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Abstract—Although the security of Cyber-Physical Systems

(CPS) has been recently receiving significant attention from the
research community, undoubtedly, there still exists a substantial
lack of a comprehensive and a holistic understanding of attackers’
malicious strategies, aims and intentions. To this end, this
paper uniquely exploits passive monitoring and analysis of a
newly deployed network telescope IP address space in a first
attempt ever to build broad notions of real CPS maliciousness.
Specifically, we approach this problem by inferring, investigating,
characterizing and reporting large-scale probing activities that
specifically target more than 20 diverse, heavily employed CPS
protocols. To permit such analysis, we initially devise and evaluate
a novel probabilistic model that aims at filtering noise that is
embedded in network telescope traffic. Subsequently, we generate
amalgamated statistics, inferences and insights characterizing
such inferred scanning activities in terms of their probe types, the
distribution of their sources and their packets’ headers, among
numerous others, in addition to examining and visualizing the
co-occurrence patterns of such events. Further, we propose and
empirically evaluate an innovative hybrid approach rooted in
time-series analysis and context triggered piecewise hashing to
infer, characterize and cluster orchestrated and well-coordinated
probing activities targeting CPS protocols, which are generated
from Internet-scale unsolicited sources.
Our analysis and evaluations, which draw upon extensive network
telescope data observed over a recent one month period, demon-
strate a staggering 33 thousand probes towards ample of CPS
protocols, the lack of interest in UDP-based CPS services, and the
prevalence of probes towards the ICCP and Modbus protocols.
Additionally, we infer a considerable 74% of CPS probes that
were persistent throughout the entire analyzed period targeting
prominent protocols such as DNP3 and BACnet. Further, we
uncover close to 9 thousand large-scale, stealthy, previously
undocumented orchestrated probing events targeting a number
of such CPS protocols. We validate the various outcomes through
cross-validations against publicly available threat repositories. We
concur that the devised approaches, techniques, and methods
provide a solid first step towards better comprehending real CPS
unsolicited objectives and intents.
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I. INTRODUCTION

Critical infrastructure systems are indispensable to the
broader health, safety, security, and economic well-being of
modern society and governments. In recent years, many of
these systems have been undergoing large-scale transforma-
tions with the infusion of new “smart” cyber-based tech-
nologies to improve their efficiency and reliability. These
transitions are being driven by continual advances and cost-
efficiencies in areas such as integrated networking, informa-
tion processing, sensing, and actuation. Hence increasingly,
physical infrastructure devices and systems are being tasked to
co-exist and seamlessly operate in cyber-based environments.
Indeed, tightly coupled systems that exhibit this level of
integrated intelligence are often referred to as Cyber-Physical
Systems (CPS) [1].

Nowadays, CPS can be found in significantly diverse indus-
tries, including, but not limited to, aerospace, automotive,
energy, healthcare and manufacturing. Undeniably, the de-
velopment and adoption of such CPS will generate unique
opportunities for economic growth and improvement of quality
of life [2]. For instance, in the transportation sector, CPS
would be rendered by interactive traffic control systems that
aim at creating the notion of zero-fatality highways through
automated accident prevention and congestion reduction [3].
Further, in the healthcare sector, CPS would be perceived by
wearable and implantable sensors for cost-effective healthcare
as well as timely disease diagnosis and prevention [4]. While
CPS endeavor great opportunities, the complexity which arises
from the fusion of computational systems with physical pro-
cesses indeed hinders their utmost embracing [5]. Particularly,
within the context of security, these integrated systems yield
substantial challenges as new vulnerabilities manifest them-
selves, leading to attack models that are fundamentally new,
and predominantly hard to infer, characterize, attribute, and
analyze [6]. In turn, these gaps pose immense risks to the
physical integrity and operation of critical infrastructures.

Indeed, historical events confirm that industrial control systems
have long been the target of disruptive cyber attacks. A few
examples include the exploitation of a security flow in the
control system of Diesel Generators at Idaho National Labo-
ratories [7] and the prominent Stuxnet malware, which targeted
a critical uranium enriching facility, triggering immense plant
damage and even endangering human life [8]. Moreover, in
March 2016, the U.S. Industrial Control Systems-Computer
Emergency Response Team discovered an ongoing malware-
orchestrated campaign targeting critical infrastructure. The
same campaign was inferred to be responsible for the massive
power outage that struck Ukraine in December 2015 [9]. In
the same context, given the rapid transformation of industrial



control systems towards CPS-based setups, attacks are indeed
anticipated to increase in frequency, sophistication and target
diversity. In fact, the latter trend was even recently confirmed
by the U.S. Department of Homeland Security (DHS), as
they reported thousands of highly-tailored and specifically
engineered CPS attacks targeting diverse sectors [10].

While a plethora of research efforts, from both, the control and
cyber perspectives have been dedicated to tackling the security
of CPS (please refer to Section II), there still exists a significant
gap, which is rendered by the lack of properly comprehending
and accurately characterizing malicious attackers’ capabilities,
intents and aims, when targeting such systems. This is largely
due to the lack of real malicious empirical data that can be
captured, inferred, and analyzed from within the boundaries
of operational CPS realms [11, 12]. Thus, without having
access to such critical information, it is practically infeasible to
elaborate effective security approaches which aim at inferring,
attributing or mitigating tangible CPS attacks. Indeed, the goal
which endeavors to capture notions of “true maliciousness” in
the context of CPS is significantly challenging, due to many
factors, including, (1) the lack of complete maturity and the
scarcity of elaborative technical details related to CPS [13], (2)
the significant diversity of such types of systems which exist
in numerous sectors, and (3) logistic and privacy constraints
which are often strictly enforced by CPS owners and operators.
Therefore, it is evident that auxiliary cyber threat intelligence
approaches are required in order to contribute to better grasp-
ing the notions of CPS maliciousness. While instrumenting
malicious payloads inferred from CPS vulnerabilities [14] and
concepts related to CPS honeypots have emerged and have
been investigated [15], this paper takes a complementary yet
a unique step towards this goal. To this end, we offer a first
comprehensive analysis of probing activities that specifically
target ample of CPS communication and control protocols
by exclusively monitoring and characterizing network traffic
targeting a newly deployed network telescope IP address space
(i.e., unsolicited Internet traffic targeting routable, allocated yet
unused Internet Protocol (IP) addresses) [16]. In this context,
we study various dimensions related to such misdemeanors
and examine the occurrence and orchestration patterns of such
abused services. Indeed, the presented work is innovative
and transformative in its capacity to design, implement and
evaluate automated approaches that aim at disclosing real CPS
attackers’ strategies, by passively inferring, characterizing, and
correlating CPS probing events. In summary, we frame the
paper’s contributions in the following three threads:

e Proposing a formal preprocessing probabilistic model that
aims at filtering noise (i.e., misconfiguration traffic) that is
embedded in darknet data to prepare it for effective use. The
model is advantageous as it does not rely on arbitrary cut-off
thresholds, provides different likelihood models to distinguish
between misconfiguration and other darknet traffic, and is in-
dependent from the nature of the source of the traffic. Further,
the proposed model neatly captures the natural behavior of
misconfiguration traffic as it targets the darknet. To the best
of our knowledge, the presented model presents a first attempt
ever to systematically fingerprint and thus filter-out darknet
misconfiguration traffic.

e Inferring, characterizing and executing multidimensional
investigation of probing activities targeting more than 20 CPS
protocols by passively monitoring 7 /24 network telescope

spaces. To this end, we study their overall trends, abuse
per protocol, probes’ co-occurrences, source countries and
employed protocols, among various others. Additionally, we
propose an innovative hybrid approach rooted in temporal
analysis and context triggered piecewise hashing to infer, char-
acterize and report on previously undocumented orchestrated
and well-coordinated probing activities targeting a number of
CPS protocols.

e Validating the proposed models, methods and approaches
by experimenting with 50 GB of darknet data, in addition
to relying on corroborations against publicly available threat
repositories.

The road-map of this paper is organized as follows. In the
next section, we discuss related works in terms of CPS security
approaches, probing analysis and traffic measurements. In
Section III, we elaborate on our proposed approaches, methods
and techniques. The corresponding evaluations, inferences
and validations are presented in Section IV. We provide a
discussion in Section V, while Section VI summarizes this
paper and pinpoints an area that paves the way for future work.

II. RELATED WORK

In this section, we review the literature by providing two
distinct taxonomies in the context of CPS security approaches
from both, the physical/control perspective as well as from
the cyber security perspective. We further extend this section
by elaborating on probing analysis and traffic measurement
studies. The aim is to shed the light on the state-of-the-art of
those research areas, in addition to pinpointing various research
gaps, which this paper intends to address and/or examine to
pave the way for future work.

A. CPS Security: Control-theoretic Approaches

The analysis of CPS security from a control-theoretic
perspective has undoubtedly received considerable attention.
Table I provides a brief taxonomy, due to space limitations,
highlighting some fundamental and representative works in
this area. In a nutshell, this taxonomy captures the modeled
systems, whether or not noise has been considered in the
approach, the analyzed attack model and its corresponding
detection scheme. Such research works consider the system
dynamics from a physical point of view to perform their
analysis. For instance, in the power grid context, Liu et al. [17]
investigated false data injection attacks by inserting arbitrary
errors into sensor measurements. The authors analyzed two
attack scenarios, where the attacker is either constrained to
some specific meters, or limited in the resources required to
compromise meters. For each scenario, algebraic conditions
are derived to validate the existence of stealthy attack vectors,
which do not yield any change to the residue. In an alternative
work, Pasqualetti et al. [19] analyzed attacks on sensors and
actuators by considering a generic continuous-time control
system. In particular, the authors mathematically characterized
certain conditions that provided the probability of detecting
such attacks, given a set of known vulnerabilities. The authors
further introduced the notion of attack detectability by design-
ing centralized and distributed filters rooted in arithmetic logic
of descriptor systems. In the area of distributed control systems
security, Pajic et al. [21] analyzed the impact of malicious
nodes in the context of a wireless control network. The



[ Type of System [ Noise | Attack Models | Defense Mechanisms | Reference |
[ Power Grid [ v [ False data injection on sensors | Residue detector [ [17] |
[ Power Grid [ v | False data injection on sensors | Residue detector [ [18] |
[ Control System [ - | Attacks on sensors & actuators | Detection filters [ [19] |
[ Control System [ - | Attacks on sensors & actuators | Optimization decoders | [6] |
[ Control System [ v [ Replay attack [ X2 detector [ [20] ]
[ Wireless Network [ - ] State attacks [ Output estimator [ [21] |
[ Distributed Network [ - ] State attacks [ Combinatorial estimator | [22] |
[ Sensor Network [ v/ | Dynamic False data injection | Residue detector [ [23] |

TABLE I: A brief taxonomy of CPS security approaches from a control-theoretic perspective

authors designed and assessed the effectiveness of a detector
based on an approach that aims at estimating sensor outputs.
Alternatively, Mo et al. [23] considered a data injection attack
on a noisy wireless sensor network. The attack was modeled
as a constrained optimal control problem in which the Kalman
filter was used to perform state estimation, while a failure
detector was leveraged to detect anomalies in the system. In
addition to the above, Teixeira et al. [24] have introduced and
modeled a combination of different attack scenarios such as
false data injections, replay, and zero-dynamics’ attacks, where
adversarial activities attempt to cause damage to the controlled
system while remaining stealthy. To this end, active detection
methods have been proposed to infer related attacks through
analyzing and manipulating the system dynamics. A few of
those methods, include, a physical watermarking scheme to
authenticate the nominal behavior of a control system [25]
and a moving target approach [26] to detect integrity attacks.

Indeed, the rationale behind the aforementioned substantial
control-theoretic CPS security contributions is based upon
existing models that precisely describe the underlying physical
phenomena, which enables the prediction of future behavior
and, more importantly, unforeseen deviations from it. To this
end, we argue that such approaches (1) do not provide any
concrete evidence that such deviations are in fact originated
from malicious entities, (2) depict attackers’ models in a
highly-theoretic manner, which do not necessarily reflect the
behavior of real CPS attacks and (3) provide experimentation
and evaluations that were executed in emulated or simulated
CPS environments, without much endeavors being dedicated
to real-world applications.

B. CPS Security: Cyber Security Approaches

Complementary to the above, the cyber security research
community has also offered various approaches in an attempt
to tackle numerous security aspects of CPS. Such approaches
characteristically put less emphasis on the control system
dynamics by essentially focusing on the cyber (i.e., com-
munication networks, protocols, data, etc.) perspective. We
classify a number of such fundamental approaches into four
core categories as summarized in Table II and we subsequently
discuss only a few of them, due to space limitations. In
the context of modeling CPS protocols, Yoon et al. [27]
proposed the use of message sequences derived from CPS
communication traffic to capture legitimate plant behavior.
To accomplish the latter task, the authors employed a dy-
namic Bayesian network and a probabilistic suffix tree as
the underlying predictive model. Executed evaluations using

synthetic data demonstrated that the proposed approach is
able to accurately model normal traffic, flag certain deviations,
and reduce the false positive rate. From another perspective,
several research works investigated secure approaches for CPS
software and memory resources. For instance, McLaughlin et
al. [28] proposed an approach to verify safety-critical code
executed on programmable controllers. The devised approach
initially checks such code against a set of physically safe
measures and subsequently present case studies of abuse in
case of any inferred inconsistencies. In this context, the authors
introduced the notion of temporal execution graph, which
illustrates the consequences of a certain untrusted executed
code. The proposed approach was validated in terms of its
capability to enforce certain common safety properties by
means of experimentation in an emulated environment. Several
other research initiatives exploited CPS process variables for
anomaly detection. For example, HadZiosmanovi¢ et al. [11]
extracted process variables from a CPS plant to build pre-
dictability models. By leveraging simple regression models,
the authors alerted CPS plant operators of any deviation
in the expected parameters as an indicator of an ongoing
attack. From a data analytics perspective, Almalawi et al.
[29] presented a machine learning approach to infer CPS
attacks. By employing an unsupervised clustering mechanism
based on the k-means algorithm, the proposed approach aims
at distinguishing between consistent and inconsistent CPS
observations. Simulations were conducted to validate the effec-
tiveness of the devised approach. Within the same category of
research works but from an industrial/operational perspective,
the security community supporting the open source intrusion
detection system Snort [30] has also offered and contributed
to various CPS detection rules [31]. The latter aim at inferring
unauthorized requests, malformed packets and rarely used and
suspicious CPS protocol commands.

While the surveyed research works offer significant contri-
butions, nevertheless, we can extract (1) the general inadequacy
of research attempts to systematically combine or at least
diminish the gap between cyber and control capabilities for
securing CPS, (2) the lack of empirical data related to tangible
malicious CPS attacks and strategies that are generated from
real unsolicited attackers, which could realistically affect the
stability and security of CPS, (3) the deficiency of CPS
security approaches in providing, both, attribution evidence
and threat severity metrics and (4) the lack of such approaches
in providing means for CPS resiliency in the physical realm
during or immediately after an attack. Our presented work
that falls within this category of research works aims at



Analysis Perspective Highlights References ]
Protocol Vulnerabilities Modeling CPS protocols to detect anomalies [27, 32-36] ]

Process Variables

Predicting CPS process behavior to detect anomalies

[11, 14, 41, 42] |

l l l
l l l
[ PLC Software [ Verifying PLC code and memory to prevent violations [ [28, 37-40]
l l l
l l l

Data Analytics

Data-driven approaches to infer CPS cyber attacks

[29, 31, 4345] |

TABLE II: A brief classification of CPS security approaches from a cyber security perspective

contributing to point (2) by providing a first thorough look
in terms of insights and inferences related to CPS attackers’
reconnaissance strategies, by investigating unsolicited darknet
data.

C. Probing Analysis

In the context of inferring probing events, Li et al. [46]
considered large spikes of unique source counts as probing
events. The authors extracted those events from network tele-
scope traffic using time series analysis; they first automatically
identified and extracted the rough boundaries of events and
then manually refined the event starting and ending times.
At this point, they used manual analysis and visualization
techniques to extract the event. In an alternate work, Jin et al.
[47] considered any incoming flow that touches any temporary
dark (grey) IP address as potentially suspicious. The authors
narrowed down the flows with sustained suspicious activities
and investigated whether certain source or destination ports
are repeatedly used in those activities. Using these ports, the
authors separated probing activities of an outside host from
other traffic that is generated from the same host. In the
area of analyzing probing events, the authors of [47, 48]
studied probing activities towards a large campus network
using netflow data. Their goal was to infer the probing strate-
gies of scanners and thereby assess the harmfulness of their
actions. They introduced the notion of gray IP space, developed
techniques to identify potential scanners, and subsequently
studied their scanning behaviors. In another work, the authors
of [46, 49] presented an analysis that drew upon extensive
honeynet data to explore the prevalence of different types
of scanning. Additionally, they designed mathematical and
observational schemes to extrapolate the global properties of
scanning events including total population and target scope. In
the context of probing measurement studies, Benoit et al. [50]
presented the world’s first Web census while Heidemann et al.
[51] were among the first to survey edge hosts in the visible
Internet. Further, Pryadkin et al. [52] offered an empirical
evaluation of IP address space occupancy whereas Cui and
Stolfo [53] presented a quantitative analysis of the insecurity
of embedded network devices obtained from a wide-area scan.
Additionally, Durumeric et al. [54] investigated darknet traffic
to analyze the current practices of Internet-wide scanning.
They generated cyber threat intelligence related to sources
of scanning activity and probed services, among others. The
authors also elaborated on some defensive mechanisms and
provided several insightful recommendations when executing
such activities for research purposes. Furthermore, Dainotti et
al. [55] presented a pioneering measurement and analysis study
of a 12-day Internet-wide probing campaign targeting VoIP
(SIP) servers, while an “anonymous” presented and published
online [56] what they dubbed as the Carna botnet. The author

exploited poorly protected Internet devices, developed and
distributed a custom binary, to generate one of the largest and
most comprehensive IPv4 census ever.

In this work, we extend previous research contributions to
identify a new threat vector; unsolicited sources employing
Internet-scale scans in an attempt to fingerprint numerous CPS
resources. To this end, we devise and implement innovative
methods and techniques, and apply them on network telescope
data to perform a comprehensive measurement and analysis of
a broad list of CPS communication and control protocols.

D. Network Telescope: Measurements & Analysis

The idea of monitoring unused IP addresses for security

purposes was first brought to light in the early 1990s by
Bellovin for AT&T’s Bell Labs Internet-connected computers
[57, 58]. However, the topic of telescope data analysis received
further attention after year 2000 [59]. Since then, the focus
of network telescope studies has shifted several times, closely
following the volatile nature of new threat actors. For instance,
some of the important contributions that demonstrate the
evolution of telescope research include the discovery of the
relationship between backscatter traffic and DDoS attacks in
2001 [60], worm propagation analysis between 2003 and 2005
[61, 62], the use of time series and data mining techniques
on telescope traffic in 2008 [63], the monitoring of large-scale
cyber events through telescope in 2012 [64], and more recently,
the study of amplification attacks using telescope sensors in
2013 and 2014 [65, 66].
In contrast, this work proposes and evaluates a formal proba-
bilistic preprocessing model for network telescope traffic in an
effort to fingerprint and filter out misconfiguration traffic. We
believe that this proposed model is of significant value, given
its postulated highly applicable nature in the field of Internet
measurements.

E. CPS Traffic Analysis

CPS network traffic monitoring and analysis can be divided
in two main categories, namely, interactive monitoring and
passive monitoring. On one hand, honeypots are an example
of low- to high-interactive trap-based monitoring systems [67].
The first CPS honeypot, known as the SCADA HoneyNet
Project, was designed and deployed in 2004 by Cisco Systems
[68]. Digital Bond, a company that specializes in CPS cyber-
security, deployed two SCADA honeypots in 2006 [69]. The
release of Conpot in 2013 has greatly facilitated the deploy-
ment and management of CPS honeypots [15]. While such
honeypots provide an effective mechanism to generate real
CPS attack models, they indeed suffer from two drawbacks.
First, improper deployment of honeypots may introduce se-
curity risks (i.e., malware escaping the honeypot sandbox and
propagating to the production network). Second, honeypots are



only effective if they are not detected; there exist substantial
evidence that honeypots can be relatively easily fingerprinted
[70, 71]. In terms of passive analysis, such methods include
the study of network telescope traffic to generate statistics
and trends related to various inferred CPS misdemeanors. The
first limited reported network telescope study which addressed
the security of CPS protocols was conducted in 2008 by
Team Cymru [72]. Their report included coarse statistics on
scans targeting commonly used CPS protocols such as DNP3,
Modbus and Rockwell-encap.

In this work, in addition to providing a thorough measurement
and analysis study of probing traffic targeting ample of CPS
protocols, we further propose, evaluate and validate a novel
approach to infer and report orchestrated, stealthy and previ-
ously undocumented probing activities targeting a number of
CPS protocols.

III. PROPOSED APPROACH

In this section, we elaborate on the devised models, ap-
proaches and methods that aim at (1) cleansing darknet data
to prepare it for effective use, (2) inferring and characterizing
CPS probing traffic and (3) identifying orchestrated CPS
probing campaigns.

A. Darknet Preprocessing Model

Although darknet data mostly contains malicious packets
originating from probes, backscattered packets from victims of
distributed denial of service attacks and malware propagation
attempts, among others, it might also include what is dubbed
as misconfiguration traffic. The latter non-malicious packets
might be caused by network/routing or hardware/software
faults that were erroneously directed towards a darknet. Such
traffic can also be an artifact of an improper configuration
when deploying a darknet. Indeed, misconfiguration traffic
“pollutes” darknet data as such traffic can not be exploited
for cyber threat intelligence. Further, misconfiguration traffic
makes it harder for cyber threat intelligence algorithms to
operate correctly on darknet data, which often yields to nu-
merous undesirable false positives and false negatives. Another
drawback of the existence of misconfiguration traffic within
darknet data, is that it wastes valuable storage resources.

Therefore, in this section, we elaborate on the proposed
probabilistic model that is particularly tailored towards the
goal of preprocessing darknet data by fingerprinting and thus
filtering out misconfiguration traffic.

In a nutshell, the model formulates and computes two
metrics that aim at capturing the natural and the characteristic
behavior of misconfiguration flows as they target the darknet IP
space. The model initially estimates the “rareness of access”;
the degree to which access to a given darknet IP address is
unusual. The model further considers the “scope of access”;
the number of distinct darknet IP addresses that a given remote
source has accessed. Subsequently, the joint probability is
formulated, computed and compared. If the probability of the
source generating a misconfiguration is higher than that of
the source being malicious (or unsolicited), then the source
is deemed as one that is generating misconfiguration traffic,
subsequently flagged, and its corresponding generated darknet
flows are filtered out. The above two metrics are elaborated
next.

Let D = {dy,ds,ds, -} represent the set of darknet IP
addresses and D; a subset of those accessed by source s;.
First, the model captures how unusual the accessed destina-
tions are. The idea behind this metric stems from the fact
that misconfigured sources access destinations that have been
accessed by few other sources [73]. Thus, the model estimates
the distribution of a darknet IP d; being accessed by such a
source as

Pmisc(di) = (1)

> naldy)

Vd; €D

where ng(d;) is the number of sources that have accessed d;. In
contrast, a malicious darknet source will access a destination at
random. Typically, defining a suitable probability distribution
to model the randomness of a malicious source targeting a
specific darknet destination is quite tedious; often a simplistic
assumption is applied to solve this issue. In this context, a very
recent work by Durumeric et al. [54] has demonstrated that
darknet sources will probe their targets following a Gaussian
distribution !. By adopting that assumption, one can model the
probability of a darknet destination accessed by a malicious
source as )
) — —(x—;t)2/202
Pmal<dz) O'\/%e B (2)

where o is the standard deviation, p is the mean, o? is

the variance and x is the location of the darknet destination
following the distribution. Recall that equations (1) and (2)
allow the model to initially capture how unusual the accessed
destinations are. However, further, the model considers how
many darknet destinations have been accessed by a given
source. The latter will be subsequently described.

Given a set of D;, darknet destinations accessed by a
specific source s;, the model eventually aims at measuring two
probability distributions, namely, Pp,isc(D;) and P, (D;).
The former being the probability that D; has been generated
by a misconfigured source while the latter is the probability
that D, has been generated by a malicious darknet source.

Let D1y = {di1,di2,d;3} be those darknet addresses
accessed by s1. The model captures the probability P(D;) of
the source generating {d;1,d;2,d;3} as the probability of s;
accessing this specific combination of destinations knowing
that it targeted three destinations multiplied by the probability
of s; accessing any three destinations. The latter could be
generalized and formalized as

P(DL) = P(Dl = {d“,dm,-“ ,din} ‘ |Dl| = ’IL) X P(|Dl| = ’ll). (3)

For both, a misconfigured and a malicious source, the first
term of equation (3) could be modeled as

Vd;eD;

In the presence of Network Address Translation (NAT), different IP
addresses that are simultaneously probing and generating misconfiguration
traffic would cause the distribution to be non-Gaussian. This might lead
to falsely attributing probing traffic as misconfiguration. While we can not
deny or validate this scenario, future work could investigate the empirical
distribution of such phenomena to filter it out.
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where K, a normalization constant which is solely employed
to allow the probabilities to sum to 1, could be defined as

D! 1

K=o =t ol

(6)

Please note that K is a typical normalization constant
that is often employed in Bayesian probability [74]. Further,
n represents all the sources in the data set, while
previously mentioned, represents the darknet IP space.

The likelihood that a source will target a certain number
of darknet destinations (i.e., the second term of equation (3))
depends on whether the source is malicious or misconfigured.
Characteristically, misconfigured sources access one or few
destinations while malicious sources access a larger pool of
destinations. We have modeled such distributions as

1

1
mal(|D D ‘D‘ (8)

where the term (e — 1) in equation (7) guarantees that
the distribution will sum to 1. It is noteworthy to mention
that equation (7) ensures that the probability will significantly
decrease as the number of targeted destinations increases. In
contrast, equation (8) captures a malicious darknet source
accessing a random number of darknet addresses.

By combining the above equations, we can model the
probability of a source being misconfigured or malicious, given
a set of darknet destination addresses, as

Pmisc(Di) - szsc z (9)
we= o J1,
Pra(D;) H Pra(d (10)
Vd €D,

It is imperative to note that equations (9) and (10) provide
two distinct likelihood models to distinguish between miscon-
figuration and other malicious darknet traffic. This permits
the simplified and systematic post-processing of the latter two
types of darknet traffic. Moreover, as the model generalizes
and formalizes the concepts of misconfiguration and other
malicious darknet traffic, the proposed model does not make
any assumptions related to the nature of the sources of those
types of traffic. For example, the model is agnostic to whether
the malicious (or unsolicited) traffic is generated by a worm
or a probing tool, or whether the misconfiguration is caused
by a malfunctioning Internet router or an invalid connection
request.

Algorithm 1 Inferring misconfiguration flows using the prob-
abilistic model
1: Input: Darknet Flows, DarkFlows

2: Output: Flag, MiscFlag, indicating that the DarkFlow is originating from
a misconfigured source

3:

4: for DarkFlows do

5: MiscFlag < 0

6: i <— DarkFlows.getUniqueSources()

7: Amalgamate DarkFlows; originating from a specific source s;
8 Update s;(D;)

9: Compute Ppyisc(Di), Prai(Ds)
10: if Pmisc(Di) > P’mal(Di) then

11: MiscFlag + 1
12: end if
13: end for

To effectively employ the proposed darknet preprocessing
model, we present Algorithm 1, which provides a simplistic
yet effective mechanism to infer misconfigured sources by
employing the model. It is worthy to note that step 9 of the
algorithm (i.e., the computation of P,,;s.(D;) and Pp,q;(D;))
is easily accomplished in practice by computing the negative
log-likelihoods,

Lmisc(-Di) - _lnpmisc(Di) 11
Lmal(-Di) - *lnPnLal(Di) ( )
Thus, Algorithm 1 deems a source and its corresponding

flows as misconfiguration traffic if L.,qi(D;) — Limisc(D;) >
0.

B. CPS Probing Inference & Characterization

To infer CPS probing activities after preprocessing darknet
data by exploiting the previously proposed model, we present
Algorithm 2, which exploits both packet header information
and flow-based parameters.

Algorithm 2 operates on darknet flows, which are defined
by a series of consecutive packets sharing the same source
IP address. First, each flow is scrutinized to verify if its
corresponding packets contain any service ports that can
effectively pinpoint to CPS darknet activities. The algorithm
monitors traffic to a comprehensive list of most prominent and
widely-deployed CPS communication and control protocols as
summarized in Table ITI2. Such table includes, both, private
(i.e., Siemens, GENe, etc.) and well-known CPS services (i.e.,
Modbus, ICCP, etc.).

If no CPS ports were found, the algorithm deems that
specific flow as not related to CPS activities. On the contrary,
if a service port was found, Algorithm 2 deems that flow as
suspicious, and consequently moves forward in an attempt
to assert that suspicion. Subsequently, the algorithm counts
the number of packets per flow to measure the rate of the
suspicious activities within a certain time window (7w). If the
flow packet count (pkt_cnt) is beyond a specific threshold, the
flow is deemed as a CPS probe. To this end, we borrow the
packet count threshold from [75], defined by 64 probed darknet
addresses on the same port on any given day. Please note,

2Obtained through discussions with state and federal CPS operators in the
power, water, aviation and critical manufacturing sectors.



Algorithm 2 CPS Scanning Inference Algorithm

1: Input: A set (F) of unique darknet flows (f),
2: Each flow f contains packet count (pkt_cnt) and rate (rate)
SP: CPS Service Port
Tw: Time window
Pth: Packet threshold
Rth: Rate threshold,
Tn: Time of packet number 7 in a flow
pkt: Packet
Output: CPS flag, CPS_flag

: for Each f in F do
while pkt in f do
if pkt.contains() | = SP then
CPS_flag() < 0
end if
if pkt.contains() = SP then
CPS_flag() + 1
end if
end while

pkt_cnt < 0
T1 <+ pkt_gettime()
Tf < TI + Tw
while pkt in f do
Tn= pkt_gettime()
if Tn < Tf then
pkt_cnt < pkt_cnt + 1

21: end if

22: end while

23: rate <— %

24: if pki_cnt < Pth || rate < Rth then
25: CPS_flag() < 0

26: end if

27: end for

CPS Communication

& Control Protocols Port Number Type

ABB Ranger 2003 10307/10311/10364, etc. Registered
BACnet/IP 47808 Registered
DNP/DNP3 19999/20000 Registered
Emerson/Fisher ROC Plus 4000 Registered
EtherCAT 34980 Registered
EtherNet/IP 2222/44818 Registered
FL-net Reception/Transmission 55000-55003 Dynamic/Private
Foundation Fieldbus HSE 1089/1090/1091 Registered
Foxboor/Invensys Foxboro DCS 55550 Dynamic/Private
Iconic Genesis32 GenBroker 18000 Registered
ICCp 102 Well-known
1IEC-104 2404 Registered
Johnson Controls Metasys N1 11001 Registered
Modbus 502 Well-known
MQ Telemetry Transport 1883 Registered
Niagara Fox 191174911 Registered

OPC UA Discovery Server 3480 Registered
OSIsoft PI Server 5450 Registered
PROFINET 34962/24963/34964 Registered
Project/SCADA Node Primary Port 4592 Registered

Red Lion 789 Well-known
ROC Plus 4000 Registered
SCADA Node Ports 4592/14592 Registered
Siemens Spectrum Power TG 50001/50018/50020, etc. Dynamic/Private
SNC GENe 62900/62911/62924, etc. | Dynamic/Private
Telvent OASyS DNA 5050/5052/5065, etc. Registered

TABLE III: List of CPS protocols and corresponding ports

that typically, the probing engine would have also required
and established a rate threshold (Rth). Nevertheless, we do not
enforce one here, to enable the algorithm to infer very low rate,
possible stealthy activities. Indeed, coupled with the analysis
of the packet features, the approach embedded in Algorithm
2 would fingerprint Internet-scale CPS probing traces. From a

performance perspective, when implemented “on the fly” on
the darknet data stream, the algorithm can successfully process
and reason about a significant 10,000 flows in 55 seconds, on
average.

After inferring CPS probing activities, we characterize and
profile their inferred flows to investigate their significance and
prevalence, recent trends and orchestration behavior. We gen-
erate amalgamated statistics related to the categories of probes,
the distribution of different types of scans within each category,
the distribution of transport protocols used in the scans and the
time series of various types of probes. Furthermore, we attempt
to understand the behavior of these probes by studying and
analyzing the similarity and co-occurrence patterns of their
sources. To this end, we execute the following procedure. In
order to investigate whether the same CPS scanning sources
are prevalent on different time periods, we formalize the probes
as a set of unordered collection of IP addresses that represent
scanners observed on a daily basis. Subsequently, we define
the sets, A;, (where i = 1,2...,n), where each set is indexed
by the day number. We compute the similarity between two
sets, A; and A;, represented by S(A;, A;). The similarity has
the following properties: (1) It is in the range [0, 1]; (2) the
higher the value is, the more source probing IP addresses are
shared among the sets, and thus the largest is the similarity,
and vice versa; (3) it is equal to 1, if the sets are the same;
and (4) it is equal to 0, if the sets do not share IP addresses or
one (or both) of the sets is empty. To compute such similarity,
we leverage the Jaccard index, a statistical technique used in
comparing similarities and diversities among sample sets [76].
This index is defined by:

14i (1 4]
S(ALA) = T a (12)
7 1AIU A4
where |A; () A;| denotes the cardinality of the intersection
between the sets and |A; |J A;| denotes the cardinality of the
union between the sets.

C. CPS Probing Orchestration Fingerprinting

In recent years, there has been a noteworthy shift towards
a new phenomenon of probing events that could be dubbed
as probing campaigns. These are distinguished from previous
probing incidents as (1) the population of the participating
bots is several orders of magnitude larger, (2) the target
scope is generally the entire IP address space, and (3) the
sources adopt well-orchestrated, often botmaster-coordinated,
stealth scan strategies that maximize targets’ coverage while
minimizing redundancy and overlap [55, 56]. In this section,
we build upon our darknet preprocessing model as well as
our CPS probes’ inference algorithm by proposing a clustering
approach to infer CPS probing campaigns. This aims at better
comprehending the natures as well as the type of maliciousness
of such campaigns; for instance, it could be found, through
investigation, that a specific campaign is specialized in tar-
geting particular critical infrastructure resources. Further, the
proposed fingerprinting approach allows the elaboration of the
actual scope and characteristics of the inferred campaigns in an
effort to provide accurate measurements as well as aid in CPS
situational awareness, analysis and attribution. In this context,
previous works [77] suggested that coordinated unsolicited



sources within a campaign probe their targets in a similar
fashion. Indeed, the proposed approach exploits this idea by
automatically building notions of similar probing behavioral
characteristics. To achieve this challenging task, given that we
are exclusively dealing with darknet data [46], the proposed
approach applies a fusion of a time-series technique in con-
junction with a network forensic analysis approach between
the previously inferred (independent) CPS probing flows.

1) Time-Series Analysis: As a first step, the proposed
approach attempts to infer temporal similarities between the
previously inferred CPS probing activities. To this end, we
leverage a time-series approach rooted in Dynamic Time Warp-
ing (DTW) [78]. Motivated by its successful experimentation
in diverse research areas [78, 79], the DTW technique mea-
sures the resemblance between data sequences independent of
their rates. The aim is to cope with possible time deformations
affiliated with time-dependent data [80]. The DTW takes two
vectors defining the time series as input and produces a
distance unit characterizing their temporal similarities.

2) Netflow Analysis: As a second step, the proposed
approach leverages the context triggered piecewise hashing
(CTPH) [81] technique using a customized developed version
of ssdeep®, which exploits netflow characteristics. The CTPH
technique, which is derived from the digital forensics research
field, is advantageous in comparison with typical hashing as
it can provide a percentage of similarity between two traffic
samples rather than producing a null value if the samples are
slightly different. CTPH generates a percentage of similarity
defining netflow similarities between any two given CPS
probing sessions.

To this end, to infer orchestrated CPS probing campaigns,
the proposed approach selects and clusters those CPS probing
sessions that minimize the DTW similarity metric while max-
imizing the CTPH measure targeting the same CPS protocol.

IV. RESULTS

The generated results are based upon scrutinizing 50 GB
of darknet data that were collected from a newly deployed
network telescope IP space during a one month period between
April and May, 2016. Please note that while we do not
claim that the design, deployment and management of such
darknet is part of this paper’s contributions, nevertheless, we
have to pinpoint that this is a first of a kind cyber threat
intelligence gathering project in our region. We organize this
section following closely the previously proposed models and
approaches.

A. Darknet Preprocessing Model

We implemented a prototype of the proposed model of
Section III-A in Java using the jNetPcap* library. To exe-
cute the proposed model on the darknet dataset, we aggregate
the connections into sessions using an approach similar to
the first step algorithm by Kannan et al. [82]. We consider
all those connections within Tygg4req Of each other as part
of the same session for a given pair of hosts. We used the
same proposed threshold, T,g44rcg = 100 seconds, and found

3ssdeep: http://ssdeep.sourceforge.net/
4iNetPcap: http://jnetpcap.com/?q=jnetpcap- 1.4

that this seems to correctly group the majority of connections
between any given pair of hosts. To validate the outcome
of the proposed model, we compare it against the baseline;
classifying misconfiguration traffic as any darknet traffic that
is not scanning or backscattered [83]. The latter is a commonly
employed technique, given the lack of other available formal
literature approaches.

Figure 1 depicts the outcome of the execution of the proposed
model on the extracted sessions while Table IV summarizes
the outcome of the baseline. By comparing Table IV and
Figure 1, we can notice that the proposed model fingerprinted a
lower percentage of misconfiguration traffic than the baseline.
A semi-automated verification (i.e., using scripts and manual

Misconfiguration Traffic ® Unsolicited Traffic

Fig. 1: Proposed Model: Distribution of darknet sessions

investigation) validated that all the sessions that the model
inferred as misconfiguration traffic are true misconfiguration
packets, where almost 50% of them are malformed packets
while the rest are packets that targeted the darknet IP space
only once. We further investigated the 4.7% darknet sessions
that the baseline experiment has inferred as misconfiguration
traffic and noticed that they are indeed false positives related to
UDP amplification probes [66]. Thus, we can safely claim that

| Scanning Traffic | Backscatter Traffic | Misconfiguration |
[ 651% [ 82% [ 26.7% |

TABLE 1V: Baseline: Distribution of darknet sessions

the proposed model was accurate in distinguishing between
darknet misconfiguration traffic and other malicious (or unso-
licited) darknet traffic, compared to the baseline. In terms of
processing performance, we were solely interested in inferring
the execution time of the prototype; the time from which a
darknet dataset is fed into the prototype, until the time the
prototype flags the misconfiguration, filters-out such traffic and
generates a new ‘“clean” dataset. We executed the experiment
on a single commodity machine running Ubuntu 16.04 LTS
with an Intel Core-i7, 64-bit processor and 16 GB of RAM.
The output disclosed that in order to achieve the intended tasks,
the prototype approximately required, on average, 14 minutes
to completely process 1 hour of darknet data. For our current
tasks in hand that do not require very large measurement stud-
ies and given the accuracy and automation that is offered by
the proposed model, we believe that such result is acceptable.
Future work will address the performance of the proposed
model by (1) dropping the Java implementation in favor
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http://jnetpcap.com/?q=jnetpcap-1.4

of a C implementation that leverages the 1ibpcap? library,
and (2) employing multi-threading and parallel programming
paradigms.

B. CPS Probing Inference & Characterization

After preprocessing the darknet dataset, we aimed at in-
ferring and characterizing probing events targeting 120 CPS
communication and control protocols covering 26 CPS services
(please recall Table III). Table V provides an overview of the
CPS scanning activities as inferred by the proposed algorithm.
In total, we have identified 33897 CPS probing events targeting
20 CPS protocols. Figure 2 illustrates the distribution of such
events during the analyzed period. In an effort to validate
the occurrence of the inferred CPS probing activities, we
performed the following tasks. First, we relied on third-party
publicly available threat repositories provided by Cymon®
and AbuseIPDB’. These repositories index Internet-scale sus-
picious IP addresses as reported by service providers and
backbone network operators. They also identify the probable
attack category. We cross-matched the inferred CPS probing
events with those repositories.

April April May May
Week3 Week4 Weekl Week?2
Towl 49954 | sg71 | 8731 | 8341
Scanners
Total
Unique 3007 3727 3950 3731
Scanners

TABLE V: Inferred CPS probing events

Our findings revealed that approximately 4.37% of scan-
ners were indeed involved in various malicious reported ac-
tivities (i.e., hacking (41.25%), portscan (31.46%), FTP/SSH
brute force (13.28%), and DDoS (6.29%)). In an auxiliary
attempt to validate the occurrence of the remaining scanners,
we relied on DShield® data. By performing this, we were able
to validate 88.1% of the remaining scanners, which generated
1710065 malicious activities and were involved in 151799
unique attacks, as reported by DShield. The residual 7.53%
of scanning sources have never been reported in any publicly
available dataset that we could find. However, our manual
inspection indicated that 80% of them belong to an unsolicited
CPS probing campaign (campaign B to be discussed in Section
IV-C). Thus, in total, through our validation approach and
manual inspection, we were able to validate the occurrence
of all the inferred CPS probing sources, except 1.34%, which
close to half of them were confirmed, by investigating their
corresponding packets, to be related to misconfiguration traffic
that were not filtered out correctly by the preprocessing model.

Our investigation revealed that 98% of the events are TCP-
based, where they are rendered by vertical probing activities,
in an effort to verify all running CPS services on a single host.
CPS probing events that exploit the UDP were scarce (close
to 2%) in our analyzed dataset and predominantly targeted

Stcpdump: http://www.tcpdump.org/

6Cymon Open Threat Intelligence: https://cymon.io/
7 AbuseIPDB: https://www.abuseipdb.com/
8DShield: https:/www.dshield.org/

BACnet (on port 47808) and Ethernet (on ports 22222/44818).
In contrast, Modbus, ICCP, Niagara Fox and DNP3 were
among the top abused TCP CPS services. We geo-located
the probing sources of the most prominent probed services
as depicted in Figure 4. The outcome demonstrates that the
United States leads in terms of generating most of the probes.
Additionally, we infer distributed horizontal probing events
towards Germany, China, and France, and horizontal probing
activities from Japan, Russia, Canada and Korea that respec-
tively target the ICCP, Foundation Fieldbus, ROC and Modbus
CPS protocols. Moreover, we infer other horizontal probing
activities from Spain and Singapore, which simultaneously
target the ICCP and Modbus services.
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Fig. 4: CPS service scans: Top source countries

We proceed by analyzing two packet features, namely, IP
Identification (ip-id) and source port (src-port), related to the
inferred CPS probing events. Both features are typically used
to make inferences related to the service generating the traffic
[54]. On one hand, Table VI lists the top five ip-id values
and their counts. The results revealed that the majority of the
used ip-id values are consistent with probes generated from
the Zmap probing tool, which has a default ip-id equal to
54321 (0xd431 in hex) [54]. As such, we can state that around
90% of the inferred CPS probing traffic are indeed generated
from Zmap. On the other hand, Table VII summarizes the top
employed source ports. We inferred a significant amount of
probes originating from typically abused ports such as 6000
(i.e., often reported to be used by trojans). We have also noticed
that the majority of the traffic have been received via specific
ports within the 40k and 60k range. While analyzing Modbus
communication, we have noted that around 30% of its traffic
originated from source port 6706, which is the only port that
consistently appeared during the entire analyzed period. We
currently have no tangible explanation of such traffic, but we
will be investigating their packets’ details in the near future.

April
Week3

April
Week4

May
Week1

May
Week2

0xd431 (13060)
0x0100 (820)
0x0049 (11)

0x9625 (9)
0x0ae7 (9)

0xd431 (12632)
0x0100 (343)
0x0blc (10)
0x052a (10)

0x058d (9)

0xd431 (11640)
0x0100 (566)
0x843d (9)
0x591e (9)
0x01da (9)

0xd431 (12849)
0x0100 (530)
0x0438 (13)

0xb530 (9)
0x8faf (9)

TABLE VI: Top five ip-id values (Probe packet count)

Consistent with Section III-B, we now investigate whether
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Fig. 3: The co-occurrence patterns of the inferred CPS probing events

April April May May
Week3 Week4 Weekl Week2
6000 (609) 53 (535) 1048 (785) 6000 (426)
53933 (348) | 43490 (356) | 42880 (576) | 60000 (330)
53 (315) 6000 (235) 53 (334) 53 (314)
43490 (267) 22 (214) 59651 (223) | 63030 (156)
59531 (244) 1048 (146) 58017 (221) | 50449 (128)

TABLE VII: Top five used/abused src-port (Probe packet count)

the same CPS scanning sources are prevalent on different
time periods by deriving their co-occurrence patterns. Figure 3
shows the extracted patterns for the most probed CPS services,
which are visualized in associated and correlated colors. Our
analysis revealed one clear consistent pattern that remained
active during the entire analyzed period. Such pattern is an
association between sources probing the ROC PLUS protocol

10

by abusing TCP port 4000 and those targeting the Ethernet
UDP ports 22222 and 44818. In this pattern, 55 to 82 IP
addresses were always persistent probing those CPS services.
Another interesting finding is related to the ICCP service on
TCP port 102, in which it was found to be probed with 5 other
services, namely, BACnet, DNP3, Ethernet, ROC and Modbus.
In these probes, 27 and 86 IP addresses concurrently shared
the probing task. Additionally, we have pinpointed probing
sources that exclusively targeted the Foundation Fieldbus and
PROFINET services, where their probing sources did not probe
any others CPS protocols. We also note that the probing
sources targeting the Modbus protocol, also targeted 6 other
(CPS and non-CPS) protocols 74% of the time. By focusing
on the Modbus protocol, which was the most probed in our
analyzed dataset, we can infer from Figure 5 that 12 Modbus
scanners remained active during the entire analyzed period.
Although we note such continuous and consistent activities



among Modbus scanners, the majority originated from rel-
atively new sources, with an average of 121 new probing
sources per week.

151 35
29
29 15
12 14
49 246
12 111
1 28
29

Fig. 5: Co-occurrences within Modbus sources

C. CPS Probing Orchestration Fingerprinting

Indeed, the previously inferred CPS probing events ap-
pear to originate from independent probing sources. However,
consistent with Section III-C, we now execute the proposed
approach to examine the existence of orchestrated CPS probing
events. The proposed approach identified 9085 probing events
generated from 58 campaigns. Figure 6 provides a holistic
depiction of the inferred campaigns, where the nodes represent
unique source IP addresses and the edges represent the exis-
tence of a concrete derived similarity based on the analyzed
generated probing traffic per the proposed approach of Section
III-C; one can notice the appearance of several large-scale CPS
probing campaigns. In the sequel, we only elaborate on 5 of
those campaigns that were shown to be of large-scale (i.e.,
have at least 50 sources). It is noteworthy to mention that
around 60% of the inferred campaigns (including those 5 large-
scale campaigns) possessed a very low portsweep probing rate,
rendering them independent and/or undetectable by typical
intrusion detection systems or firewall rules. In contrast, our
proposed methods in terms of inference algorithm and orches-
tration fingerprinting, can evidently assess those seemingly-
independent probes to infer their underlying coordination.

N

Fig. 6: A holistic illustration of the inferred orchestrated CPS probing
events

The first two probing campaigns were found to be gen-
erated by an organization and an academic institution. A
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verification of their IP ranges and host names revealed that they
are known to perform probing activities for cyber security and
research purposes. Table VIII provides an overview of these
unsolicited campaigns.

S Number
Reference d(;)rlrllfii of distinct
IP addresses
A *edu 64
B *i0 136
*.com
C * de 188
D *.cn 116
E *ru 54

TABLE VIII: Inferred CPS probing campaigns

We have encountered a unique probing behavior while
investigating probing campaign A of Table VIII. The campaign
has indeed conducted 6 operations during the analyzed one-
month period. In fact, we have identified this orchestrated
campaign operating in a product of 16 unique hosts, leveraging
64 (16 x 4) distinct IP addresses, running in parallel, from
random ports, and searching for a specific list of CPS protocols
in the following sequence: Modbus on TCP port 502, Niagara
Fox on TCP port 1911 and BACnet on TCP port 47808.
On average, for each protocol, 14 requests were sent to
different dark IP addresses. It is apparent that this campaign
is specifically searching for online CPS.

Concerning campaign B of Table VIII, its probing strategy
is quite different from that of the first campaign. Instead of
mainly targeting CPS services, this campaign probed a variety
of services. In fact, the average number of services probed per
unique host is 191, some of which are Modbus and BACnet.
Furthermore, the campaign “recycled” 13 new hosts every
week and their probes originated from random source ports.
Moreover, in contrast to the first campaign, which mainly
utilized TCP to probe, this second campaign leveraged more
services such as UDP, NBNS, CoAP, MDNS, ISAKMP, ENIP,
and QUIC. The collected information from such probes could
be used by malicious entities to perform vulnerability analysis
on a larger number of publicly reachable CPS services.

In contrast to the aforementioned two campaigns that were
generated from unsolicited yet known sources, we now detail
three inferred orchestrated campaigns that we deem as being
malicious, given that their domains pointed to suspicious hosts
and/or their IP addresses did not reflect any known/benign
entities.

One of the largest inferred campaigns (campaign C of
Table VIII) that meet such criteria originated from numerous
locations in the United States and Germany. The campaign
consisted of 188 distinct hosts conducting large-scale scan-
ning in a stealthy manner. Generally, this campaign targeted
each destination IP address for a maximum of 5 times. The
campaign targeted Modbus 30% of the time, in addition to
several other services such as CWMP, HTTP and HTTP-
ALT, and HTTPS. In fact, the campaign initiated its scans
against Modbus, followed by a UDP and an HTTP scan. While
probing Modbus, this campaign leveraged only two source
ports, 40849 and 63419, among all 188 hosts. This may serve



to indicate that such campaign is most likely running the same
probing tools/techniques/malware. Due to the non-interactive
nature of darknet traffic analysis, it is rather difficult to clarify
the aim of this campaign’s activities. However, our claim is
that, given that the abused services which are tagged along
with Modbus, include, CWMP, SSH and HTTP, this campaign
can be dedicated to execute CPS brute force attacks. In fact,
by cross-matching the campaign’s IP addresses against the
previously noted publicly available threat repositories, 68.7%
of them were found to have been previously reported for SSH
and HTTP brute force attacks.

Another unique campaign (campaign D of Table VIII) orig-
inated from various cities in China. This campaign leveraged
116 TP addresses, during two non-consecutive weeks in the
analyzed one-month period. The campaign targeted Modbus
and BACnet, yet also focused on ports 80 and 443. After
manual inspection, we noticed that many-to-one brute force
HTTP and HTTPS requests are being extensively generated
through different source ports. We postulate that this campaign
is targeting the Human Machine Interface (HMI) of CPS.

Last but not least, we also identified a relatively short
coordinated scan, campaign E of Table VIII, that remained
active for a one week period. Attributed to Russia, this cam-
paign is dedicated towards probing the Foundation Fieldbus
HSE. While the campaign only leveraged 54 IP addresses,
however, it has contacted almost all (98%) of our darkspace
by generating traffic from random source ports within the
30k and 50k range. Such probes could identify vulnerabilities
within this protocol’s implementation, such as the IP multicast
features on Foundation Fieldbus systems, which are typically
not well protected.

V. DISCUSSION

Our overall proposed models, approaches and techniques
leverage network telescopes to infer CPS probing activities.
Thus, we now present some of the assumptions that underlie
our analysis, in addition to some challenges and ways to
leverage the obtained results to enhance CPS security.

Attackers’ IP Address Selection: Our newly deployed dark-
net IP address space is still at its infancy. Thus, the proposed
approach is unable to monitor and infer events that do not
target our sensors. This can occur when attackers use an
already published hit list or test specific and known vulnerable
services. Although such methods will allow scans to avoid
being detected or assessed by our approaches, adversaries in
general prefer to employ up-to-date and various hit lists of
services to decrease their chances of being detected and to
increase their chances of launching subsequent attacks. To
achieve this, at least one global scan is needed to first assess
the impact of the attack; a scan that would probably hit our
sensors. To this end, we obviously do not claim that we did not
miss any other Internet-scale CPS probing activity, however,
our collaborators and us, are not aware of any worldwide
reported CPS probes that were not (at least partially) inferred
by our proposed methods during the analyzed period.

Incomplete view of the CPS abuse: As briefed in Section
I1, our approach falls under passive network traffic monitoring.
As such, since we do not interact with incoming traffic, we
can only observe the first communication packets related to
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the CPS protocols. Consequently, our approach cannot draw
a holistic view of the complete CPS abuse beyond such
communication attempts. This is a typical limitation though
of analyzing network telescope one-way traffic.

Defense against scanning: Evidently, by using our de-
ployed network telescope, a significant number of CPS scan-
ning activities reached our networks, probing for Internet
services including a variety of CPS-specific services. The
nature and intent of these events are at best hard to be
concretely verified. Therefore, it is important to have defensive
mechanisms in place to protect networks and CPS realms
against potentially malicious subsequent activities. The first
step in defending against such malicious traffic consists of
detecting the scanning activities. For instance, after a CPS
scanning campaign has been identified, CPS operators can
proceed with deploying solutions to protect against it. One so-
Iution in the case of known/unsolicited campaigns is to report
the scans and request exclusion of a particular network address
space from subsequent scans. Legitimate campaigns often have
mechanisms in place for excluding networks from their scans.
In the event that exclusion requests are not possible, or are
not respected by the scanning entities (i.e., in the case of
malicious CPS scanning activities), incoming network traffic
from source IP addresses that are repeatedly involved in such
scanning activities can be dropped with the use of blacklists.
Such lists can be intuitively built based on darknet analysis.
Ideally, deploying darknets at different locations can provide
more global and accurate blacklisting information.

Indeed, the most difficult step in defending against scans
and their subsequent activities is detecting the scanning activ-
ities, since deploying solutions such as reports and blacklists
are relatively straightforward. Unfortunately, as [54] uncovers,
the vast majority of networks do not proactively detect scans,
but rather accidentally discover them during maintenance or
troubleshooting. Scanning activities leave footprints in IDSs,
firewall logs, webserver logs etc., that can aid in detecting them
and extracting scanners’ source IP addresses for consequent
blacklisting. However, going through the logs can be a tedious
and error-prone process that can resolve in a large number of
false positive and false negative results, which can have an
unwanted effect on the network’s operation. To this end, we
recommend the use of a network telescope within or external
to CPS environments, similar to the one deployed and reported
in this paper. Incoming traffic to the network telescope’s
dedicated IP addresses can be automatically analyzed to detect
scanning activities and pinpoint the scanners’ source IP ad-
dresses. A positive side effect of this approach is that the anal-
ysis of the darknet traffic can reveal other useful patterns for
CPS administrators, such as misconfiguration errors, infected
CPS devices, ongoing malicious campaigns, etc. For large CPS
networks, interactive CPS honeypots can be complementary
deployed, which can further assist in identifying the intent and
nature of the incoming traffic.

Research Trends: Recent network telescope analysis fo-
cused mostly on large-scale Internet scanning activities with
the goal of detecting scanners and identifying broad patterns in
their scanning behavior [54]. This aspect in network telescopes
research can be attributed to the emergence of highly efficient
scanning tools and techniques, which can scan the entire IPv4
address space in just a few minutes. We strongly believe



that network telescope research will shift towards specialized
per-protocol analysis, relatively similar to the one presented
here, in an effort to generate fine-grain cyber-intelligence.
Such a shift would be in line with the evolution of the threat
landscape; current threat actors, particularly Advanced Persis-
tent Threats (APTs), have become increasingly sophisticated
targeting evolving paradigms (IoT, CPS, etc.) As such, we
undoubtedly believe that future attacks will include APTs
dedicated towards these paradigms. In this context, it would be
interesting to observe how the Internet measurement, control
and cyber security research communities would collaborate to
leverage their capabilities to contribute to the security of such
complex systems.

VI. CONCLUDING REMARKS

In a dedicated effort to capture real unsolicited and ma-
licious notions in the realms of CPS, this paper presented
a thorough investigation of CPS probing activities towards
ample of CPS protocols. The latter was achieved by examining,
analyzing and correlating various dimensions of significant
amount of darknet data. A novel probabilistic model was
presented and employed to sanitize darknet data from miscon-
figuration traffic. Subsequently, inference and characterization
modules were devised to extract and analyze diverse CPS
probing events. To this end, trends, packets’ headers and
co-occurrence patterns of such events, among others, were
reported. Additionally, in an effort to tackle the challenging
problem of inferring CPS orchestrated probing campaigns by
exclusively monitoring and analyzing a network telescope 1P
space, we presented a hybrid approach based on time series
and netflow analysis methods. The outcome disclosed more
than 9 thousand orchestrated, stealthy CPS events, originating
from a plethora of unsolicited and malicious campaigns. While
Section II highlighted a number of research gaps that are
undoubtedly worthy of being investigated, we are currently de-
signing and deploying diverse CPS honeypots to infer tangible
CPS attack models. In this context, we will be leveraging the
information obtained from this work coupled with those attack
models to build tailored CPS resiliency mechanisms, from the
cyber as well as the control/physical perspective, to address
the security of CPS in the power and critical manufacturing
sectors.
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