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Abstract—Drones are becoming increasingly popular for hob-
byists and recreational use. But with this surge in popularity
comes increased risk to privacy as the technology makes it easy
to spy on people in otherwise-private environments, such as
an individual’s home. An attacker can fly a drone over fences
and walls in order to observe the inside of a house, without
having physical access. Existing drone detection systems require
specialist hardware and expensive deployment efforts; making
them inaccessible to the general public.

In this work we present a drone detection system that requires
minimal prior configuration and uses inexpensive commercial off-
the-shelf (COTS) hardware to detect drones that are carrying out
privacy invasion attacks. We use a model of the attack structure
to derive statistical metrics for movement and proximity, that are
then applied to received communications between a drone and its
controller. We tested our system in real world experiments with
two popular consumer drone models mounting privacy invasion
attacks using a range of flight patterns. We were able to both
detect the presence of a drone and identify which phase of
the privacy attack was in progress. Even in our worst-case we
detected an attack before the drone was within 48m of its target.

I. INTRODUCTION

A. Motivation

Small unmanned aerial vehicles (UAVs) are becoming
increasingly commonplace nowadays. Since the release of
the Parrot AR.Drone in 2010, the use of these devices is
no longer restricted to military and commercial domains nor
enthusiasts, but has opened up to laymen as well. Advances
in sensor design and image processing support sophisticated
flight-assist features that make piloting UAVs easily accessible
to hobbyists. This is further supported by the ubiquity of
smartphones and tablets, as these devices make convenient
controllers for consumer models. As consumers get a broader
choice with more affordable products coming out every year,
sales of UAVs for videography and recreational use are rising.
Most such UAVs are multirotor aircraft that use four or more
rotors to fly and are able to hover in mid-air.

The retail tracking service NPD Group has reported that
consumer UAV sales have grown by 224% to almost $200
million in the time from April 2015 to April 2016 and that the
sales growth was accelerating over this period [14]. According
to the US American Federal Aviation Administration (FAA),
1.9 million small UAVs, more commonly known as drones,
were sold in 2016 on the US hobbyist market alone. The FAA
predicts that the number of annual sales will increase to 4.3
million units by 2020 [2].

But this prevalence of consumer UAVs is not without risks.
Over the past few years incidents at high-security facilities
have occurred with increasing frequency. Prisons have to deal
with drones dropping weapons and other contraband into
prison yards [8], drug smugglers use them to carry their
goods over borders [9], and the American Secret Service
repeatedly had to deal with people who managed to bypass
security measures and crashed their drone on the White
House lawn [22], [21]. Besides the danger that drones pose
to restricted areas, there has been an increasing unease in
the general population about privacy invasion through drones
carrying high-fidelity camera equipment. As most consumer
models are outfitted with cameras for live-view video during
flight, UAVs can fly over fences to see into nearby gardens or
even look into windows to observe the interior. In Seattle, a
woman called the police after spotting a drone flying in front
of her 26th-floor apartment window; observing her partially-
undressed inside [23]. Meanwhile, a man from Kentucky was
arrested after shooting down a drone over his property. He
explained this act by saying that the drone was spying on his
sunbathing daughter [29].

These and similar incidents have prompted reactions from
regulators, such as the FAA requiring since December 2015
that drone owners register as drone operators in order to
fly UAVs legally [3]. It has also led to a multitude of de-
fence mechanisms and detection systems being proposed (see
Section I-B for an overview of existing methods), however
these systems are mostly targeted at law enforcement and
larger companies. By contrast, we focus on threats to private
individuals. An attacker can launch a drone from a distant
location and fly it to an otherwise-inaccessible private area,
such as outside a top-floor window within a walled garden,
and freely observe the occupants. The occupants require a
system that alerts them to the presence of an impending
privacy invasion, with sufficient warning to allow them to
react accordingly. The system must be easy to deploy without
specialist knowledge and detect a wide variety of drones based
on intrinsic properties of UAV activity; both to be robust to the
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rapid pace of advancement in drone technology and to avoid
spurious alarms.

In this work, we propose such a system that detects the
presence of a consumer UAV with live-video streaming being
used to invade someone’s privacy in their home. We make use
of readily-available commercial, off-the-shelf (COTS) hard-
ware to measure the signal strength of the communication
between the drone and its controller; developing metrics that
identify signal properties inherent to drone flight. In doing so
we make the following specific contributions:

• Development of a model of UAV-based privacy-
invasion attacks

• Derivation of statistical metrics to identify drone
movement and proximity

• Proposal of mechanisms to overcome attempts by an
attacker to avoid detection, such as varying their speed
or flight pattern

• Reporting the evaluation of our system in a real-world
scenario using popular consumer drones

B. Related work

In this section, we will first survey existing UAV detection
methods and subsequently give a short overview over available
defence mechanisms.

A traditional way to detect aircraft is through the use of
radar; a staple of military and aircraft control for a long time.
But conventional radar systems are not able to detect drones.
To detect small objects like drones, expensive high-frequency
radar systems are necessary [11]. However, Boddhu et al. [5]
suggest that drones might be indistinguishable from birds for
such a radar system as they have a comparable wing span.
They propose an approach that uses humans as sensors by
building a collaborative smartphone app that allows users to
share drone sightings. Their approach is more appropriate to
target large-scale threats, and is not applicable for the defence
of a single property against a nearby attacker.

Another way to detect drones is based on video cameras
and image analysis. Rozantsev et al. [19] detect small UAVs by
using both their appearance and motion cues. According to the
work by Busset et al. [6] the variety of drone shapes is chal-
lenging for appearance-based approaches, whereas methods
based on motion cues struggle with similarities between drone
and bird movement. Therefore, they propose using acoustic
cameras to complement the use of video cameras. These
microphone arrays use the noise of the rotors to detect drones.
As they use specialised and expensive equipment for their
system, this is not a feasible solution for the use in a domestic
setting. Case et al. [7] designed a low-cost acoustic array to
detect small UAVs that can be built with COTS hardware. But
their system is also not easy to build and deploy as it requires
an array of 24 microphones. Furthermore, the total cost of their
system still amounts to $3768 which makes it unaffordable for
the general public.

Hybrid approaches such as CSUAV [28] combine radar,
acoustic arrays and video cameras to profit from the benefits
of all approaches. But while they improve the detection per-
formance, they also increase the complexity and cost of the
system substantially.

Detection Drone Drone Dedrone2 Orelia Drone Domestic Drone
method Detector3 Shield4 Detector5 Countermeasures6

Audio Yes Yes Yes Yes No
Video No No Yes No No
RF Yes No Yes No Yes

TABLE I: Commercial drone detection systems. Comparison
based on [10] and respective product feature descriptions.

Most of the aforementioned approaches are focused on
the protection of high-security facilities; permitting the use
of expensive, specialist equipment, which is infeasible in a
domestic setting. As we are targeting such an environment,
we need to be able to use cheap COTS hardware. That is why
we focus on using the radio frequency (RF) signal of the drone
which can be detected using inexpensive consumer products.
The localisation of RF signals in general is a well studied topic.
Localising drones in 3D space would allow one to detect them
as flying transmitters. However, these methods usually need
several receivers and often rely on expensive equipment and
precise synchronisation between the receivers (see [20] for an
overview of signal localisation methods).

The academic work on UAV detection with more affordable
methods is quite limited. Peacock and Johnstone [18] detect
drones by using protocol signatures from the drone’s Wi-Fi
connection. For this method to work, they have to rely on an
unencrypted connection between drone and controller, which
is not the case for newer models. They also discuss the use
of media access control (MAC) address prefixes by known
manufacturers to recognise transmitting drones. Although this
is an easy and reliable method to detect manufacturers that
have their own MAC prefix range, it is only capable of
detecting known drone models. As there is an ever-increasing
variety of drone models, it gets more difficult to build and up-
date a comprehensive database of MAC prefixes. Furthermore,
some manufacturers use MAC prefixes that are not specific
to them, e.g., if their camera system consists of the popular
GoPro cameras1 which are widely used on their own. But even
when the MAC prefix of a drone manufacturer is detected,
relying only on the presence of certain MAC addresses is not
enough to distinguish a neighbour turning on a drone in their
house from an actual privacy-invasion attack.

Over the last few years, several companies have entered
the market for drone detection systems. With the exception of
Domestic Drone Countermeasures, their intended target groups
are law enforcement agencies and security forces of larger
companies. See Table I for a comparison of their detection
methods. Domestic Drone Countermeasures use a mesh net-
work of receivers to establish the mobility of transmitters and
treat all unidentified moving transmitters as a threat. Our goal
in this work, on the other hand, is it to detect an actual privacy
invasion attack using only one inexpensive receiver.

In our scenario, establishing line-of-sight to the receiver
plays an important role. Xiao et al. [30] studied the detection of

1www.gopro.com
2www.dedrone.com

3www.dronedetector.com
4www.droneshield.com

5www.drone-detector.com
6www.ddcountermeasures.com
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line-of-sight/non-line-of-sight (LOS/NLOS) conditions. How-
ever, they are focused on an office setting with tighter control
over the transmitters and most of their metrics rely on such an
indoor environment. Furthermore, the transmitters are static in
this work, whereas mobility is an intrinsic feature of drones.
The detection of moving transmitters has been investigated by
Muthukrishnan et al. [17] which we will revisit in Section V.

Once a drone has been detected acting maliciously, some
set of countermeasures may be deployed. A vast array of
countermeasures have been proposed; from shotguns, through
flying nets [26], live eagles [1], control-signal jamming [13],
Wi-Fi de-authentication attacks [18], flight-controller exploita-
tion [15] and GPS spoofing [24], [13], to interference with on-
board gyroscopes via acoustic resonance [25]. In a domestic
setting, the course of action could be as simple as automatically
shutting the blinds. The relative merits of each approach
warrant careful consideration, however they are beyond the
scope of this work and we do not discuss countermeasures
further — focusing solely on the mechanics of detection.

II. BACKGROUND

The market for consumer drones is contested by many
different manufacturers, but at time of writing it is dominated
by only a few companies, namely DJI Innovations (49% US
market share), Parrot (19%), Protocol (6.3%), Yuneec (5.6%)
and 3D Robotics (4%) [27]7.

The majority of drones provide a live video stream back
to the operator; so-called “first-person view” (FPV). In all
but the simplest of flights it is a great benefit to the pilot
to be able to see from the perspective of the drone itself.
The user can commonly connect to the drone with their
smartphone, tablet or a dedicated controller to receive the
video, and often record the footage in higher resolution as
well. Interoperability with existing user devices has played a
great role in enhancing the appeal of these consumer UAVs
and hence most drones use the common 2.4GHz or 5.8 GHz
Wi-Fi bands for their video downlink. Some even use Wi-
Fi for the telemetry (control channel) of the drone. In these
cases, the drone can be controlled completely by an app.
Otherwise, a separate, dedicated controller is needed and the
Wi-Fi connection is only used for the live-view video. Table II
shows different models from different manufacturers and the
communication technology used for their video downlink. With
the exception of newer DJI drones, which use a proprietary
technology named “Lightbridge”, Wi-Fi is at least optional in
all cases, if not the only way to receive video during flight. As
such we consider Wi-Fi as the drone communication system
throughout this work.

Airspace regulations differ between jurisdictions in terms
of the requirements placed upon drone operators. Almost
all mandate that minimum separation distances are observed
between the drone and any surrounding persons or property.
In the United Kingdom, the Civil Aviation Authority (CAA)

7Based on data provided by the NPD Group/Retail Tracking Service
8www.dji.com

9www.parrot.com
10www.protocolrchelicopter.com

11www.yuneec.com
123dr.com

Brand Model Video Downlink Speed (m/s)
DJI8 Phantom 3 Standard Wi-Fi (2.4 GHz) 16

Phantom 3 Advanced/Pro Lightbridge 16
Phantom 4 Lightbridge 20

Parrot9 AR.Drone 2.0 Wi-Fi (2.4 GHz) 11.11
Bebop Wi-Fi (2.4, 5.8 GHz) 13
Bebop 2 Wi-Fi (2.4, 5.8 GHz) 18

Protocol10 Dronium One WiFi Ed. Wi-Fi (2.4 GHz) N/A
Yuneec11 Typhoon H Wi-Fi (5.8 GHz) 13.5

Tornado H920 Wi-Fi (5.8 GHz) 11.11
3D Robotics12 Solo Wi-Fi (2.4 GHz) 24.6

IRIS+ Wi-Fi optional 22.7
X8+ Wi-Fi optional 30

TABLE II: Features of popular drones with live-view video.

classes drones equipped with cameras as “small unmanned
surveillance aircraft” and requires that they [4]:

• fly no closer than 50m from any persons, buildings or
vehicles that are not under the control of the operator

• stay below a 400ft flight ceiling
• stay within line-of-sight of the operator

III. ADVERSARY MODEL

We consider an adversary that operates an unmodified,
commercially-available drone with the intent of invading the
privacy of their neighbours. The attacker tries to capture video
of the interior of a building that they would not be able to see
into otherwise, against the will of the inhabitants. The attacker
is considered to be purely an opportunist acting inappropriately
with standard equipment; they are not capable of modifying
the drone in any way.

The adversary does not have access to the premises and is
thus positioned some distance away from the target window.
To carry out the attack, the adversary has to move the drone
towards the window until it is in line-of-sight (LOS) of the
window and close enough that they can observe the interior of
the building by using the drone’s onboard camera. However,
they cannot get arbitrarily close due to turbulent air patterns
from the facia of the building making the drone harder
to control and the increased risk of detection and physical
interception by inhabitants of the building. The quality of the
footage is determined not only by the distance, but also the
camera resolution and the field-of-view (FOV) that the window
allows. The speed of the approach is limited only by the
drone’s capabilities.

We identify three phases of the attack:

a) Approach: The drone is launched and approaches
the window until it is close enough for surveillance. In doing
so it must establish line-of-sight (LOS).

b) Surveillance: While hovering in front of the window,
the drone records video footage of the interior. The movement
of the drone in this phase is kept minimal in order to increase
the quality of the recorded footage.

c) Escape: After successfully surveilling the interior of
the house, the drone moves away from the window and returns
to the launch site.

While the attacker cannot alter the fundamental operation
of their drone, they can vary the flight pattern and speed of the

3



dl
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γ

Fig. 1: The attacker launches the drone at launch distance dl
and flies it to surveillance distance ds to carry out the attack.
The detector is installed in the window. The FOV γ of the
window limits the area that is in LOS of the detector.

drone in an attempt to avoid detection. For example, they may
try to approach as quickly as possible, as slowly as possible;
attempt to mimic hobbyist flight or stay out of sight from the
window for as long as they can. The attacker is limited only
by the bounds of the drone’s manoeuvrability.

IV. SYSTEM MODEL

We model the system as follows; visualised in Figure 1.
As the adversary does not have access to the premises of
the defender, there is a minimum launch distance dl between
them and the target window. The adversary moves the drone
towards the window with any speed up to a maximum of vmax,
representing an upper bound on the speed of contemporary
drones. As the drone progresses towards the window, the
separation reduces to a surveillance distance ds, at which the
privacy invasion can take place. As mentioned in Section III,
the attacker must balance the risks to their equipment and
successful attack against the quality of the captured footage,
and adopt a value of ds such that they do so. The attacker
must also establish LOS with the target window; the limits
upon this are the FOV of the window, taken as γ.

A small Wi-Fi receiver is mounted in the window. The
receiver is configured to capture traffic in monitor mode,
periodically switching channels to cover the entire band.

The received traffic is separated into flows, filtered and
analysed to determine first whether an individual flow repre-
sents a live-streaming drone and then, if so, whether the drone
is conducting a privacy invasion attack. The system maintains
averages for the received signal strength (RSS) variance (in
the form of standard deviation) of each flow, over rolling time
windows of various sizes. It also monitors the baseline RSS
variance of packets from a known, static transmitter (such as
the user’s accesspoint).

Flow
separation

Throughput/
Packet-rate

filtering

Pre-processing

Movement
test

Free-space
propagation

test

Statistical tests

Attack phase
determination

Proximity
alert

Attack analysis

Presence,
Attack phase,
Proximity

Fig. 2: Flow diagram of the detection algorithm.

V. DETECTION

Detection proceeds in three broad phases. The pre-
processing phase prepares the stream of received packets for
analysis. Then statistical tests are applied to establish whether
individual transmitters are moving and operating in free space.
If the statistical tests pass then the attack analysis phase
determines the attack phase that is in progress and whether
the drone has reached close proximity. The steps are described
below and shown in Figure 2.

A. Pre-processing

The first step towards detection is the separation of different
data flows. Given the assumption that the drone is unmodified
and that communication makes use of the IEEE 802.11 Wi-Fi
standard, flows are separated by MAC address. The provision
of a continuous, live video stream from the drone to the con-
troller, necessitates a consistent, high bandwidth utilisation on
the communication channel13. The detection process excludes
flows that do not display this characteristic.

B. Statistical tests

An airborne drone operates largely in free space, and must
establish LOS to the window (and thus the detector) in order
to conduct a privacy invasion attack. As such the transmission
environment is uncluttered and the received signal strength
(RSS) can be expected to be dominated by the direct-path
component. We neglect multipath effects due to nearby houses
and the ground as the drone has this strong, short-range LOS
connection. See Figure 3 to see how the path loss changes over
time for an attack with a straight approach and constant speed
under the free-space propagation assumption.

The system applies statistical tests to a flow to establish
whether it is likely to represent a drone or not. The tests are
based upon a comparison of the standard deviation of RSS
over short and long rolling time windows.

Given the high packet rate exhibited by a live-streaming
drone, in a sufficiently short period the drone does not move
enough for the change in RSS due to movement to be distinct
from noise. For a non-moving LOS transmitter in a static
environment, changes in signal strength are largely due to
measurement noise and cross-traffic interference. Hence, we
expect a standard deviation that is close to that of the general
noise level in such a timeframe. This noise threshold σ repre-
sents the standard deviation of the noise the receiver is subject

13For example, a Parrot Bebop drone creates 400 packets/s, for a throughput
of 500KB/s, when providing 720p video at 30 frames-per-second.

4



Approach Surveillance Escape

-70

-60

-50

-40

0 5 10 15 20 25
Time (s)

FS
PL

 (d
B)

Fig. 3: Simulation of the Free Space Path Loss during a privacy
invasion attack with 5s surveillance. The speed of the drone
is 5m/s, the surveillance distance ds is 1m.

to. It can be determined in an automatic calibration phase by
measuring the baseline noise from a known transmitter in a
static environment. As an example, the accesspoint of the user
can be used to calibrate the system.

Over a long time period, however, the RSS from a mov-
ing drone is mainly affected by that movement. So, whilst
the standard deviation alone may not be enough to confirm
LOS transmission[30], we can additionally use the long-
term changes that are detectable by having a higher standard
deviation than for immobile transmitters [17].

In combination, a low short-term standard deviation to-
gether with a high long-term standard deviation suggests a
LOS transmitter that is moving in free-space. We expect
other moving transmitters on the ground or indoors to have
more short-term variation due to changing multipath effects.
Whereas immobile transmitters in a static environment are
expected to have a stable long-term standard deviation, while
those in a dynamic environment are expected to experience
substantial short-term changes.

In order to apply both tests, the system must first determine
appropriate short and long window sizes. To find a window
size where the change in signal strength stays below the noise
level, we consider the part of the approach with the maximal
possible change. This change occurs when the drone travels the
final stretch at maximal speed before it arrives at surveillance
distance ds14.

We assume that the drone transmits with packet rate r, and
ds, vmax and transmission frequency f are given. At packet
rate r we receive N = w · r transmissions in a time window
of length w. Then the free-space path loss of each of these N
measurements is given by [12]:

xi = 20 log10

(
ds +

i

r
· vmax

)
+ 20 log10(f)− 27.55

14This is unlikely to happen in reality, as it is too hard to control a UAV
at that speed so close to the window. Nevertheless, it helps to determine the
largest change that is physically possible and caused by movement alone.

The unbiased sample standard deviation can be computed
with:

s(N) =

√√√√ 1

N − 1

N∑
j=1

xj − x̄

where x̄ = 1
N

∑N
i=1 xi is the sample mean.

We then have to compute the maximal window size for
which the standard deviation is below the noise threshold σ:

ws = max {w|s(w · r) < σ}

Then σ bounds the standard deviation of the random
variable FSPL within window ws.

We consider the signal strength as the sum of random
variables FSPL for the free-space path loss and XN for the
noise. Then the variance of the sum of these random variables
is given by [16]:

V ar(FSPL+XN ) = V ar(FSPL) + V ar(XN )

+ 2Cov(FSPL,XN )

We know from above that V ar(FSPL) < σ2 and
V ar(XN ) = σ2. Additionally, we know that FSPL and XN

are uncorrelated, as they are independent random variables.
This means that Cov(FSPL,XN ) = 0 and it follows that:

V ar(FSPL+XN ) < σ2 + σ2 + 2 · 0 = 2σ2

Consequently, the short-term free-space propagation test
fails when the standard deviation of the measured samples
during ws surpasses

√
2σ.

Analogously, we compute the larger window size to detect
movement by choosing an expected minimal velocity v and
by looking at the first stretch after launching at distance dl.
In this case, the free-space path loss for the N corresponding
measurements is:

xi = 20 log10

(
dl −

i− 1

r
· v
)

+ 20 log10(f)− 27.55

This time, we are looking for the minimal window size for
which the sample deviation is above the threshold:

wl = min {w|s(w · r) > σ}

Again, using the independence of FSPL and XN it
follows that:

V ar(FSPL+XN ) = V ar(FSPL) + V ar(XN ) > 2σ2

As a result, the movement test is successful if the measured
samples during wl have a standard deviation that is higher than√

2σ.

C. Attack analysis

All flows considered to be drones are examined to establish
whether or not they are being used to mount a privacy invasion
attack. The approach behaviour relative to the receiver is
determined by monitoring the long-term RSS trend; whether
it is increasing, stable or decreasing. A proximity test is
then applied to drone flows that appear to be approaching or
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hovering, to determine whether the drone has reached ds and
begun surveillance.

The attack phase can be deduced by taking the difference
between the mean of the first and the second half of wl:
x̄[1,bN2 c]

− x̄[dN2 e,N ].

The sign of ∆x then determines the current attack phase;
if the drone is approaching, ∆x is larger than zero, whereas
values lower than zero indicate that it is escaping. If the sign
of ∆x is zero, the drone is not moving. However, this is not
sufficient to decide whether the surveillance phase has started.
It could just be hovering at a larger distance from the window,
without being able to observe the interior. Therefore, we have
to take the proximity to the window into account.

We assume that the approach has been detected previously.
Let wl be the window size in which the detection happened
and let v be the corresponding drone speed. Then the drone
has arrived at surveillance distance ds, if ∆x as defined above
is larger than or equal to the following threshold σp:

xi = 20 log10

(
ds +

i

r
· v
)

+ 20 log10(f)− 27.55

N = wl · v, ∆x ≥ σp

One can see in Figure 8 that the window has to catch up to
detect the surveillance phase. Therefore, it is important that an
alarm is already raised if proximity to the window is detected
after an approach phase. This is especially true, if the approach
was very slow as wl might cover the whole surveillance period
otherwise.

Detection range

To compute the time until our system can detect an attacker,
we take wl as computed above: td = wl.

Then the detection range dd is: dd = dl − wl · v. The
detection range depends on dl, whereas the movement speed
v has little effect on it, and only shows a slight variation due
to the sampling rate.

As we do not know the actual speed of the attacking drone
in advance, we have to compute a range of different window
sizes in parallel to guarantee a timely detection.

Approach patterns

The case studied above corresponds to a direct approach to
the window. As noted in Section III, the attacker can vary their
approach in an attempt to avoid detection. We consider a set
of example flight patterns; detailed in Table III and visualised
in Figure 4. Whilst these patterns are not exhaustive, they
demonstrate some extremes of the behaviour of an attacker.
The first three patterns have in common that the attacker is in
LOS of the window for most of the attack; the main difference
between these three patterns is the effective speed of the drone
towards the window. The fourth pattern, the NLOS approach,
ensures that the drone is only in LOS of the window for a short
period of time. By approaching from the sides, above or below
like this, the attacker can give any detection approach, whether
human or machine, less opportunity to detect the drone prior
to surveillance beginning.

Approach Description LOS
Direct Drone follows shortest path to window Constant
Zig-zag Drone follows zig-zag pattern; resulting

in variable effective approach speed
Constant

Back and forth Drone approaches, backtracks, then pro-
gresses again; resulting in an effective
approach speed that is sometimes nega-
tive

Constant

NLOS Drone avoids LOS until shortly before
surveillance phase

Emerges

TABLE III: Example approach flight patterns
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Fig. 5: Simulation of a zig-zag approach with two different
choices of movement test window wl. One is optimised for
the actual speed, the other one for the effective velocity. The
latter allows a faster detection.

In contrast to the direct approach, flying towards the
window using a zig-zag approach results in a lower effective
velocity towards the window, which in turn affects the choice
of appropriate wl for the movement test. We simulated the
standard deviation for a zig-zag approach with two different
sliding windows; one for the actual speed v and another for
the effective velocity veff . In Figure 5, one can see that
the detection with a window size that is too short for the
effective velocity causes a delayed detection. Additionally,
the shorter window size captures the zig-zag motion of the
approach, whereas these erratic changes get smoothed out by
the larger window size of veff . A similar effect is caused
by a back-and-forth approach. The choice of ws for the free-
space propagation test, on the other hand, is unaffected by the
approach pattern.

If most of the approach is done out of LOS of the receiver,
our assumptions about free-space propagation do not hold for
the larger part of the approach. Therefore, the part of the
approach that can be used for detection with our method gets
reduced significantly. This distance depends on the surveillance
distance ds and the FOV γ of the window. But the detection
might not always be possible. Depending on the FOV γ, noise
threshold σ and surveillance distance ds, the approach in LOS
can be too short to result in a notable change of the signal
strength. Refer to Figure 6 to see how the detectability of a
NLOS approach depends on γ and ds.
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Fig. 4: Various example approach patterns
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Fig. 6: Detection ranges for the NLOS approach. If the
detection range dd is smaller than surveillance distance ds,
the detection will fail.

D. Detection algorithm

In order to detect drones, we compute the sliding windows
for the standard deviation of the signal strength using ws and
increasing values of wl. We proceed like this until we find a
value for which the standard deviation is below the threshold
within ws but breaks the threshold for wl.

We then use wl to determine the attack phase by computing
∆x. For values greater than zero the drone is approaching. If
∆x additionally exceeds σp, then the drone has reached ds and
an alarm is raised. The rolling windows should be reset after
a proximity alert to make sure that the surveillance phase is
properly detected. The surveillance alarm lasts until the start
of the escape phase is detected.

Pseudo-code for the detection algorithm can be found in
Algorithm 1, supporting the overall flow diagram in Figure 2.
See Figure 7 for the movement and free-space propagation
tests of the detection algorithm. This figure shows the rolling
standard deviation for a moving transmitter and a receiver
that is exposed to Gaussian noise. The attack phase tracking
and proximity alert for the same simulation are pictured in
Figure 8.

Algorithm 1: Detection algorithm
Data: Data flow of one transmitter
Result: Attack phase S
begin

S ←− ∅
for Increasing wl until vmax do

if s(ws) <
√

2σ and s(wl) >
√

2σ) then
if phase(wl) > 0 then

S ←− Approach
if proximity(wl) then

S ←− Surveillance
reset(wl);

else if phase(wl) > 0 then
S ←− Escape

 Approach
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Fig. 7: Detection algorithm for a simulation with v = 7m/s,
dl = 50m and Gaussian noise with σ = 2dB. It computes the
standard deviation for the free-space propagation test during
ws and several window sizes wl in parallel for the movement
test. The black horizontal line is the noise threshold. It is first
broken by wl = 5s, making this is preferred window size.
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Fig. 8: Attack phase and proximity detection for a simulation
with v = 7m/s, dl = 50m, Gaussian noise with σ = 2dB and
σp = 10. The black horizontal line is the proximity threshold.
We used wl = 5s as determined in Figure 7.

VI. EXPERIMENTAL DESIGN

To demonstrate construction of our detection system using
COTS hardware, we made use of a number of Raspberry Pi
Model A15 units as receivers. As this model lacks on-board
Wi-Fi hardware, a Wi-Pi USB Wi-Fi adaptor was employed
to receive packets. The Raspberry Pis ran the dumpcap utility
16 to capture Wi-Fi traffic, with the Wi-Pi adaptors in monitor
mode to allow traffic capture without having to associate to
any network.

A. Preliminary experiments

We conducted a preliminary experiment to investigate our
assumptions about the signal properties of a flying drone, using
a 3D Robotics X8+ drone. This drone was not equipped with
a camera and thus enabled us to fly it in more-populated
environments without breaching CAA regulations. Instead, the
drone carried a Raspberry Pi that communicated with a laptop
using the iPerf 217 benchmark tool at a bandwidth consistent
with live video (4 MB/s, 400 packets/s). Calibration for the
noise threshold was performed using background traffic from
other Wi-Fi transmitters in the area.

Over two short approaches (in distance and time), the
expected results appeared; with the standard deviation staying
above the threshold in the longer window during the approach
and below the threshold in the shorter window. However,
the receiver was configured to hop between the eleven 2.4
GHz Wi-Fi channels, resulting in a measured packet rate for
the drone signal of only between 50 and 250 packets per
second. As a result we refrained from using channel hopping
in the remainder of this work, noting that using a number of
network interfaces in parallel would alleviate the problem at
only minimally-increased cost.

We also captured comparative data from stationary trans-
mitters in LOS conditions in both static and dynamic envi-
ronments. Once again we used Raspberry Pis as sender and

15www.raspberrypi.org
16Part of the Wireshark network protocol analyser (www.wireshark.org)
17https://iperf.fr/

receiver, executing iPerf 2 with the same parameters as in
the drone experiment before. As expected, Figure 9 shows
that a transmitter in a static environment does not breach the
threshold, whereas the same transmitter violates the threshold
even for the shorter window of the free-space propagation
test. Such a transmitter is therefore not expected to be falsely
detected by our system.

In an additional experiment, we gathered data of a different
type of moving transmitter in the form of a Raspberry Pi
being carried around. We captured transmissions both from
moving indoors and outside in front of the window. In both
cases, we moved within 10m of the receiver. The results of this
experiment can be seen in Figure 10. Indoors, there is a high
short-term standard deviation due to multipath effects. Even
in the case of the movement outside an increased standard
deviation of the longer window is accompanied with higher
values breaching the threshold for the shorter window as well.

(a) Standard deviation of the signal strength in a static
environment.

(b) Standard deviation of the signal strength in a dynamic
environment.

Fig. 9: Results of the experiment with a static transmitter in
LOS of the receiver.
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(a) Standard deviation of the signal strength indoors.

(b) Standard deviation of the signal strength outdoors.

Fig. 10: Results of the experiment with a moving transmitter
in LOS of the receiver.

B. Main drone experiments

The real-world experiments took place at a secluded18

domestic property in Devon, United Kingdom. The property
was an old farmhouse with thick, stone walls that were
expected to attenuate Wi-Fi signals heavily. The property was
surrounded by open land, allowing a variety of approach flight
paths.

Two Raspberry Pis were installed in windows at the back
side of the house; one in a first-floor bedroom and the other on
the ground floor, in a kitchen. Figure 11 shows the deployment
locations and one receiver in situ. The Raspberry Pis were
connected to a controlling laptop via a Powerline network to
avoid introducing cross-traffic on the wireless channel. For
calibration, we used the beacons of an accesspoint that was
located in the same room as the ground-floor receiver to gather
enough calibration packets in a timeframe of thirty seconds.
The signal strength measurements of these packets were then
used to compute the standard deviation σ of the baseline noise,
as described in Section V-B.

18To comply with CAA regulations as detailed in Section II and avoid
disruption to others. The nearest property that was not under our control was
over 350m away.

(a) Outside view (b) Inside view

Fig. 11: Deployment of the receivers

Two very popular drone consumer drone models were used
to mount our simulated privacy attacks. The primary candidate
was a DJI Phantom 3 Standard, with the experiments being
repeated using a Parrot Bebop unit for comparison. The two
drone models are pictured in Figure 12. Unfortunately, some
of the experiments were cut short due to time restrictions and
the English weather; especially those from the second series
using the Parrot Bebop.

(a) DJI Phantom 3 Standard (b) Parrot Bebop

Fig. 12: Drones used in the real-world experiments

We performed attack runs for each of the approaches
described in Section V; in each case using the first floor
window with Raspberry Pi 1 as the privacy-invasion target.
The NLOS approach was further split into approaches over
the roof and around the house to include both a descent
from above and reaching the window from the side. Every
approach in the series was performed with three run repetitions.
The launch distance was between 55m and 65m for the LOS
approaches. For the NLOS approaches the launch distance was
much shorter at around 30m as they started from the front side
of the house, with the operator moving to keep the drone in
view during the approach. No run exceeded a top speed of 7m/s
(approx. 25kph/15mph), as it is hard to control the drone at
high speeds close to a building. The GPS flight data for each
series were recorded by the Phantom. Some example traces
are shown in Google Earth19 plots in Figure 13. One can see
that the GPS data became less precise close the window, as
the drone no longer had a clear view of the GPS satellites.
Specific details of the Phantom experiment series, as extract
from the GPS flight data, can be found in Table IV.

19earth.google.com
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(a) Straight approach (b) Zig-zag approach (c) NLOS approach over the roof (d) NLOS approach around the
house

Fig. 13: Different flight patterns during the approach

Pattern Run Distance (m) Max. Speed (m/s)
Straight 1 57 5.94

2 61 6.24
3 61 6.35

Zig-zag 1 61 6.36
2 62 6.66
3 62 4.72

Back-and-forth 1 62 4.24
2 61 4.43
3 61 5.38

NLOS over 1 28 2.78
the roof 2 30 3.92

3 30 3.62
NLOS around 1 35 2.48
the house 2 31 3.48

3 33 4.06

TABLE IV: DJI Phantom 3 experiment series.

VII. EVALUATION

In this section, evaluate how well the metrics from Sec-
tion V are able to detect a drone using the data from our
experiments. We use only the data from the Phantom for
the analysis of the movement test, attack-phase tracking and
proximity detection. The results for these are similar for both
Phantom and Bebop and, as described in Section VI, we have
a more complete set of runs for the Phantom. However, we
realised when analysing the data that we only captured the
control channel of the Phantom. Therefore, the packet rate is
quite low at 40 packets per second. While this is not a problem
for the large-window tests, it only leaves us with about four
packets within ws. Hence, we used the data from the Bebop
series to examine the free-space propagation test.

In our evaluation we selected system parameters as given in
Table V. The minimal detection range using these parameters
was 24.5m.

A. Straight approach

Examining movement-tracking first, in Figure 14a three
windows of rolling standard deviation are displayed for the
first run of the Straight Phantom set. The drone launched at
(1) at a distance of 57m from the window; the first increase
is due to the initial ascent, but is not enough to break the
threshold. There is a short spike in the 5s window before the
actual detection happens which only lasts for a few samples.
At (2) the drone started accelerating towards the window. Due
to its slow speed at the time, the 10s window is the first to
detect it, albeit by a very small margin. The detection happens

Parameter Value Description
ds 1m We stayed within one to two meters

of the window during the surveillance
phase

dl 50m All the LOS approaches started further
than that

ws 0.1s Corresponding to a maximum velocity
of 10 m/s

wl 5s, 10s, 15s, 30s Corresponding to the following respec-
tive minimal velocities: 5.075, 2.535,
1.69, 0.845 m/s

σ 1.75 Derived according to Section V-B;
hence the noise threshold is

√
2 · 1.75

σp 10 The threshold for the proximity alert;
derived from ds

TABLE V: System parameter selections used in Evaluation

surprisingly fast after only one and half a meters travelled
since takeoff. From the model in Section V we had expected
the drone to be on target height and approach speed when we
received our first packet, however the detection happened much
earlier than expected because the takeoff and the varying speed
due to acceleration increase the measured standard deviation.
In comparison, if we were to start detection during the second
acceleration period starting at (3) at a distance of 51m, the
drone would be detected 37m from the window. This is closer
to the expected value of 25.15m for this distance but still
earlier than predicted. This can be attributed to the drone not
travelling as close to a constant speed as expected. The velocity
decreased at (4), as we had to slow down to pilot the drone
safely closer to the house; at distance 6m. The larger window
size of 15s compensates for decelerating during the approach
and throughout this period the standard deviation stays above
the threshold (recall that our system always chooses the lowest
window size that is above the threshold and uses it for phase
tracking and proximity detection). The surveillance period
started at (5) where the drone stayed as still as possible in
front of the window. After the rolling windows catch up,
the standard deviation drops markedly and stays below the
threshold almost the entire time until the escape phase starts
at (6). However, it does still breach the threshold occasionally.
In practice there are still many corrections necessary to keep
the drone in place in front of the window. As the drone is so
close to the receiver during the surveillance phase, even small
movements have a notable effect on the RSS and can breach
the detection threshold. Finally, the drone landed at (7) leading
to another short spike as it reached the ground.
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(a) Standard deviation of the signal strength. The black horizontal
line is the movement detection threshold.
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(b) Attack phases. The drone is approaching when the values are
positive and escaping for negative values. The black horizontal line
is the proximity threshold.

Fig. 14: Straight approach with the DJI Phantom 3. The
black vertical line shows when the 5s window undercuts the
movement threshold. The dotted vertical lines indicate: (1)
Takeoff, (5) Surveillance, (6) Escape and (7) Landing. More
details can be found in the text.

For attack-phase tracking, we compare the first and second
halves of wl, shown in Figure 14b. Both the 10s and 15s
windows stay positive for the entire approach. There is more
variation in the 5s window as it captures slowing down better
than the longer window sizes. All the windows have values
close to zero during surveillance after catching up and are
negative during the escape phase, as per our expectations.

A proximity alert is triggered when the phase tracking
breaches threshold σp. In Figure 14b, one can see that with
the larger window size of 15s, readings break the threshold
early due to the cumulative effect of positive readings over the
preceding period. However, at this moment the 15s window is
not the smallest for which the standard deviation is above the

Fig. 15: Standard deviation for a straight approach with the
Parrot Bebop. The black horizontal line is the free-space
propagation detection threshold which should not be exceeded
within ws = 0.1s. The vertical lines indicate: (1) Surveillance
and (2) Escape. More details can be found in the text.

threshold and therefore another window size is favoured over it
for phase tracking and the proximity metric — so no spurious
proximity warning is produced. The second peak, just after
(4), results in a genuine proximity alert for the 10s window.
The distance from the window at the time was 4.2m, which is
greater than ds. In Figure 14a, the black vertical line shows the
moment when values in the 5s window fall below the detection
threshold. Consequently, the 10s window is used to check for
proximity and the alarm is triggered.

As mentioned before, we evaluate the free-space prop-
agation test that uses ws using the Bebop series due to
the higher observed packet rate. Figure 15 shows the RSS
standard deviation for the first straight Bebop run. The standard
deviation of the 0.1s window stays mostly below the threshold
throughout the approach; only very few samples violate it
initially. When the drone is close to the wall of the building, the
standard deviation increases even within ws, hence breaking
the threshold more often. At this time, however, we can
already be quite sure that it is a drone. The peaks during the
surveillance period are caused by movement in front of the
window; we had to make more corrections to account for drift
with the Bebop, than with the heavier Phantom.

B. Zig-zag approach

For the zig-zag approach we will first look at window sizes
derived from the maximal and effective approach velocity.
For the first zig-zag run the maximal approach velocity was
vmax = 5.12m/s. Using vmax we compute wl,max = 6.15s. On
the other hand, the effective velocity for the whole approach
was only veff = 1.04m/s and thus wl,eff = 30.225s. In
Figure 16a one can see that the smaller window size detects the
drone faster at a distance of 59.5m whereas the larger window
size only detects the drone 53m away from the receiver.
However, wl = 6.15s captures the erratic changes caused by
the zig-zag movement, whereas wl = 30.225s smooths out the
flight pattern and shows the whole approach. The decrease in
standard deviation in the second part of the approach is caused
by a general decrease in approach speed.
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(a) Parameters derived from the model using vmax and veff
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(b) System parameters

Fig. 16: Standard deviation for a zig-zag approach with the
DJI Phantom 3. The black horizontal line is the movement
detection threshold. The vertical lines indicate: (1) Takeoff, (2)
Surveillance, (3) Escape and (4) Landing. More details can be
found in the text.

We can see the same effect if we use our system with the
parameters from the beginning of the section, cf. Figure 16b.
Lower window sizes than the derived values are possible as
wl = 10s already captures the complete approach. This is again
likely to be due to an increased standard deviation because of
the launch and acceleration periods.

C. Back-and-forth approach

For the back-and-forth approach, we proceed in a similar
fashion as for the zig-zag approach. We compute wl for
the maximal speed vmax = 4.24s, and the effective veloc-
ity veff = 0.72s. Similarly to before, Figure 17a shows
that the former is affected by the flight pattern whereas the
latter captures the complete approach. The shorter window
wl,max = 7.425s shows larger peaks followed by smaller
peaks. The larger peaks correspond to forward, the lower peaks
to backward motion.

In comparison, the higher window size wl,eff = 43.65s is
able to capture the complete approach as a whole. However,
it also covers the entire surveillance period, again highlighting
the need for the proximity metric as a stop-and-alarm condi-
tion. If we use the system parameters as before, we can see in
Figure 17b that the 30s window is sufficiently large.
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(a) Parameters derived from the model using vmax and veff
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(b) System parameters

Fig. 17: Standard deviation for a back-and-forth approach with
the DJI Phantom 3. The black horizontal line is the movement
detection threshold. The vertical lines indicate: (1) Takeoff, (2)
Surveillance, (3) Escape and (4) Landing. More details can be
found in the text.

Additionally, we can study the approach phase tracking in
Figure 18. We can see that if we only rely on the shorter
window, the system oscillates between approach and escape
phases, whereas the longer window size makes it possible for
us to detect the approach as a larger trend.

D. NLOS approach over the roof

The first NLOS run with an approach over the roof is
pictured in Figure 19a. The drone takes off at launch distance
28m on the other side of the house. Its forward acceleration
starts at (2) and it reaches maximal altitude at (3). At (4) the
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Fig. 18: Attack phases for a back-and-forth approach with the
DJI Phantom 3. The black horizontal line is the proximity
detection threshold. The drone is approaching when the values
are positive and escaping for negative values. The vertical
lines indicate: (1) Takeoff, (2) Surveillance, (3) Escape and
(4) Landing. More details can be found in the text.

descent begins, on the receiver side of the house. The first
big peak for window size 15s happens as the drone is flying
over the receiver, above the roof. The next peak occurs as it is
descending into LOS, with another one following when it gets
closer to the window up to ds. The surveillance period starts
at (5), before the drone escapes over the roof again at (6).

We had to fly at slow speeds close to the house for careful
manoeuvring which explains why higher values are needed
to capture the whole approach compared to the straight LOS
series.

In Figure 19b, the standard deviation within ws is dis-
played. One can see that the standard deviation is low in spite
of the missing LOS connection. The roof of the house seems
to affect the signal only by attenuation and does not lead to
significant interference due to multipath effects.

E. NLOS approach around the house

A run of the other NLOS approach variant, around the
house, is shown in Figure 20. Similarly to the approach over
the house, we see peaks as the drone crosses the receiver,
gets into LOS and approaches the window. For both NLOS
approaches there is a distinct increase in the standard deviation
when the drone comes into LOS. Once it is in LOS the
behaviour is similar to the LOS approaches.

F. Detection ranges

To examine detection range we let several rolling windows
(5, 10, 15, 30 seconds) run in parallel and chose the first
window size to detect the drone as well as the first that stayed
above the threshold for the whole approach phase.

Table VI shows the resulting movement detection ranges.
In all of the LOS runs, our system detected the drones far
earlier than the minimal detection range of 24.5m, as measured
from GPS traces using Google Earth. The detection distances
of the second and third back-and-forth runs are lower than the
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(a) Movement test with DJI Phantom 3. The vertical lines indicate: (1)
Takeoff, (5) Surveillance, (6) Escape and (7) Landing. More details
can be found in the text.

(b) Free-space propagation test with Parrot Bebop. The vertical lines
indicate: (1) Surveillance and (2) Escape. More details can be found
in the text.

Fig. 19: Standard deviation for a NLOS approach over the
roof. The black horizontal line is the noise threshold.

Pattern Run Detection range (m)
Straight 1 55.5

2 55
3 53.77

Zig-zag 1 60
2 59.5
3 60.13

Back-and-forth 1 60.22
2 51.47
3 48.65

TABLE VI: Detection ranges of the DJI Phantom 3 LOS
experiment series.

first as they began with a longer and faster forward movement
and thus still resembled a straight approach at the time of
detection. That the drone flew the approaches with varying
velocity actually increased the detection range, as did the more
time-consuming flight patterns.
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Fig. 20: Standard deviation for a NLOS approach around the
house with the DJI Phantom 3. The black horizontal line is the
movement detection threshold. The vertical lines indicate: (1)
Takeoff, (2) Surveillance, (3) Escape and (4) Landing. More
details can be found in the text.

The proximity alert was triggered within 5m of the target
window in every experiment run. Unfortunately, due to the
roof occluding GPS satellites, the data from the traces is too
imprecise to determine the exact distance in each case.

VIII. DISCUSSION

A. Results

The most notable discovery throughout our experiments
was that detection happened earlier than our simulations had
predicted. In large part this is simply attributable to our model
being very conservative and real-world attacks not demonstrat-
ing such extreme behaviour. Ever-changing conditions and op-
erator inaccuracy leads real drone flight to have far more speed
variance than the constant-speed approaches we had assumed.
No two consecutive flights were identical, even with the same
intended approach pattern. Close to the target, in the latter
stages of an approach and during surveillance, the movement
is even more erratic as the drone must navigate a tighter
environment and counteract drift from wind conditions and
sidewash turbulence in order to establish and maintain a close
hover. The reliance purely upon the operator’s precise control
is intensified as GPS stabilisation systems are hampered by a
reduced view of the sky when near a building. The detection
system parameters must be carefully selected to ensure that
the Escape phase is not indicated prematurely.

Takeoff is the first movement a drone makes, but commu-
nication begins before this point. This prior communication is
beneficial to our detection as the received messages establish
an initial measurement in each window, such that the takeoff
itself is enough to bring the standard deviation above the detec-
tion threshold in many cases. Such early detection gives ample
time for the user to be warned of a privacy-invasion attack and
take protective action. It also presents an opportunity to simply
inform a user of nearby drone activity that is not, or has not
yet developed into, an attempt at privacy invasion.

B. Observations

Our experimental experiences reinforced the expectation of
a reliance by the pilot on the drone’s FPV video stream. At
close range it is possible (and sometimes preferable) to watch
the drone directly when flying, however the benefits of doing
this quickly disappear as the drone operates further away and
the pilot is less able to reason about its position relative to
other objects purely by eye. In this case, and certainly where
there is no direct line of sight at all, the attacker depends on
the streamed video to pilot successfully. Even in the minimal
case, conducting the privacy attack itself, the operator needs
immediate feedback to ensure that the drone obtains a good
view of the interior of the building — it proved easy to capture
detailed footage of a window-frame by mistake. An attacker
could, if their hardware permitted, disable the video stream for
a period in order to avoid providing a suitable communication
stream for the detection system. However, doing so near the
target or when attempting surveillance, would likely jeopardise
the attack. Indeed, a short surveillance distance is crucial
in mounting a successful attack; at large distances a high-
resolution camera or telescopic lens is required to capture a
detailed image of the building interior and even then the visible
area is heavily constrained by the window. Our observations
suggest that values of ds at one or two metres are realistic.

If the drone flies close to the ground for the entirety of the
approach, ground reflections are strong multipath components
and violate the free-space propagation assumption; making
the drone indistinguishable from an attacker moving on the
ground themselves. In practice however, we expect that the
attacker has to overcome access restrictions and hence must
fly higher for at least some part of the approach, making the
drone detectable again.

IX. FUTURE WORK

Our experiments were conducted with the drone and con-
troller as the only communicating parties on a Wi-Fi channel.
In order to understand better the expected performance of
the system in an urban environment, it would be helpful
to examine the effect of cross-traffic on detection. As the
cross-traffic packet-rate increases, the number of successfully-
measured RSS samples in a given period is reduced and we
would expect this to degrade the detection speed and accuracy,
although the precise behaviour remains unclear.

As this detection approach uses only RSS measurements,
the equipment used in this work is but one of a great number
of possibilities. The majority of Wi-Fi hardware provides RSS
data and many drivers make this information available. Purely
software-based implementations are feasible for manufacturers
and often for end-users as well. For example, an Android user-
space driver exists for some Wi-Fi adapters20, allowing the
system to be implemented as an app to turn a user’s mobile de-
vice into a drone detector. The low modification requirements
of this approach greatly benefit its applicability, especially if
they mean it can be incorporated into commonplace devices
instead of requiring additional hardware. This does raise the
question however, of how well the system would perform with
an unordered, potentially dynamic, deployment. Understanding

20For example, the Alfa One NIC, with an RTL 8187 chipset

14



the factors involved would greatly inform discussions of the
widespread applicability of the system.

X. CONCLUSION

In this work, we developed a method to detect privacy-
invasion attacks by drones based on their communication with
a controller. Our approach uses analysis of RSS variance in
the drone’s transmissions to check for free-space propagation
and examine its movement. We developed a further method
to monitor if the drone is approaching the detector or moving
away from it and another to detect proximity to a receiver.
Combined use of these metrics enables us to track the phase
of an attack. We conducted real world experiments using
two types of commercially-available drones that communicate
over Wi-Fi, with various example flight patterns and target
windows. For all series, the approaching drone was detected
early on during the attack and the system successfully triggered
an alarm when the drone got close to the window. We were
able to detect a drone approaching in LOS of the detection
system at a minimal distance of 48 meters. Even for a NLOS
approach, detection was fast and actually happened before the
drone came into LOS.

In summary, our system is able to detect drones flying
nearby and can alert when a drone is in proximity of a
window. For even the largest of physical windows, the de-
tection happens at a great enough range that an attacker will
have had no chance to conduct detailed surveillance before
the alarm is raised. Our implementation used only cheap and
easily-obtained hardware. Moreover, the system is built upon
measurements that are available in the vast majority of Wi-Fi
capable systems, opening up widespread deployment options.
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