frequency in USA). The control strategy
is essentially a set of control commands that the PLC sends
to the actuators, e.g., generation set-points to the generators
that mandate how much power each generator should generate.
HARVEY implements the same control algorithm on the PLC
after making three modifications to the algorithm (we call
it malicious OPF - mOPF): i) it removes the condition that
ensures the system is within safety margins; ii) it replaces
the cost minimization function with maximization so that the
adversarial impact becomes maximum; and iii) HARVEY adds
predefined stealthy conditions to ensure its malicious control
actions do not get noticed/detected by the local operators on
site due to the noise the actions generate. Example conditions
are “no power generator disconnect from the rest of the power
grid” in large power plants, since such disconnects cause a
noticeable sound noise to the potential local operators. In
practice, there are typically few or no operators present on
remote power system substations. This gives HARVEY more
freedom in terms of what malicious actions it can carry out.

In this attack scenario, HARVEY’s objective was to im-

11

Fr
eq

u
e

n
cy

 (
H

z)

(a) Frequency

V
o

lt
ag

e
A

m
p

lit
u

d
e

 (
V

)

(b) Voltage Magnitude

P
h

as
e

A
n

gl
e

(D
eg

re
e

s)

(c) AC Voltage Phase Angle

A
ct

iv
e

Po
w

er
 (

M
W

)

(d) Power

Fig. 11: Actual Power System Measurements

A
ct

iv
e

 P
o

w
e

r
(M

W
)

V
o

lt
ag

e
 (

V
)

Fr
e

q
u

e
n

cy
 (

H
z)

Time(s)

Fig. 12: Fake Measurements to Mislead the Operator

plement mOPF on the PLC to calculate adversary-optimal
control strategy for the power plant. Using the power system’s
safety constraints, HARVEY intercepts the legitimate control
action outputs and instead sends out its optimally-calculated
malicious control commands to the power actuators at specific
time points. HARVEY sets the nominal frequency reference to
62 Hz, and its malicious controller calculates and sends out
control commands accordingly.

Figure 13 shows the actual power system measurements.
HARVEY makes the power system frequency exceed its safety
margins through its malicious commands (Figure 13a). The
system’s voltage magnitude (Figure 13b), AC voltage phase
angle (Figure 13c), and electric power values (Figure 13d)
experience serious instability as well. However, in order to
mislead the operator, HARVEY implements a legitimate OPF
algorithm in the background to simulate the power system and
calculate individual system parameters assuming that the legit-
imate OPF control commands were carried out on the power

system. The fabricated fake sensor measurements (Figure 14)
are sent back to the operators’ HMI screens. Consequently,
from the operators’ viewpoint, the underlying power system
follows their expectation, while in reality, the system goes
through serious instability situations facing potential large-
scale failures. An experienced operator might get suspicious
of small disturbances visible in the graph. However, such
disturbances can also occur in normal operation. Similarly, an
automated tool monitoring the ICS must be tolerant to small
disturbances to reduce the number of false positive alarms.

VII. RELATED WORK

We discuss related work on ICS security in terms of
proposed defense mechanisms and possible attacks.

Defense mechanisms have been proposed on network and
host/device levels. SOCCA [53] generates network-level attack
graphs based on Markov decision processes considering the
impact of the adversarial actions on the physical power system.
CPMA [17] uses the ICS attack graphs to perform security-
oriented risk analysis, so-called contingency analysis, regard-
ing potential threats against the power grid. Both solutions
consider PLCs as the interface between cyber and physical
assets of the infrastructures, and identify them as potential
targets by the adversaries. SCPSE [54] and CPAC [21] present
a stateful detection mechanism to detect attacks against control
systems based on the received sensor measurements by the
operators. HARVEY evades such detectors completely through
replacing them with legitimate-looking fake measurements.

Unlike traditional IT cyber networks, ICS networks often
follow well-defined behavioral patterns. Therefore, online ICS
intrusion detection solutions monitor the runtime operation
for anomalous behaviors as opposed to the signature-based
paradigm [13], [31], [51]. Formby et al. [26] employ the
behavioral profiles for device fingerprinting and access control.
Security solutions in ICS has to be non-intrusive against safety-
critical operations with real-time constraints that run mostly
on resource-limited embedded devices/controllers [52]. Such
anomaly-based solution cannot identify HARVEY, since it uses

12

Fr
eq

u
e

n
cy

 (
H

z)

(a) Frequency

V
o

lt
ag

e
M

ag
n

it
u

d
e

(V
)

(b) Voltage Magnitude

P
h

as
e

 A
n

gl
e

(D
eg

re
e

s)

(c) AC Voltage Phase Angle

A
ct

iv
e

Po
w

er
 (

M
W

)

(d) Power

Fig. 13: Actual Power System Measurements

A
ct

iv
e

 P
o

w
e

r
(M

W
)

C
u

rr
e

n
t

(A
)

Fr
e

q
u

e
n

cy
 (

H
z)

Time(s)

Fig. 14: Fake Measurements to Mislead the Operator

the same power model to fake sensor measurements and make
them look normal.

TSV [34] and [55] provide a bump-in-the-wire solution
between the HMI and PLC device to intercept and analyze the
control logic downloads on the PLC by the HMI server. TSV
implements formal methods to verify the safety of the code
regarding the physical plant safety requirements, and drops the
control logic if a counterexample is found. TSV is unable to
detect HARVEY as it targets control logic updates and does not
support firmware updates or network-level firmware exploits.

The Weaselboard [36] is a PLC backplane analysis that
captures backplane communications between modules with the
intention of preventing zero-day exploits on PLCs. The inter-
module traffic is forwarded to an external analysis system that
detects changes to process control settings, sensor values, mod-
ule configuration information, firmware updates, and process
control program (logic) updates. Because the board monitors
backplane communication, HARVEY would remain undetected

as HARVEY would feed fake-legitimate-looking measurements
to the PLCs backplane, i.e., HARVEY resides between the
the I/O modules and the backplane. However, a Weaselboard
implementation can prevent arbitrary firmware updates over
the network. Therefore, an attacker would need to convince
the operator to run a firmware update with a compromised
firmware binary file or use a JTAG implantation to modify the
firmware.

There have been several security solutions focused on
the detection of firmware modifications that could prevent
an attack like HARVEY, e.g., control-flow monitoring solu-
tions [40]. However, our contribution is not in the evasion of
firmware modification attacks, but rather the evasion of intru-
sion detection solutions that sit outside of the PLC. Attacks
such as Ghost in the PLC [3] have shown that these firmware
modification monitoring solutions can be circumvented.

Attacks on ICS and PLCs have grown significantly since
their seminal example emergence, the Stuxnet worm [24] that
targeted the Iranian Natanz nuclear enrichment plant. Stuxnet
is categorized as a malicious control command injection attack.
Through four Windows zero-days, Stuxnet compromised HMI
and sent malicious control logic to the PLC. Stuxnet attacks
would be identified using TSV [34] as violating the plant’s
safety requirements and blocked from the PLC execution.
Similar to Stuxnet, PLC-Blaster worm [12] injects a malicious
control logic on the vulnerable PLCs (Siemens S7-1200v3)
after a network scan. For stealth, PLC-Blaster manipulates
the meta-data of its control logic which will cause the HMI
software (Siemens Step7) to crash when the operator tries to
retrieve information from an infected PLC. This would raise
the operator’s suspicion leading to potential detection. Ghost
in the PLC [3] provided a PLC rootkit that exploited I/O
pin control operations to provide a cyber framework for an
undetectable rootkit. However, the rootkit does not provide a
means of stealthiness with respect to the monitoring entity
overseeing the physical evolution of the system.

On the sensing side, false data injection attacks [33],
[35], [50] have been shown to be capable of misleading the
operators. The attackers in control of a subset of sensors would
send corrupted measurements to control centers to mislead
the state estimation and controller servers. False data injection

13

attacks do not consider the operator’s control commands to the
plant, and hence their fabricated system state may not satisfy
the operators’ expectation, and hence can be detected simply.

On the network side, Beresford [8] discovered vulnerabil-
ities in Siemens S7 series communication protocol for replay
attacks leading to a remote shell access. The attack was specific
to that PLC model number of Siemens only. The similar attacks
on firmware vulnerabilities (e.g., insecure checksum validation
during the update process [7], DDoS attacks against common
industry protocol CIP package handler functions [44]) are
orthogonal to HARVEY since HARVEY’s core contribution is
to inject and run a power system model as a rootkit (after
the firmware is compromised) to damage the physical plant
while evading the operator detection. The above-mentioned
PLC attacks did not leverage the domain-specific features to
i) maximize their destructive physical impact using adversary-
optimal control algorithms, and ii) simulate the physical plant
model to fabricate legitimate-looking measurements to the
operators.

Klick et al. [32] show that internet-facing controllers can
be compromised, act as a SNMP scanner or SOCKS proxy,
and be misused by an adversary to attack devices that are
not directly connected to the internet. This technique can be
used to extend HARVEY’s compromised devices. Additionally,
there have been theoretical attack frameworks proposed against
water SCADA [4]. The attack drives the underlying physical
plant towards unsafe states by solving the partial differential
equations that model the water plant dynamics. The authors do
not discuss details of how such attacks can be implemented in
practical real-world settings and the involved challenges. Sim-
ilarly, system-theoretic models [39] [5] have been proposed to
identify stealthy cyber-physical attacks against the power grid
either through compromised measurements or dynamic load-
altering attacks. However, the models assume that attacker has
already compromised the required assets. These models could
be utilized by HARVEY to model the spoofed measurements
being sent to the HMI.

VIII. DISCUSSIONS AND MITIGATIONS

We discuss the generality of HARVEY, and describe poten-
tial mitigation mechanisms that could be deployed to protect
critical infrastructures against similar attacks.

A. Unique Challenges in ICS

In this section we elaborate on some of the unique
challenges in the ICS space by comparing our PLC rootkit
against rootkits known from workstations and servers. We also
elaborate on the relation of industrial control systems and the
Internet of Things (IoT).

Rootkits. The concept of rootkits, or more generally, com-
promising the privileged software of a computing system with
the goal of hiding has been known for decades [29]. However,
most known rootkits target commodity operating systems like
Windows or Linux which have vast amounts of resources that
can be (mis-)used by the rootkit to hide itself and perform its
malicious actions. PLCs, on the contrary, have a significantly
different software design (cf. Section II-A) which requires new
techniques for rootkits in the domain of ICS.

HARVEY, in particular, aims at manipulating the input and
output of a PLC, i.e., interaction with the physical world.
“Classical” rootkits operate only within the deterministic cyber
world, which makes hiding and other actions simpler. For
instance, a typical hiding method of Windows rootkits is to

remove themselves from a list structure maintained by the
OS [46]. HARVEY, however, has to compensate for the changes
to its physical world which will eventually feed back as input
readings.

Internet of Things (IoT). In recent years, the term IoT is
used over-extensively even though (or because) there is no
widely accepted and precise definition of the term. While there
are definitions that include ICS (e.g., every computing device
with a network connection) we would argue that ICS are not
part of the IoT. Many IoT devices are based on commodity
hardware and software (e.g., ARM Cortex-A processors and
Linux based OS) and thus not much different from systems like
smartphones. Hence, attacks on IoT devices, such as the com-
promise of the Google nest thermostat [30], are not applicable
to ICS. Another significant difference between consumer IoT
devices and ICS is the real-time operation of PLCs, reflected
by the control loop design of the PLC’s firmware. IoT devices
rarely have strict real-time requirements. Further differences
include software deployment schemes (IoT device’s software
is controlled by the device manufacturer, PLC control logic
is installed by the programmer/operator), or device lifetime
(ICS might be operated for decades). Lastly, the operation of
IoT devices (and their effects on the environment) are often
unsupervised, hence, an IoT rootkit does not need to provide
a manipulated system state view to an operator.

B. Generality

HARVEY involved reverse engineering of a real-world com-
mercial PLC device and binary software modules. Although
we worked on a specific model, the techniques we used, such
as JTAG debugging and binary analysis, can be generalized
to PLC and controllers from other vendors, because they
generally follow similar technical approaches such as scan-
cycle-based execution paradigm followed by periodic I/O
interrupts and memory updates. Additionally, the proposed
two-way data manipulation attack can be implemented on other
(not necessarily power grid) control system settings, where
controller devices are used to monitor and control underlying
physical plants.

HARVEY can be protected against using three major mit-
igation solutions: i) remote attestation allows a verifier to
check the software integrity of a system. A trusted component
provides an authenticated measurement of the memory of the
device to be attested. Different approaches specifically for
embedded systems have been developed and could be applied
to PLCs [11], [18], [45]; ii) with secure boot, the integrity of
a device’s configuration is not verified by an external entity
but by the device itself possibly using a trusted platform mod-
ule [6]. Secure boot ensures that only a known and trustworthy
software can be loaded on a device. Secure boot could be used
to ensure the integrity of PLC firmware; and iii) an external
bump-in-the-wire device between the PLC controller and the
physical plant could be monitoring the two-way sensor-to-PLC
and PLC-to-actuator data streams (unlike TSV [34] that would
sit between the HMI and PLC). The solution could possibly
check whether the control commands issued by the PLC satisfy
the plant’s essential safety requirements that must be defined
by the operators. Additionally, the solution could implement
coarse-grained control consistency checks to validate whether
sensor measurements and actuation commands are consistent
in terms of how the plant should be controlled.

IX. CONCLUSIONS

We presented HARVEY, a PLC rootkit that implements a
physics-aware man-in-the-middle attack against cyber-physical

14

control systems. HARVEY damages the underlying physical
system, while providing the operators with the exact view
of the system that they would expect to see following their
issued control commands. Our experimental results with a
commercial PLC controller on a real-world power system test-
bed demonstrates the feasibility of HARVEY in practice.

REFERENCES
[1] “IEEE standard test access port and boundary scan architecture,” IEEE

Std. 1149.1-2001, 2001.
[2] (2010) Federal energy regulatory commission (ferc): Optimal power

flow and formulation papers. http://www.ferc.gov/industries/electric/
indus-act/market-planning/opf-papers.asp.

[3] A. Abbasi and M. Hashemi, “Ghost in the plc: Designing an unde-
tectable programmable logic controller rootkit via pin control attack,”
2016.

[4] S. Amin, X. Litrico, S. S. Sastry, and A. M. Bayen, “Stealthy deception
attacks on water scada systems,” in Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control,
ser. HSCC, 2010.

[5] S. Amini, H. Mohsenian-Rad, and F. Pasqualetti, “Dynamic load
altering attacks in smart grid,” in Innovative Smart Grid Technologies
Conference (ISGT), 2015 IEEE Power & Energy Society. IEEE, 2015.

[6] W. Arbaugh, D. Farber, and J. Smith, “A secure and reliable bootstrap
architecture,” in IEEE Symposium on Security and Privacy, 1997.

[7] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modification
attacks on programmable logic controllers,” International Journal of
Critical Infrastructure Protection, 2013.

[8] D. Beresford, “Exploiting Siemens Simatic S7 PLCs,” in Black Hat
USA 2011, ser. Black Hat USA ’11.

[9] W. Bolton, Programmable logic controllers. Newnes, 2015.
[10] S. Bose, S. H. Low, T. Teeraratkul, and B. Hassibi, “Equivalent relax-

ations of optimal power flow,” Automatic Control, IEEE Transactions
on, 2015.

[11] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny Trust Anchor for Tiny Devices,” in Proceedings of
the 52nd Annual Design Automation Conference, ser. DAC, 2015.

[12] M. Brüggemann and R. Spenneberg, “Plc-blaster der virus im in-
dustrienetz,” https://events.ccc.de/congress/2015/Fahrplan/events/7229.
html, 2015.

[13] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA Security Scientific Symposium, Miami
Beach, Florida, jan 2007.

[14] E. Chien, L. OMurchu, and N. Falliere, “W32.Duqu - The precursor to
the next Stuxnet,” Symantic Security Response, Tech. Rep., 2011.

[15] R. Christie, “Power systems test case archive,” Electrical Engineering
dept., University of Washington, 2000.

[16] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile,” https://tools.ietf.org/html/rfc5280, 2008.

[17] K. R. Davis, C. M. Davis, S. Zonouz, R. B. Bobba, R. Berthier, L. Gar-
cia, P. W. Sauer et al., “A cyber-physical modeling and assessment
framework for power grid infrastructures,” 2015.

[18] K. E. Defrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART:
Secure and Minimal Architecture for (Establishing Dynamic) Root of
Trust,” in NDSS, 2012.

[19] H. Dommel and W. Tinney, “Optimal power flow solutions,” IEEE
Transactions on Power Apparatus and Systems, 1968.

[20] K. T. Erickson, “Programmable logic controllers.” Institute of Electrical
and Electronics Engineers, 1996.

[21] S. Etigowni, D. Tian, G. Hernandez, K. Butler, and S. Zonouz, “Cpac:
Mitigating attacks against critical infrastructure with cyber-physical
access control,” in Annual Computer Security Applications Conference
(ACSAC), 2016.

[22] European Network and Information Security Agency (ENISA). (2011)
Protecting industrial control systems – recommendations for Europe and
Member States. https://www.enisa.europa.eu/.

[23] F-Secure Labs, “BLACKENERGY and QUEDAGH: The convergence
of crimeware and APT attacks,” 2016.

[24] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,”
Symantic Security Response, Tech. Rep., 2010.

[25] J. FitzPatrick and M. King, “Nsa playset: Jtag implants,” 2015.
[26] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah, “Who’s

in control of your control system? device fingerprinting for cyber-
physical systems.” in Proceedings of the Network and Distributed
System Security (NDSS) Symposium, 2016.

[27] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security, ser. CCS ’08, 2008.

[28] A. Gómez-Expósito, A. J. Conejo, and C. Cañizares, Electric energy
systems: analysis and operation. CRC Press, 2016.

[29] A. Hay, D. Cid, and R. Bray, OSSEC Host-Based Intrusion Detection
Guide. Syngress, 2008.

[30] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest thermo-
stat: A smart spy in your home,” in BlackHat USA, 2014.

[31] A. Kleinman and A. Wool, “Accurate modeling of the siemens s7 scada
protocol for intrusion detection and digital forensics,” The Journal of
Digital Forensics, Security and Law: JDFSL, 2014.

[32] J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and V. Roth, “Internet-
facing plcs - a new back orifice,” in Black Hat USA, 2015.

[33] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks
against state estimation in electric power grids,” ACM Transactions on
Information and System Security (TISSEC), 2011.

[34] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A
trusted safety verifier for process controller code.” in Proceedings of the
Network and Distributed System Security (NDSS) Symposium, 2014.

[35] S. McLaughlin and S. Zonouz, “Controller-aware false data injection
against programmable logic controllers,” in IEEE SmartGridComm,
2014.

[36] J. Mulder, M. Schwartz, M. Berg, J. R. Van Houten, J. Mario, M. A. K.
Urrea, A. A. Clements, and J. Jacob, “Weaselboard: Zero-day exploit
detection for programmable logic controllers,” tech. report SAND2013-
8274, Sandia Nat’l Laboratories, Tech. Rep., 2013.

[37] N. I. of Standards and Technology, “FIPS 180-4, Secure Hash Standard,
Federal Information Processing Standard (FIPS),” http://csrc.nist.gov/
publications/fips/fips180-4/fips-180-4.pdf, Tech. Rep., 2012.

[38] OPC Foundation. (2015) Open platform communication foundation.
https://opcfoundation.org/.

[39] F. Pasqualetti, F. Dörfler, and F. Bullo, “Cyber-physical attacks in power
networks: Models, fundamental limitations and monitor design,” in
IEEE CDC and ECC. IEEE, 2011.

[40] J. Reeves, “Autoscopy jr.: Intrusion detection for embedded control
systems dartmouth computer science technical report tr2011-704 a
thesis,” Ph.D. dissertation, DARTMOUTH COLLEGE Hanover, New
Hampshire, 2011.

[41] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM, 1983.

[42] Rockwell Automation. (2015) Rockwell automation download
center. http://compatibility.rockwellautomation.com/Pages/
MultiProductDownload.aspx?famID=4&Keyword=Controller&crumb=
112.

[43] J. Rrushi, H. Farhangi, C. Howey, K. Carmichael, and J. Dabell, “A
quantitative evaluation of the target selection of havex ics malware
plugin.”

[44] C. D. Schuett, “Programmable logic controller modification attacks for
use in detection analysis,” DTIC Document, Tech. Rep., 2014.

[45] R. Strackx, F. Piessens, and B. Preneel, “Efficient isolation of trusted
subsystems in embedded systems,” in Security and Privacy in Commu-
nication Networks, ser. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering.
Springer, 2010, vol. 50.

[46] Symantic, “Windows Rootkit Overview,” Symantic Security Response,
Tech. Rep., 2005.

[47] TechNavio. (2014) Global Industrial Control Systems (ICS)
Security Market 2014-2018. http://www.technavio.com/report/
global-industrial-control-systems-ics-security-market%C2%
A02014-2018.

[48] Texas Instruments . (2011-2013) Stellaris LM4F120H5QR ROM User’s
Guide. www.ti.com/lit/ug/spmu245a/spmu245a.

[49] Texas Instruments. (2007-2014) Stellaris LM3S2793 Microcontroller
Data Sheet. www.ti.com/lit/gpn/lm3s2793.

[50] L. Xie, Y. Mo, and B. Sinopoli, “False data injection attacks in
electricity markets,” in Smart Grid Communications (SmartGridComm),
2010 First IEEE International Conference on. IEEE, 2010.

[51] D. Yang, A. Usynin, and J. W. Hines, “Anomaly-based intrusion
detection for scada systems,” 2006.

[52] B. Zhu and S. Sastry, “SCADA-specific intrusion detection/prevention
systems: A survey and taxonomy,” in Proceedings of the First Workshop
on Secure Control Systems, 2010.

[53] S. Zonouz, C. M. Davis, K. R. Davis, R. Berthier, R. B. Bobba, and
W. H. Sanders, “SOCCA: A security-oriented cyber-physical contin-
gency analysis in power infrastructures,” Smart Grid, IEEE Transactions
on, 2014.

[54] S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, and
T. J. Overbye, “Scpse: Security-oriented cyber-physical state estimation
for power grid critical infrastructures,” IEEE Transactions on Smart
Grid, 2012.

[55] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” Security & Privacy, IEEE,
2014.

15

http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers.asp
http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers.asp
https://events.ccc.de/congress/2015/Fahrplan/events/7229.html
https://events.ccc.de/congress/2015/Fahrplan/events/7229.html
https://tools.ietf.org/html/rfc5280
https://www.enisa.europa.eu/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://opcfoundation.org/
http://compatibility.rockwellautomation.com/Pages/MultiProductDownload.aspx?famID=4&Keyword=Controller&crumb=112
http://compatibility.rockwellautomation.com/Pages/MultiProductDownload.aspx?famID=4&Keyword=Controller&crumb=112
http://compatibility.rockwellautomation.com/Pages/MultiProductDownload.aspx?famID=4&Keyword=Controller&crumb=112
http://www.technavio.com/report/global-industrial-control-systems-ics-security-market%C2%A02014-2018
http://www.technavio.com/report/global-industrial-control-systems-ics-security-market%C2%A02014-2018
http://www.technavio.com/report/global-industrial-control-systems-ics-security-market%C2%A02014-2018
www.ti.com/lit/ug/spmu245a/spmu245a
www.ti.com/lit/gpn/lm3s2793

	I Introduction
	II Background and System Model
	II-A Background
	II-B System Model
	II-C Adversary Model and Assumptions

	III Harvey: Model-aware Rootkit
	IV Physics-Awareness
	IV-A Control: Malicious Plant Actuation
	IV-B Monitoring: Sensor Data Corruption
	IV-C Distributed Monitoring and Control

	V Harvey Implementation
	V-A Preparation
	V-B I/O Interception
	V-C I/O Interception Code Modifications
	V-D Firmware Update

	VI Evaluations
	VI-A PLC Evaluation
	VI-B Real-World Power System Case Study

	VII Related Work
	VIII Discussions and Mitigations
	VIII-A Unique Challenges in ICS
	VIII-B Generality

	IX Conclusions
	References

