
Unleashing Use-Before-Initialization Vulnerabilities
in the Linux Kernel Using Targeted Stack Spraying

Kangjie Lu†, Marie-Therese Walter‡, David Pfaff‡, Stefan Nürnberger‡§, Wenke Lee†, and Michael Backes‡¶
†Georgia Institute of Technology §DFKI, ¶MPI-SWS, ‡CISPA, Saarland University

Saarland Informatics Campus
{kjlu, wenke}@cc.gatech.edu, {walter, pfaff, backes}@cs.uni-saarland.de, stefan.nuernberger@dfki.de

Abstract—A common type of memory error in the Linux
kernel is using uninitialized variables (uninitialized use). Unini-
tialized uses not only cause undefined behaviors but also impose a
severe security risk if an attacker takes control of the uninitialized
variables. However, reliably exploiting uninitialized uses on the
kernel stack has been considered infeasible until now since the
code executed prior to triggering the vulnerability must leave an
attacker-controlled pattern on the stack. Therefore, uninitialized
uses are largely overlooked and regarded as undefined behaviors,
rather than security vulnerabilities. In particular, full memory-
safety techniques (e.g., SoftBound+CETS) exclude uninitialized
use as a prevention target, and widely used systems such as
OpenSSL even use uninitialized memory as a randomness source.

In this paper, we propose a fully automated targeted stack-
spraying approach for the Linux kernel that reliably facilitates
the exploitation of uninitialized uses. Our targeted stack-spraying
includes two techniques: (1) a deterministic stack spraying
technique that suitably combines tailored symbolic execution and
guided fuzzing to identify kernel inputs that user-mode programs
can use to deterministically guide kernel code paths and thereby
leave attacker-controlled data on the kernel stack, and (2) an
exhaustive memory spraying technique that uses memory occu-
pation and pollution to reliably control a large region of the kernel
stack. We show that our targeted stack-spraying approach allows
attackers to reliably control more than 91% of the Linux kernel
stack, which, in combination with uninitialized-use vulnerabilities,
suffices for a privilege escalation attack. As a countermeasure, we
propose a compiler-based mechanism that initializes potentially
unsafe pointer-type fields with almost no performance overhead.
Our results show that uninitialized use is a severe attack vector
that can be readily exploited with targeted stack-spraying, so
future memory-safety techniques should consider it a prevention
target, and systems should not use uninitialized memory as a
randomness source.

I. INTRODUCTION

In programming languages such as C and C++, programmers
decide whether to initialize a variable with a deterministic
value when it is allocated. C enthusiasts often argue that if
programmers know that the code will later set a proper value
anyway, initialization on allocations is an unnecessary use
of precious CPU cycles. This argument makes sense from

a functional point of view since such an unnecessary use
of CPU cycles can cause a significant runtime overhead if
it occurs up to millions of times per second, as it does in
programs such as in OS kernels. However, manually keeping
track of all possible code paths to ensure proper initialization
is an error-prone task. Even worse, automatic detection of
uninitialized use, such as the warning of compilers, is inaccurate
for several reasons. First, inter-procedural tracking often leads
to false positives and false negatives because of problems such
as aliasing. Second, whether an uninitialized-use warning is
justified is highly subjective: While some programmers may
prefer a warning in every possible case, others might consider a
warning unnecessary if it would not cause an observable error
or is likely a false positive.

Uninitialized data represents arbitrary values that were
coincidentally stored in the memory. If the uninitialized data is
used for control flow, such as the case in which an uninitialized
function pointer is dereferenced, the execution of the program
or even the kernel can potentially be hijacked. A recent example
of that control flow hijacking is caused by uninitialized use is
shown in Figure 1. Here, the pointer backlog, defined at line
7, is not initialized in a code path that can be triggered only
by special inputs (i.e., when cpg->eng_st != ENGINE_IDLE),
which is dereferenced at line 15. An attacker can exploit such
an uninitialized-use vulnerability to achieve arbitrary code
execution by controlling the value of backlog, such as making
backlog point to a function pointer to malicious code.

Despite their potentially dangerous consequences,
uninitialized-use bugs are very seldom classified as security
vulnerabilities [16, 49], which arguably originates from
the perception that it is hard for an attacker to control the
memory layout in order to make dereferencing exploitable. In
particular, widely used systems such as OpenSSL explicitly
use uninitialized data for the generation of entropy (see
function ssleay_rand_bytes() in the SSLeay implementation)
and hence ground their security on the assumption that such
data is impossible to control or predict. On the other hand,
our study revealed that in 2015 and 2016 alone, although
16 uninitialized-use vulnerabilities have been patched in the
Linux Kernel, only one was reported for a CVE. In fact,
since 2004, only eight uninitialized-use vulnerabilities in the
Linux kernel have been reported for a CVE. For example,
the severe uninitialized-use vulnerability shown in Figure 1
has not been reported for a CVE. From a security point of
view, uninitialized use or more precisely, temporal memory
errors should be included as a prevention target in state-of-
the-art memory protection mechanisms. However, advanced
security mechanisms such as SoftBound+CETS [30, 31] and

Permission to freely reproduce all or part of this paper for noncommercial 
purposes is granted provided that copies bear this notice and the full citation 
on the first page. R eproduction f or c ommercial p urposes i s s trictly prohibited 
without the prior written consent of the Internet Society, the first-named author 
(for reproduction of an entire paper only), and the author’s employer if the 
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23387



1 /* file: drivers/crypto/mv_cesa.c
2 * uninteresting code lines are omitted
3 */
4 static int queue_manag(void *data)
5 {
6 /* back log is defined without initialization */
7 struct crypto_async_request *backlog;
8

9 if (cpg->eng_st == ENGINE_IDLE) {
10 backlog = crypto_get_backlog(&cpg->queue);
11 }
12

13 if (backlog) {
14 /* uninitialized pointer dereferenced! */
15 backlog->complete(backlog, -EINPROGRESS);
16 }
17

18 return 0;
19 }

Fig. 1: A recent uninitialized pointer dereference vulnerability
discovered in the Linux kernel and patched in April 2015. backlog,
a pointer that is not initialized if cpg->eng_st != ENGINE_IDLE, is
dereferenced later on. Therefore, arbitrary code execution occurs if
an attacker can control the value of backlog on the kernel stack.

WatchdogLite [29]), which claim full memory safety, do not
currently cover uninitialized uses.

A. Challenges

Most uninitialized uses stem from the stack rather than the
heap: Out of the 16 aforementioned uninitialized-use variables
in the Linux kernel, 11 variables are stored on the stack. In
contrast to uninitialized memory on the heap, that on the stack
is hard to control for several reasons:

1) Stack memory is frequently and unpredictably reused by
other parts of code; hence, prepared data on the stack is
likely to be overwritten by other data.

2) The size of the stack objects is usually small and fixed,
so stack control is inherently challenging.

3) Stack depth (especially for the kernel) is strictly checked,
so the broad control of the stack is challenging.

As a result, to control the value of an uninitialized variable,
any successful attack needs to overcome these three challenges.
To overcome these challenges, we need to fulfill three require-
ments:

R1: The relative address of the uninitialized variable inside
the stack must be known.

R2: The memory at the discovered address of R1 must be
controllable. That is, we can write arbitrary data to this
memory.

R3: Data written in R2 must not be overwritten before it
is used by the vulnerable function that suffers from an
uninitialized use.

Until now, fulfilling all three requirements has constituted a
manual and labor-intense task if it succeeds at all. In the
past, successful exploits relied on other memory-corruption
vulnerabilities to fulfill requirement R2, or they were simply
crafted in an unprincipled manner. For example, as we will
show in §VI-F, Cook [12] found that the syscall with the
uninitialized-pointer dereferencing vulnerability could also save
some user-controlled data on the stack by manually tuning the

parameters, which is uncommon in practice. As this finding
was not backed up by a principled methodology, it was a “lucky
shot.” In contrast, we will show that automatic control of the
uninitialized memory can be achieved in a more general way.

B. Contributions

In this work, we show that we can meet requirement
R2 without an additional memory-corruption vulnerability or
special assumptions. In particular, we show that almost the
whole kernel stack is controllable to a local attacker by either
executing syscalls based on how they leave the stack after
they return or exhausting memory and guiding stack allocation.
We first survey existing reported and patched uninitialized-use
vulnerabilities in the Linux kernel and then propose the reliable
targeted stack-spraying technique to write and retain arbitrary
data on the kernel stack.

The core of the fully automated targeted stack spraying
includes a deterministic stack spraying technique and a reliable
exhaustive memory spraying technique. The deterministic stack
spraying technique consists of three components: a tailored
symbolic execution engine that explores paths and outputs
the concrete parameters to trigger the paths; a guided fuzzer
that takes as input information generated by the symbolic
execution engine to verify that stack control is indeed achieved;
and a coordinator that safely and efficiently parallelizes the
symbolic execution engine and the fuzzer. The exhausting
memory spraying technique complements deterministic stack
spraying by strategically consuming a huge region of memory
to guide stack allocations and preparing malicious data in the
memory pages that will be used by the guided stack allocations.
Combining both approaches allows us to reliably control almost
the whole kernel stack.

We have implemented both deterministic stack spraying
and exhausting memory spraying. The deterministic stack
sprayer is based on the S2E [11] symbolic execution engine
and the Trinity [18] syscall fuzzer. As we need concrete test
cases to use S2E, we implemented an automated test case
generator that produces S2E test cases for each syscall. To
maximize the coverage, we also implemented an S2E plugin
that identifies loops in the kernel so that our guided fuzzer
can selectively explore loop-related parameters. The exhaustive
memory sprayer is implemented as a user-level program that
runs before triggering an uninitialized-use vulnerability. Using
kprobes [2], we also implemented a checker that scans the
stack memory at each syscall entry or syscall return to verify
that we can indeed control the kernel stack.

To evaluate the performance of the targeted stack-spraying,
we measured the range, the distribution, and the frequency of
control and the time it takes to achieve control. Our evaluation
results show that we are able to control an impressive range
of 91% of the kernel stack in total. While exhaustive memory
spraying reliably controls 89% of the kernel stack on average,
deterministic stack spraying controls 32% of the frequently
used stack region, which cannot be reached by exhaustive
memory spraying. By adapting Cook’s attack to our technique,
the attacker can automatically prepare the malicious pointer on
the kernel stack and successfully launch an arbitrary memory
write or even a privilege escalation attack without the need for
known memory corruptions or any special assumptions.

2



In a nutshell, this paper makes the following contributions:

• We propose automated targeted stack-spraying, which
reliably writes arbitrary data to the kernel stack.

• We leverage tailored symbolic execution and guided
fuzzing to deterministically control the frequently used
stack region, and design a strategy to control dynamically
allocated kernel memory, including the kernel stack.

• We show that uninitialized memory on the kernel stack
is controllable. Future memory-safety techniques should
include uninitialized use as a prevention target.

• We propose a practical mitigation against uninitialized-use
exploits with negligible performance overhead.

II. UNINITIALIZED USES AND THE KERNEL STACK

A. Uninitialized Uses in OS Kernels

In this section, we present uninitialized-use issues in OS
kernels. We first investigate how widespread uninitialized-use
vulnerabilities actually are in the Linux kernel and how aware
people are of this problem. To this end, we have manually
analyzed the reported Common Vulnerabilities and Exposures
(CVE) entries that lead to privilege escalation attacks in the
Linux kernel since 2004 [36], and the commit log of the
Linux kernel git repository [48], which dates back to 2005.
To reduce the huge number of commits to a manageable
size, we mostly concentrated on the commit log messages
between the years 2015 and 2016. For the CVEs, we find
that eight out of 199 (4%) privilege escalation vulnerabilities
reported since 2004 are caused by the use of uninitialized
objects or pointers. For Linux kernel commit messages, we
first identified candidates of uninitialized use by inspecting
the commit messages using keywords such as uninitialized
pointer dereference and undefined pointer, which resulted in
52 candidate commits from 2015 and 2016, 28 of which were
subsequently filtered out by our manual analysis because they
are not exploitable (e.g., NULL pointer dereference bugs).
Out of the remaining 24 cases, eight are uninitialized pointer-
based reads, which can lead to information leaks, and 16
are uninitialized pointer-based writes or function calls, which
are particularly interesting to attackers. We further inspected
these 16 interesting cases and found that 11 cases (69%) are
from the stack while only five cases are from the heap. These
findings not only show that uninitialized-use vulnerabilities are
quite common in the Linux kernel but also indicate that these
vulnerabilities are not considered particularly security-relevant
or even not reported at all. Moreover, our findings confirm
that most uninitialized variables are from the stack rather than
the heap, which is a significant difference from use-after-free
vulnerabilities.

B. Kernel Stack Management

Since most uninitialized variables are from stack, our
primary focus lies on vulnerabilities caused by uninitialized
uses of stack variables and pointers in the Linux kernel, and
thus understanding how Linux manages its kernel stacks and
which features it offers in this regard is important. In Linux,
every thread has its own kernel stack allocated in the kernel
memory space with the maximum size of the stack depending
on the specific Linux version. In general, the stack is 4KB or
8KB for a 32-bit OS (x86) and 8KB or 16KB for a 64-bit OS

500 1000 1500 2000 2500 3000 3500 4000 4500
Stack usage (byte)

0

1

2

3

4

5

6

7

N
u
m

b
e
r 

o
f 

sy
sc

a
lls

 i
n
 p

e
rc

e
n
ta

g
e
 (

%
)

90% syscalls use <1,260 bytes

Stack Usage of Syscalls in the Linux Kernel

Fig. 2: The profile for stack usage of syscalls in the Linux kernel.
The total size of the kernel stack is 16KB. 90% syscalls use less than
1,260 bytes aligned to stack base. The average stack usage is less
than 1,000 bytes, and the vast majority of stack objects are allocated
within the highest 1KB stack region.

(x86-64), which is quite small compared to the default stack
size soft limit of 8MB for Linux user space stacks. The special
data structure struct thread_info, whose size is 104-byte
in our system, is saved at the stack top (low address). The
fundamental goal behind limiting the kernel stack size is to
limit overall memory consumption when a large number of
threads is running in the kernel in parallel, and each thread
has its own kernel stack. Because of the limited stack size,
storing large variables on the kernel stack and creating long call
chains in the kernel space is discouraged. To ensure that the
stack depth is shallow enough to avoid a stack overflow, Linux
provides the checkstack.pl tool for static analysis of the stack.
Although the small size of the Linux kernel stack improves the
success rate of a stack-spraying attack, the shallow stack depth
(or the lack of loops and recursions) limits the spraying range.
Besides normal thread stacks, Linux also has other specialized
stack types. For example, while debug stacks are used for
hardware (interrupt1) and software (INT3) debug interrupts,
interrupt stacks are used for external hardware interrupts or
for processing software interrupts. Since these stacks do not
accept user-controlled data, we do not take them into account
and instead focus on normal per-thread kernel stacks that are
used when syscalls are issued.

C. Stack Usage of Syscalls

The more frequently a stack region is used, the more likely
an uninitialized variable will reside in this region. Therefore,
taking control over frequently used memory regions increases
the success rate of an uninitialized-use attack. We hence analyze
stack usage of syscalls to understand which portions of the
kernel stack are most frequently used.

To profile stack usage of syscalls, we use kprobes to
intercept syscall enters and returns, and scan the stack memory
to check maximum stack usage of these syscalls. Specifically,
upon syscall enter, we zero out the stack memory and continue
the normal execution; upon syscall return, we scan the stack
memory from stack top (i.e., the lowest stack address) until
we find the first non-zero byte. We conservatively treat the
offset of the first non-zero byte into stack base (i.e., the value
of stack pointer upon syscall entry) as the maximum stack
usage of the syscall. We use the Trinity fuzzer to invoke all

3



syscalls to obtain stack usage for all syscalls. Because Trinity
usually takes a long time to explore a syscall or even just
does not terminate, we set five-second timeout for fuzzing each
syscall. Figure 2 summarizes the maximum stack usage for all
syscalls. In particular, we find that (1) the average stack usage
of syscalls is less than 1,000 bytes (aligned to the stack base at
high address) and (2) 90% syscalls use only the highest 1,260
bytes on the stack. It is important to note that the stack usage
represents the maximum stack region a syscall uses. Assuming
stack objects are uniformly distributed in stack regions used by
syscalls, we find that the average location of stack objects is
510 bytes into the stack base and more than 90% stack objects
are allocated in the highest 960-byte stack region. Therefore,
the highest 1KB stack region is frequently used and thus is the
primary target of our spraying.

III. THE TARGETED STACK-SPRAYING APPROACH

The main challenge in exploiting uninitialized uses is
to control data in the uninitialized memory. By planting
malicious pointers in the target memory, an uninitialized pointer
dereference can be turned into arbitrary memory read/write
or code execution. However, unlike heap spraying, in which
the number and the size of allocated heap objects are user-
controlled, stack spraying has the additional problem of stack
objects usually being static and fixed in size. The placement
of the Linux thread_info structure, at the stack top, requires
the stack size to be limited; otherwise, stack buffer overflows
may occur. In addition, kernel space is shared by all threads.
Not limiting the size of stack will easily exhaust memory.
Therefore, Linux kernel developers are encouraged to use
the script (scripts/checkstack.pl) to statically analyze stack
usage. The script in particular checks the stack usage (in byte)
of each function so that developers can find functions that use
too much stack memory. Because of these features—the limited
stack size, the static and fixed-size stack objects, and the stack
usage check, a targeted stack-spraying attack is significantly
more difficult than a heap-spraying attack.

To enable a targeted stack-spraying attack in the kernel
space, we need to prepare malicious data in a specific location
of the kernel stack in the presence of aforementioned difficulties.
Specifically, the location itself needs to be chosen in such a
way that the uninitialized memory will overlap the prepared
data. In general, we can store malicious data in such a location
in two ways: (1) finding an execution path that prepares data
overlapping that of the vulnerability and (2) finding a way to
guide the kernel to allocate stacks on the memory pages with
prepared data. The first method is deterministic: Once such a
path and its triggering inputs are found, we can deterministically
write arbitrary data at the specified location. Since the data
is saved at the target location by normal execution paths, this
method is stealthy and hard to detect. By contrast, the second
method affects the stack allocation of another process/thread
by exhausting memory, which can be reliable but not fully
deterministic. This method can achieve broad control because
the overlapping is at page level. However, since the creation
of a new process/thread executes kernel functions that use the
kernel stack, a portion (near the stack base) of the prepared data
will be overwritten. As a result, the second method loses control
of the stack region at high address. As mentioned in §II-C, our
primary spraying target is the highest 1KB stack region. To
control this region, we have to use the first method. For these

Symbolic Execution
Engine

(Exploring paths)

Deterministic Stack Spraying

Guided Fuzzer
(Verifying spraying)

Coordinator
(Scheduling and 

bookkeeping)

Concrete parameters 
and loop information

Spraying ranges and trigger inputs

Start
point

Fig. 3: Overview of the architecture of our deterministic stack spraying
technique that consists of three components. It automatically analyzes
all syscalls and outputs results, including which range of the stack
we can control and how to control the stack.

reasons, we combine both methods so that attackers can achieve
reliable or even deterministic control over a broad stack region.
In this section, we present an overview of both methods.

A. Deterministic Stack Spraying

We design the deterministic stack spraying technique, which
finds an execution path that prepares data overlapping that of
an uninitialized variable. The main challenge of deterministic
stack spraying is to find a syscall with specific parameters
that will trigger an overlapping execution path. An overview
of the technique used for the attack is shown in Figure 3.
The technique consists of three components: a symbolic
execution engine, a guided fuzzer, and a coordinator that handles
communication between the symbolic execution engine and the
guided fuzzer. The goal of the symbolic execution engine is to
explore as many execution paths as possible to find one that
saves user-controlled data on that stack, which will overlap an
uninitialized variable. However, symbolic execution is prone
to the path explosion problem because of that the number of
feasible paths in a program can be infinite when the program
contains unbounded loop iterations. A possible solution for
this problem is to use heuristics for either path-finding or
concretizing the loop condition. To achieve high coverage
in path exploration, we follow the second method: During
symbolic execution, we concretize the loop conditions and at
the same time, identify loops and their symbolic conditions,
and then let the fuzzer selectively explore these loops. To verify
whether a syscall can actually save arbitrary data on the kernel
stack, our guided fuzzer replaces the non-controlling parameters
(that are confirmed not to affect execution paths during symbolic
execution) with a magic code. When the syscall returns, we use
kprobes to intercept the execution and scan the kernel stack to
check which ranges of the stack memory have been polluted
by magic code. These ranges are those we can control.

B. Exhaustive Memory Spraying

The exhaustive memory spraying technique guides the stack
allocation of a new process or thread so that the memory
pages used by the stack overlap those with prepared data.
The main challenge of such a technique is to improve the
reliability of the overlapping. To overcome this challenge, we
design a strategy that reliably controls the memory of the

4



kernel stack. Specifically, our exhaustive memory spraying
technique includes two steps: (1) occupying the majority of
memory in the target machine and (2) polluting all the available
remaining memory with malicious data (for uninitialized
variables). Memory occupation forces the kernel to use the
remaining memory, which is small, for the newly allocated
kernel stacks. Because the remaining memory is small, the
pollution operation can be done quickly and effectively. Once
we ensure that almost all available memory is polluted by
malicious data, the memory of the newly allocated stacks will
contain the malicious data. Note that in the kernel space, the
kernel does not zero out the allocated memory pages, so the
malicious data will not be cleared.

IV. DESIGN

In this section, we discuss design choices we made for both
deterministic stack spraying and exhaustive memory spraying.

A. Deterministic Stack Spraying

Our primary spraying goal is to deterministically control
the frequently used stack region (the highest 1KB stack region),
which is likely used by uninitialized variables. To this end, we
need to find a suitable syscall and set its parameters such that
its execution will write the data in the location, and to verify
that the data is retained after the syscall returns. We design the
deterministic stack spraying technique, which includes three
parts: symbolic execution that explores execution paths, guided
fuzzing that verifies spraying, and coordination that safely runs
symbolic execution and guided fuzzing in parallel.

1) Symbolic Execution of Syscalls: To find syscalls for
deterministic stack control, we need to iterate over possible
execution paths of syscalls as completely as possible and
generate the concrete parameters that trigger these paths.
Since symbolic execution can explore execution paths in a
target program and generate concrete inputs to trigger the
respective paths, it is an ideal tool for our purpose. For each
syscall, we use symbolic execution to iterate over its execution
paths and generate concrete inputs that we can then use to
verify if an execution path saves data in a target location on
the kernel stack. To symbolically execute the Linux kernel,
we can adopt two widely used symbolic execution engines,
KLEE [7] and S2E [11], both of which are capable of handling
C/C++ programs. KLEE is built on top of the LLVM compiler
infrastructure while S2E is based on QEMU, which enables S2E
to do full-system symbolic execution. Moreover, compared to
KLEE, S2E can perform analyses in-vivo within a real software
stack (e.g., user programs, libraries, kernel, and drivers) instead
of using abstract models of these layers. Even more importantly,
S2E supports binaries and employs the selective symbolic
execution mechanism to boost performance. Considering these
features, we choose S2E as our symbolic execution engine.

Automatic generation of test cases. Since S2E does not
automatically decide which variables should be symbolized, it
requires as input not only the program to be tested but also a
list of variables it should replace with symbolic values. In our
case, we have to explicitly tell S2E which buffers, including
their address and size, to symbolize. As an example, Figure 4
shows how to symbolically execute the open syscall. Using the
s2e_make_symbolic feature, we explicitly tell S2E to symbolize

1 char pathname[PATH_SIZE];
2 int flags = O_RDWR;
3

4 s2e_enable_forking();
5 /* symbolize the pathname parameter */
6 s2e_make_symbolic(pathname, PATH_SIZE, "pathname");
7

8 /* symbolically execute the open syscall */
9 int res = open(pathname, flags);

10

11 s2e_disable_forking();
12 s2e_kill_state(0, "program terminated");

Fig. 4: This example shows how to symbolically execute the open
syscall in s2E. Here, we symbolize only the pathname parameter but
not the flag parameter. s2e_enable_forking is a S2E feature that
enables parallel execution upon branches.

the pathname parameter by specifying the pointer of pathname
and its size (i.e., PATH_SIZE).

Given that current Linux kernel has about 300 syscalls
and many of which have up to six parameters, manually
writing test cases would be highly time-consuming and therefore
impractical. Therefore, we opted for an automatic approach to
generate test cases used as input for S2E. However, automatic
test case generation entails two challenges: (1) Some syscalls
depend on other syscalls and therefore have to be called in a
proper order. For example, read/write syscalls cannot be called
before the open syscall; and (2) for pointer-type parameters,
we are usually unable to specify the size of the buffer referred
to by the pointer. To overcome the first challenge, we rely
on the Linux Test Project (LTP) because it properly sets up
execution conditions for each syscall. For the second challenge,
we observe that execution paths (i.e., control flows of the
syscall) are often independent of the number of elements located
by pointer-type parameters and thus the size of the respective
buffer. Therefore, for symbolic execution, we conservatively
assume pointer-type parameters always point to a single element,
but later, we will use the guided fuzzer to explore the syscall
with more elements (see §IV-A2). Apart from these challenges,
the automatic test case generation is intuitive: We generate
the C source code that iteratively symbolizes each parameter
using the syscall definition with type information of parameters.
The syscall definition itself is directly derived from the Linux
kernel source code.

Path Exploration. When running the QEMU virtual machine
in the S2E mode, executing a test case will automatically trigger
symbolic execution. During this phase, each program state
represents an execution path. Whenever a state is terminated,
i.e., execution of a path is finished, we tell S2E to generate and
output sample parameters that trigger this execution path. These
sample parameters are then passed to the guided fuzzer for
further verification described in §IV-A2. Since the verification
process relies on the presence of magic code, which is stored
on the stack using syscall parameters, S2E needs to tell the
fuzzer which parameters can be replaced by magic code and
which need to take on a sample value. The criterion used to
distinguish these two types of parameter is their relevance to the
control flow of the program: If a parameter is used in a control-
flow relevant condition, i.e., it affects the execution path of the
program, it is considered a controlling parameter, and thus the
fuzzer uses a sample value for it; otherwise, it is considered a

5



non-controlling parameter and can be replaced by magic code.
To distinguish controlling and non-controlling parameters, we
obtain the path constraints when a state is terminated; if the
parameter is used as a constraint, it as a controlling parameter;
otherwise, it is a non-controlling parameter.

Identifying Loops. Loops that repeatedly save user-controlled
data on the kernel stack are ideal for targeted stack-spraying
because they may write arbitrary data to a large region of the
stack. Unfortunately, although symbolic execution can help
explore execution paths with a high coverage, it generally
cannot handle loops properly when the looping condition is
also a symbolic value [35]. We address this limitation of
symbolic execution by offloading the path exploration for
loops to the guided fuzzer. Specifically, we identify the loops
during the symbolic execution and provide loop information,
(i.e., the looping condition in the form of the respective
parameter and its value range to the guided fuzzer). The
fuzzer then focuses on exploring this particular parameter in
the particular range. However, identifying loops in S2E is
challenging. Traditional loop detection mechanisms rely on
a dominator tree [22] to extract the dependence relationships
among blocks. The dominator tree, however, is not available in
S2E because it transforms the binary code of a program into
an LLVM IR representation block by block thus losing the
information about dependencies among blocks. Without this
information, a precise identification of loops is infeasible. Since
false positives in identifying potential loops during symbolic
execution only introduce more work for the fuzzer, we use a
two-layered approach to conservatively identify loops during
symbolic execution. The first layer is an execution history-based
identification, and the second is based on the relative offsets
between instructions. Specifically, in the first layer, when given
a function, we maintain the list of executed instructions, and
whenever a conditional jump is executed, we check its target: If
it targets an already executed instruction, we identify it as a loop.
This execution history-based approach, however, is unable to
detect a loop if it is executed only once. In this case, we invoke
the second layer of our approach to further check the address
of the jump target: If the address is lower than the one of the
conditional jump instruction, we also identify it as a loop. It is
important to note that the relative offset-based check is also not
entirely reliable since it is possible that a conditional jump for
a loop may target a higher address, resulting in false negatives.
Nonetheless, our two-layered approach works reasonably well
and can largely solve the loop identification problem in a timely
manner. Once we have successfully identified a conditional
jump that is used for looping, we extract the loop condition
from the comparison instruction. By checking whether the loop
condition is a symbolic value, we are able to determine whether
the loop condition is dependent on the syscall parameters. To
further reduce the search space for the guided fuzzer, we also
query the constraint solver of S2E for the possible value ranges
of the symbolic loop condition. These value ranges are then
used to guide the fuzzing process.

2) Guided Fuzzing: The fuzzing mechanism verifies that
the targeted stack-spraying is indeed achieved when executing
the kernel with the inputs generated by symbolic execution.
As shown in Figure 3, the guided fuzzing mechanism takes
as input the output of the symbolic execution component (i.e.,
the sample parameters for the respective syscall and, if present,

additional loop information). The result of the fuzzing phase
is essentially an overview of what we have to do in order
to control the kernel stack, including which syscalls, which
parameters of these syscalls we need to use, and the effect of
these syscalls on the kernel stack (i.e., which range of the stack
we can control).

Verifying spraying. To verify whether spraying is achieved
(i.e., the magic code is left on the kernel stack), first, the
guided fuzzing prepares the concrete parameters for the syscalls
reported by the symbolic execution component, which are
either the sample parameters generated by S2E or magic code.
As described in §IV-A1, we assume a pointer-type parameter
always points to a single-element buffer. To reduce crashes
caused by out-of-bound accesses and increase the spraying
range during the fuzzing, for a pointer-type parameter, we mmap
a memory of the size of the kernel stack, fill in it with magic
code, and let the pointer-type parameter point to this memory.
Second, we need to scan the stack memory right after a syscall
returns. Therefore, we need to intercept the return of the syscall
and dump the stack memory at the point of the return. The
methods to intercepting syscalls include: (1) instrumenting the
Linux kernel source code, (2) patching the syscall table, and
(3) using kprobes [2]. Method (1) might introduce a bias when
verifying the success of the targeted stack-spraying because
it requires changing the source code. Therefore, this method
is not desirable. Method (2) and method (3) are similar in
principle; however, since kprobes provides a more flexible and
reliable way of intercepting syscalls, we chose method (3)
to intercept the return of syscalls and insert our logic in the
handler for the interception. Upon intercepting a syscall return,
the verification is performed by scanning the stack memory and
checking which ranges of stack memory have been polluted
with the magic code. Once the magic code is found, the range
information together with the corresponding syscall parameters
are reported.

Fuzzing loops. A well-known limitation with symbolic
execution is the path explosion problem that the number of
feasible paths in a program grows exponentially in the case of
programs with loops. Even a single loop can generate a huge
number of symbolic execution paths corresponding to the loop
iterations [35], thus resulting in the path explosion problem.
To handle this problem, KLEE (internally adopted by S2E)
randomly picks or uses search heuristics [7] to select a state to
execute. This design decision inherently prevents our targeted
stack-spraying from finding and exploiting a syscall containing
a loop to spray a huge and continuous range of stack. Therefore,
instead of letting S2E symbolically execute the loop, we let
it tell us which syscall contains loops and which parameters
are used as the loop condition. Then we let our guided fuzzer
handle loop cases by specifically fuzzing the condition-related
parameters. All other parameters that are used as input for
the fuzzer are either the sample values generated by S2E or
magic code, as mentioned in §IV-A1. With the combination of
S2E (with the loop information) and the guided fuzzer, we are
able to efficiently and comprehensively identify the controllable
range of the stack.

3) Coordination: The coordination unit is designed to safely
run the symbolic execution and the guided fuzzing components
in parallel. Both the symbolic execution engine and the guided
fuzzer are contained in a QEMU virtual machine, for which two

6



separate QEMU snapshots are created that specifically run either
the symbolic execution engine or fuzzing mechanism. Instead
of running all syscalls in the same instance of a snapshot, each
syscall is tested in a separate instance, thereby enabling us to
run the syscalls independently of each other and thus safely
contain the crash or the error of the running of each syscall. To
facilitate the coordination between the different components,
we have designed two features: (1) a communication scheme
for the whole testing framework and (2) a controlling scheme
for sending commands to the testing instances.

Communication scheme. To efficiently find the syscall and
its parameters that can achieve the targeted stack-spraying, the
symbolic execution snapshot and the guided fuzzing snapshot
run in parallel; therefore, a real-time communication scheme is
required. The communication is used for sending (1) commands
from the coordinator to the virtual machines, (2) outputs of the
symbolic execution engine to the guided fuzzing mechanism,
and (3) verification results from the guided fuzzing mechanism
to the coordinator. We chose pipe as the communication channel
and use the paravirtualized drivers (virtio) [3] of KVM to
improve the performance of I/O operations.

Controlling scheme. During the analysis process, it is common
that the symbolic execution engine and the guided fuzzing
mechanism crash or get stuck in infinite loops. In these
cases, the controlling scheme must terminate or restart the
virtual machines. Specifically, we design a command receiver
along with a set of pre-defined commands, which runs in
both snapshots of the QEMU virtual machine for symbolic
execution and guided fuzzing. As an example, when the guided
fuzzing does not terminate after a specified period of time,
the coordinator will send the command STOP to terminate the
snapshot.

B. Exhaustive Memory Spraying

Although the deterministic stack spraying technique can
deterministically control the frequently used stack region, its
coverage is limited: It is hard to find an execution path that
can save attacker-controlled data in the stack region after the
highest 1KB because stack objects are rarely saved in this region.
To control this region that spans the majority of the kernel
stack, we design the exhaustive memory spraying technique.
Note that this technique is general: It can control not only the
kernel stack but also other memory regions that are dynamically
allocated in the kernel space, such as the kernel heap. Compared
to the deterministic stack spraying technique, the exhaustive
memory spraying technique is straightforward, which includes
two parts: (1) memory occupation, which consumes the majority
of available memory in a system and (2) memory pollution,
which writes malicious data in the remaining memory.

1) Occupying Memory: The goal of occupying the majority
of available memory is to restrict the kernel to use the small
remaining memory for new stack allocations. Because the
remaining memory is small, attackers can finish the next
step, memory pollution, in a quick and effective manner. To
decide how much memory to occupy, we first obtain the
total size of available memory and allow attackers to specify
the amount of non-occupied memory (e.g. 50MB). All other
available memory is then to be occupied. Specifically, we
incrementally create many processes, each of which mmaps

a few megabytes of memory. To avoid being “shrunk” by
techniques Copy-on-Write and Deduplication, we explicitly
write a random 8-byte value (obtained from /dev/urandom) into
each memory page. Moreover, we keep these processes running
during the attack to ensure the memory remains occupied
throughout the exhaustive memory spraying process.

2) Polluting Memory: Since the majority of memory has
already been occupied, when the kernel creates a new process
or thread, the allocated kernel stack will be forced to use the re-
maining available memory. By polluting the remaining memory
with malicious data (that attackers want to spray into the kernel
stack), the allocated kernel stack will overlap the memory pages
with the malicious data. The polluting process also obtains the
size of available memory (after memory occupation), mmaps
a memory of this size and writes the malicious data into it.
Afterwards, the pollution process munmaps the polluted memory.
Note that munmap does not clear the malicious data in memory.
To ensure that the pollution is effective and that the polluted
memory contents are not overwritten by another process, we
perform the munmap operation right before invoking the syscall
with an uninitialized-use vulnerability.

V. IMPLEMENTATION

In this section, we present the prototype of both the deter-
ministic stack spraying technique and the deterministic stack
spraying technique technique. Although the implementation
currently targets the Linux kernel, it is possible to extend it
to other OS kernels (e.g. windows) since it only requires the
syscall interfaces and can directly work on binaries.

A. Deterministic Stack Sprayer

1) Symbolic Execution Engine: As discussed in §IV-A1, we
use S2E as the symbolic execution engine in our targeted stack-
spraying system. To facilitate the analysis of large numbers of
syscalls, we additionally implemented an automatic test case
generator for syscalls and two S2E plugins that handle the
input generation for the fuzzer and the identification of loops.

Test case generator. The automatic test case generator takes
as input the definition (i.e., the signatures) of the syscalls
to be tested. To obtain these definitions, we searched the
source code of the Linux kernel for the pattern of syscall
definition. Specifically, syscalls are always defined using the
uniform macro SYSCALL_DEFINEx where x denotes the number
of parameters. For example, the open syscall is defined as
follows:

SYSCALL_DEFINE3(open, const char *, filename, int, flags, uint16_t, mode)

Given that we achieve targeted stack-spraying by preparing
data in parameters, syscalls that do not have parameters (e.g.,
getpid) and therefore cannot take user-controlled data are
ignored. Also, because the underlying hardware architecture
of our testing machine is x86/x86_64, only syscalls for this
architecture are selected. The test case generator itself is
implemented as a python script with the execution environment
being set up by LTP. As mentioned in §IV, when handling
pointer-type parameters, we only symbolize the first element
of the buffer the pointer refers to. To reduce potential issues
caused by out-of-bound accesses, during symbolic execution,
we allocate memory chunks of the kernel-stack size (i.e.,

7



16KB) for these elements. Once the respective parameters are
symbolized, we use the general syscall() function to trigger
the symbolic execution for the syscall under analysis.

S2E Plugins. We implemented two S2E plugins to facilitate
the automatic analysis of large numbers of syscalls: (1) a
path explorer plugin that explores possible execution paths and
generates concrete parameters for each execution path, and
(2) a loop explorer plugin that identifies loops whose looping
conditions depend on syscall parameters. The path explorer
plugin intercepts the state-killing signal that occurs when an
execution path is finished, i.e., when a state is terminated. The
signal handler then asks the constraint solver to generate sample
parameters that trigger this path. For each parameter, the plugin
further checks if it is contained in the path constraints: If yes,
the parameter is classified as a controlling parameter that affects
the execution path; otherwise, it is a non-controlling parameter
that will be replaced with magic code during the guided fuzzing.
The loop explorer plugin aims to identify loops with symbolic
conditions. We identify loops using a two-layered approach
that tracks the execution history for each function as well
as the relative offsets between these instructions inside the
respective function. Specifically, we hook S2E at the end of
each block by catching the onTranslateBlockEnd signal and
then check if the last instruction of the block is a direct call
or indirect call instruction to intercept function calls. Note that
S2E translates the binary at block level rather than function
level, so checking the last instruction of each block is necessary
to identify function calls. When the execution enters a function,
we create a list to maintain the executed instructions. Since the
(virtual) address of each instruction in the memory is unique, we
save the PC values (i.e., the values of instruction pointer) in the
list. To know whether an instruction is a conditional jump, we
read the machine code pointed to by the PC to get the opcode
and then match the opcode to confirm the instruction. Once a
conditional jump is identified, the PC of the next instruction
(i.e., the target of the jump) is checked: If it is already in the
executed instruction list, we report it as a loop. Otherwise, we
check whether its PC is smaller than the one of the conditional
jump instruction: If it is, we also report it as a loop. If the
loop condition is symbolic, we use the getRange() function
provided by the constraint solver to compute the possible value
range of the condition value.

2) Guided Fuzzer: The guided fuzzer verifies if the spraying
can be actually achieved and also mitigates the limitations
of symbolic execution by specifically fuzzing loop-related
parameters. Our guided fuzzer is implemented on top of the
Trinity fuzzer [18].

Tailoring the Trinity fuzzer. Fuzzing in general faces the
problem that purely randomized inputs for functions often lead
to failures (i.e., being terminated by sanity checks), preventing
the exploration of interesting execution paths. For example, if a
file descriptor parameter (4-byte) would be purely randomized,
the kernel would likely simply reject the execution of the syscall
and return -EINVAL. Trinity addresses this problem by creating
a list of file descriptors: opening pipes, scanning file systems
(e.g., sysfs, procfs, and /dev), and creating a bunch of sockets
using random network protocols; and then passing one of these
entities at random whenever a syscall needs a file descriptor.
For parameters other than file descriptors, we instruct Trinity to
take as input the concrete parameters generated by the symbolic

execution component. In particular,if a parameter is loop-related
(i.e., it is used as the looping condition), we let Trinity focus
on this parameter by generating random values within the value
range specified by the symbolic execution component.

Spraying verifier. As discussed in §IV-A2, intercepting
syscall returns is done by using the kprobes tool. kprobes
provides three different types of probes depending on the
intended purpose: kprobe for intercepting syscall entries, jprobe
for intercepting jump instructions, and kretprobe for intercepting
syscall entries and returns. Since we check the stack at syscall
returns, the most suitable probe for us is kretprobe, which we
implemented in a kernel module. Our kretprobe kernel module
takes as input the name of syscall under analysis and intercepts
the return of this particular syscall. Upon interception, we
derive the stack top (the lowest address) of the current kernel
stack by computing stack_pointer & (THREAD_SIZE - 1)
where stack_pointer is provided by kprobes and the macro
THREAD_SIZE defines the size of the kernel stack, which varies
on operating systems, e.g. it is typically 8K on 64-bit Ubuntu
and 16KB on 64-bit Debian. Once we have computed the stack
top and size of the kernel stack, verification is performed by
searching the stack memory for magic code. To output the
verification results, we need to write the data into user space
files from our kernel module. For safety and reliability reasons,
writing to a user space file from kernel space is discouraged.
Therefore, we use the /proc virtual file system to pass results
to user space, which is later passed to the coordinator.

3) Coordinator: The coordinator controls the symbolic
execution engine and the guided fuzzer. The input for the
coordinator is the specific range of stack that we want to
control, which is used to tell our targeted stack-spraying to find
syscalls with corresponding parameters that can save arbitrary
data in this range. Once it receives that range, the coordinator
runs the symbolic execution engine and the guided fuzzer in
parallel to identify suitable syscalls and their parameters as
quickly as possible.

Ranking and syscalls. To identify syscalls that can spray the
specified range as quickly as possible, the coordinator prioritizes
three types of syscalls: (1) syscalls that set configurations or
write data. Such syscalls (e.g., pwritev) are very likely to
save data on kernel stack; (2) syscalls that contain loops. Such
syscalls usually affect a large region of the kernel stack; and
(3) syscalls that contain (multiple) pointer-type parameters.
By directing pointers to attacker-controlled buffers containing
magic code, syscalls containing more pointer-type parameters
are likely to have a higher chance to save the magic code
on kernel stack. Remaining syscalls are analyzed after the
aforementioned ones. With more interesting syscalls being
analyzed first, it is more likely to find a suitable sprayer in a
fixed amount of time.

B. Exhaustive Memory Sprayer

We implemented the exhaustive memory sprayer as a user-
space program. The amount of available memory in the system
is obtained with command free -m. In our case, we want to
keep some small portion of memory (e.g. 50MB) available and
occupy all other memory. During memory occupation, we fork
processes, each of which occupies 2MB memory, to exhaust all
memory besides that we want to intentionally leave available.

8



The polluting process then writes malicious data (magic code
in our case) to the remaining available memory and munmaps it.
To verify if the newly allocated stacks use the polluted memory
pages, we intercept syscall entries using kprobes and scan stack
memory for magic code. We instrumented the Trinity fuzzer
to asynchronously run memory occupation and call memory
pollution before invoking syscalls.

VI. EVALUATION

We evaluated the effectiveness of our targeted stack-
spraying approach with regard to exploiting uninitialized-use
vulnerabilities by measuring the control coverage we achieved.
We present the total stack ranges that we can control with
deterministic stack spraying and exhaustive memory spraying,
the distribution of controlled regions, and the time spraying
takes. In particular, we investigate the following questions:

• Stack spraying coverage. What is the overall range of
the kernel stack can we control with our two spraying
techniques?

• Coverage distribution and frequency. In deterministic
stack spraying, how is the control coverage distributed
over the kernel stack? And how frequently can we control
a specific stack region?

• Spraying reliability. In exhaustive memory spraying,
how reliably can we control memory?

• Spraying efficiency. How long does it take for our
spraying techniques to achieve memory control?

A. Experimental Setup

We obtained the symbolic execution engine S2E from
the master branch of its git repository1, which uses QEMU
1.0.50 and clang 3.2. Our guided fuzzer is based on Trinity
version 1.7pre. Both the symbolic execution and guided fuzzer
run on virtual machines with Debian 8.5.0 (64-bit) on Linux
kernel version 3.16. We selected syscalls in the way described
in §V; out of 313 syscalls available in the kernel source,
we selected 229 for the evaluation. The stack of the Debian
system is 16K-byte. The stack has two regions that are at fixed
locations and cannot be sprayed: the lowest 104 bytes reserved
for thread_info and the highest 160 bytes reserved for OS
operations such as context switches. In all evaluations, the
magic code is set to be 4-byte string "UBIE".

B. Stack Spraying Coverage

We evaluated the coverage for deterministic stack spraying
and exhaustive memory spraying separately and then measured
their combined coverage. In both scenarios, we used 229 pre-
selected syscalls for the evaluation.

In deterministic stack spraying, we found that only 34
syscalls do not allow us to take control of any stack region.
After manual inspection, we concluded that this is because
these syscalls do not admit any parameters that will be stored
on the stack. Table I summarizes the amount of bytes that can
be controlled by the top 10 syscalls. In the highest 1KB stack
region, which is frequently used (§II-C), deterministic stack
spraying covers 315 bytes using all available syscalls. Hence,

1https://github.com/dslab-epfl/s2e.git as of August 2016

14200 14400 14600 14800 15000 15200
Size of controlled regions (aligned to low stack address)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 
o
f 

co
n
tr

o
lle

d
 s

y
sc

a
lls

Coverage of Exhaustive Memory Spraying

Fig. 5: The cumulative distribution (CDF) of coverage achieved by
exhaustive memory spraying. Its average control rate is about 90%.
The controlled memory is aligned to the low address of the kernel
stack; a portion (1,700 bytes on average) near the stack base cannot
be controlled.

32% of the frequently used region of the kernel stack can be
manipulated using deterministic stack spraying.

Stack memory after the highest 1KB is subjected to
exhaustive memory spraying. As mentioned in §III, a portion
of the prepared malicious data in the kernel stack of a
victim process by exhaustive memory spraying is likely to
be overwritten because of some kernel operations (e.g., setting
up a new process) in the victim process. To evaluate which
areas are overwritten, we enabled exhaustive memory spraying
and ran the Trinity fuzzer to invoke syscalls. We then used
kprobes to intercept syscall entry points and check which
regions have been polluted by magic code (indicating that they
were successfully sprayed). Figure 5 shows the results: Besides
a small overwritten region near stack base, the remaining region
can be fully controlled. The size of the uncontrollable region
varies. On average, the highest 1,722 bytes at the stack base
are overwritten, and in some cases, this region can be as small
as 1,200 bytes. Overall, while losing control of this region,
exhaustive memory spraying retains control of all other stack
memory, achieving an average coverage rate of 89%.

Deterministic stack spraying and exhaustive memory spray-
ing work as two complementary techniques: While exhaustive
memory spraying retains the majority of the memory, it cannot
control the frequently used stack region. Deterministic stack
spraying complements it by controlling 32% memory of the
frequently used stack region. Overall, by combining both
spraying techniques, targeted stack-spraying reliably controls
more than 91% of the kernel stack.

C. Coverage Distribution and Frequency

We further investigated how the control coverage is dis-
tributed over the kernel stack when using deterministic stack
spraying. Figure 6 presents the distribution. We found that the
coverage ranges from 200 to 800 bytes. More importantly, the
control with deterministic stack spraying is highly concentrated:
Some regions can be controlled by more than 100 syscalls. We

9



System call Coverage (Byte)

vmsplice 224
uname 99
fcntl 96
setpriority 88
sched_get_priority_min 88
sched_get_priority_max 88
personality 84
iopl 84
umask 80
io_destroy 76

TABLE I: Top 10 syscalls with highest individual control coverage
in the kernel stack.

System call Unique Coverage

wait4 16
waitid 12
timerfd_create 8
clock_getres 8
fcntl 8
mq_open 8
sched_rr_get_interval 8
mq_notify 8
timer_gettime 4

Total 80

TABLE II: Syscalls that uniquely control a stack region. Unique
coverage is the number of uniquely controlled bytes.

believe these regions are most likely used by stack objects,
and uninitialized variables likely reside in these regions, so
controlling these regions is critical to exploit uninitialized uses
from the kernel stack. Table I presents top 10 syscalls with high
coverage. Syscalls vmsplice, uname, and fcntl have the highest
individual coverage. We further investigated which regions
of the stack are uniquely controlled by a syscall. Table II
contains all syscalls that uniquely control a region. Overall,
only 80 bytes are uniquely controllable by a single syscall.
Other covered bytes can be controlled with multiple syscalls,
thus their sprayers are more reliable.

D. Reliability of Exhaustive Memory Spraying

We investigated the reliability of exhaustive memory spray-
ing by measuring how likely the kernel uses the sprayed memory

0 100 200 300 400 500 600 700 800
Controlled regions (offset into the stack base in byte)

0

20

40

60

80

100

120

140

N
u
m

b
e
r 

o
f 

co
n
tr

o
lli

n
g
 s

y
sc

a
lls

Statistics of Deterministic Stack Spraying

Fig. 6: The coverage, distribution, and frequency of stack control
achieved by the deterministic stack spraying technique.

for the kernel stack, i.e. whether the allocated stack memory
overlaps the one with prepared data. Specifically, we enable
the exhaustive memory spraying and run the Trinity fuzzer
to invoke syscalls. Then we count the number of times (i.e.,
probes) a syscall has been invoked until we find that the kernel
stack for the syscall is sprayed. After running all syscalls with
Trinity, we found that in most cases, the kernel uses the
sprayed memory as stack in the first or second probe. The
average number of probes we achieve overlapping is 1.8. The
worse case is less than 10 probes. Such results show that the
exhaustive memory spraying technique is very effective and
thus can reliably control the uninitialized memory.

E. Efficiency of Spraying

In deterministic stack spraying, both the symbolic execution
and the guided fuzzing are time-consuming processes. In many
cases, they do not terminate even after running for a few
hours. To handle this problem, we have set a timeout for this
analysis: If the analysis for a syscall does not generate new
coverage within a pre-set timeout, we forcibly terminate the
analysis for this syscall and continue to analyze next one. After
experimenting with various timeouts, we ultimately set the
timeout to 30 minutes. We found that the vast majority of
syscalls can be thoroughly analyzed within this time-frame,
with only 12 syscalls not finishing in time. With the syscall
ranking mentioned in §V-A3, we were able to control more than
200 bytes in the frequently used region within a few minutes.
Compared to deterministic stack spraying, exhaustive memory
spraying is much more efficient. The time memory occupying
takes depends on the size of the available memory. In our case,
the memory is 512MB, and the time for occupying the memory
is less than 2 seconds. Since memory pollution writes data into
a small memory region, its time is unobservable.

F. Case Study

The targeted stack-spraying technique provides a conceptual
approach for exploiting a given uninitialized-use vulnerabilities
by preparing malicious data at a target stack location. For
the sake of illustration, we exemplify the applicability of our
approach by adapting Cook’s exploit [12].

To the best of our knowledge, Cook’s exploit is the only one
that exploited an uninitialized-use vulnerability (CVE-2010-
2963) in the Linux kernel stack. Figure 7 shows how the
code is subject to the uninitialized use. The pointer data in
object karg.vc is not initialized but dereferenced in function
copy_from_user(). Cook exploited this vulnerability by tuning
the cmd argument to let the union struct adopt the type of
struct video_tuner, causing karg.vt to be written with user-
controlled data. For such a spraying attack to succeed, at least
four requirements must be satisfied: (1) The object having the
uninitialized pointer must be contained by a union struct; (2)
another type in the union struct has to have a non-pointer field
that overlaps with the uninitialized pointer because users are
not allowed to specify pointers pointing to kernel space; 3)
this non-pointer field can be overwritten with user-controlled
data; and 4) the user-controlled data will not be cleared. An
execution path satisfying all these requirements is uncommon
in practice, and finding such a path manually is unrealistic in
most cases.

10



1 static long do_video_ioctl(struct file *file, unsigned int cmd,
2 unsigned long arg) {
3 union {
4 struct video_tuner vt;
5 struct video_code vc;
6 } karg;
7 ...
8 /* karg.vc contains an uninitialized pointer */
9 err = get_microcode32(&karg.vc, up);

10 ...
11 }
12 int get_microcode32(struct video_code *kp,
13 struct video_code32 __user *up) {
14 ...
15 /* uninitialized pointer is dereferenced */
16 copy_from_user(kp->data, up->data, up->datasize))
17 ...
18 }

Fig. 7: The uninitialized-use vulnerability used in Cook’s exploit.

In this case study, we show that our targeted stack-spraying
technique can automatically find many execution paths that are
able to prepare a malicious pointer on the kernel stack, thus
controlling the uninitialized pointer kp->data. To reproduce
Cook’s exploit, we installed version 2.6.27.58 of the Linux
kernel in 64-bit Ubuntu 14.04; the kernel source code in file
compat_ioctl32.c was reverted to contain the vulnerability
described in CVE-2010-2963. Determined by the operating
system, the size of the kernel stack is 8KB instead of 16KB
in this case study. As mentioned in §IV, to benefit from
our targeted stack-spraying technique, we need to find out
the location of the uninitialized pointer in the stack. To get
the pointer location, we used kprobes to hook the function
do_video_ioctl. The handler provided by kprobes enables us
to find the location of the stack pointer when do_video_ioctl
is called. Using this information, we computed the offset of the
uninitialized pointer kp->data from the stack base, which is
396. After knowing this offset, we employed our deterministic
stack spraying technique to find syscalls that can prepare a
8-byte malicious pointer at this offset. Altogether, we were
able to find 27 such syscalls with corresponding parameters.
Independent of the chosen syscall, we could always prepare a
malicious pointer at the target offset, resulting in an arbitrary
write.

This case study shows how to use the proposed deterministic
stack spraying technique to find syscalls that can control a
specific location on stack. It also confirms that control of the
stack can be achieved generally and automatically, and, in
the presence of a suitable uninitialized-use vulnerability, a
successful exploit can be built reliably and readily.

VII. MITIGATION

We showed that uninitialized-use vulnerabilities can be
readily and reliably exploited using our targeted stack-spraying
technique. While use-after-free and buffer overflow problems
have been extensively studied, which has resulted in various
protection techniques (e.g., memory safety), the uninitialized-
use problem has rarely received attention. Our findings show
that uninitialized use constitutes a severe attack vector that
calls for practical defense mechanisms; however, to date no
such defense mechanisms exist. As such, we designed and
implemented an efficient and practical mitigation that counters
uninitialized uses. Our mitigation is inspired by the observation

that uninitialized-use exploits usually control an uninitialized
pointer to achieve arbitrary read/write/execution. By zero-
initializing pointer-type fields in an allocated object, we can
prevent an adversary from controlling these pointers. Since
memory page at the address zero is not accessable in Linux2,
zero-initialization becomes a safe prevention operation. More
specifically, we perform an intra-procedural analysis for the
Linux kernel source code. We realize both the analysis that
identifies unsafe pointer-type fields and the instrumentation that
zero-initializes the identified pointer-type fields based on the
LLVM compiler Infrastructure [24].

A. Identifying Unsafe Pointer-Type Fields

Our analysis is carried out on the LLVM IR, so type
information is preserved. In most cases, we can differentiate
pointer-type fields from other fields based on type information.
We start our analysis from allocation sites (i.e., AllocaInst
instructions in LLVM IR). The first step is to identify all
pointer-type fields by recursively (a field could be a struct
or an array type) traversing each field in the allocated object.
Since integer values might be used as a pointer, we also treat
the 8-byte-integer type as a pointer type.

To initialize identified pointer-type fields, we could conser-
vatively zero out them upon allocations. This strategy, however,
will overly initialize many already initialized pointers and
therefore introduce unnecessary performance overhead. To
reduce initialization overhead while still ensuring security, we
designed an intra-procedural program analysis that checks the
following two conditions: (1) the pointer field is not properly
initialized in the function; and (2) the pointer is sinking (e.g.,
being used or passed to other functions). Only those pointer-
type fields satisfying both conditions require zero-initialization.
More specifically, once all pointer-type fields are identified, we
perform taint analysis to keep track of the initialization status
and sinking status of the pointer-type fields in the following
conservative ways:

• When a pointer-type field is explicitly assigned by other
values (i.e., it is the store-to target in a memory storing
instruction (StoreInst)), we record that this field is
initialized.

• When a pointer-type field that is not fully initialized
is passed to other functions as a parameter or stored
to memory, we report it as unsafe, which thus requires
initialization.

• When a pointer-type field that is not fully initialized is
dereferenced (i.e., used as the pointer argument in memory
loading instruction (LoadInst), StoreInst, or function call
instruction (CallInst), we treat it as unsafe as well.

The basic alias analysis [23] provided by LLVM is adopted
to tackle the alias problem, so accessing pointer-type fields
via their aliases is also tracked. Since our analysis is intra-
procedural, such a basic alias analysis suffices for the purpose
of efficiently detecting pointer-type fields that lack proper
initialization. With this conservative taint analysis, we managed
to reduce the number of to-be-initialized bytes from 105,960
to 66,846.

2Since the Linux kernel with version 2.6.23, the
/proc/sys/vm/mmap_min_addr tunable was introduced to prevent unprivileged
users from creating new memory mappings below the minimum address

11



System call Baseline W/ defense Overhead(%)

null syscall 0.04 0.04 (0.0%)
stat 0.42 0.40 (-4.8%)
open/close 1.20 1.14 (-5.0%)
select TCP 2.44 2.62 (7.4%)
signal install 0.11 0.11 (0.0%)
signal handle 0.60 0.64 (6.7%)
fork+exit 163 157 (-3.7%)
fork+exec 447 460 (2.9%)
prot fault 0.327 0.356 (8.9%)
pipe 8.906 9.058 (1.7%)
TCP 25.6 27.5 (7.4%)

Average 1.95%

TABLE III: LMBench results. Time is in microsecond.

B. Implementation

Both the analysis pass and the instrumentation pass are
implemented with LLVM. Both passes are inserted after all
optimization passes. To use the mitigation, users only need
to specify the option (i.e., -fsanitize=init-pointer) when
compiling the kernel source code. To compile Linux kernel
source code with LLVM, we applied the patches provided
by the LLVMLinux project [25]. The zero-initialization code
is inserted right after allocation sites. In LLVM IR, inline
assembly is invoked by a CallInst, which is treated as a sink
in our analysis, so the common inline assembly in Linux kernel
is not an issue.

C. Evaluating Pointer Initialization

To confirm that our mitigation is practical, we applied it
to the latest Linux vanilla kernel (x86_64, version 4.7) and
evaluated its performance. The testing is performed in the
virtual machine with the secured kernel. The host machine
is equipped with an Intel(R) Core(TM) i7-2760QM CPU @
2.40GHz processor and 10GB of RAM; the running OS is
64-bit Ubuntu 14.04 with Linux kernel version 3.13.0-55. The
virtual machine (VirtualBox) was configured to have a 4-core
processor and 4GB RAM; its OS is also 64-bit Ubuntu 14.04.
We used the default configuration to compile the kernel code.

Performance with system services. We used LMbench [27]
as the micro benchmark to test the runtime slowdown in system
services. The selected system services are mainly syscalls,
which conform to typical kernel performance evaluations (e.g.,
[19]). The evaluation results are shown in Table III. The average
performance overhead is only 2%, and in most cases, the
performance overhead is less than 5%. These numbers confirm
that our zero-initialization-based mitigation for kernel stack is
efficient.

Performance with user programs. We further used the SPEC
CPU 2006 benchmarks as a macro-benchmark to test the
performance impacts of our mitigation over the user-space
programs. We ran the test 10 times and adopted the average
number. Table IV shows the evaluation results. Our zero-
initialization-based mitigation imposes almost no performance
overhead (0.47%) to the SPEC benchmarks on average.

Both the LMbench and SPEC benchmark results confirm
that our mitigation is very efficient and reliable (no single error
was observed during the evaluation).

Programs Baseline W/ defense Overhead(%)

perlbench 3.62 3.62 (0.0%)
bzip2 4.74 4.75 (0.2%)
gcc 0.945 0.945 (0.0%)
mcf 2.71 2.68 (-1.1%)
gobmk 13.9 13.9 (0.0%)
hmmer 2.02 2.03 (0.5%)
sjeng 3.28 3.30 (0.6%)
libquantum 0.0365 0.0365 (0.0%)
h264ref 9.35 9.40 (0.5%)
omnetpp 0.342 0.349 (2.0%)
astar 7.77 7.74 (-0.4%)
xalancbmk 0.0611 0.0611 (0.0%)
milc 4.47 4.51 (0.9%)
namd 8.84 8.85 (0.1%)
dealII 10.5 10.6 (1.0%)
soplex 0.0201 0.0201 (0.0%)
povray 0.407 0.417 (2.5%)
lbm 1.66 1.68 (1.2%)
sphinx 1.16 1.17 (0.9%)

Average 0.47%

TABLE IV: User space (x86_64) performance evaluation results with
the SPEC benchmarks. Time is in second, the smaller the better.

VIII. RELATED WORK

In this section, we provide a compact overview of the
offensive and defensive related works.

A. Memory Spraying

Memory spraying is a popular means to memory-corruption
attacks. By far the most popular memory spraying techniques is
heap spraying, an attack that was first described by SkyLined
in 2004 [38]. Heap spraying attacks fill large portions of
the victim’s heap memory with malicious code (e.g., NOP
sleds), thus increasing the chance of hitting malicious code for
hijacking the control flow [14, 15]. Although the heap spraying
technique itself has been countered by the introduction of Data
Execution Prevention (DEP), the evolution of heap spraying—
JIT spraying—has become a popular concept for enabling a
variety of web-based attacks [42]. JIT spraying exploits the
predictability of the JIT compiler to create predictable code
fragments that can be used to hijack control-flow [42, 50]. Since
these fragments reside in an executable code cache, mitigation
techniques like DEP or W ⊕ X can be bypassed [42, 50].
Existing defenses against heap/JIT spraying attacks either try
to detect the attack by searching for large amounts of NOP
sleds and shell code [14, 15, 38] or randomizes the memory
layout and register assignments [13, 14, 50]. Recently, memory
spraying has also been used to exploit the "Rowhammer"
vulnerability in DRAM devices where repeated access to a
certain row of memory causes bit flips in adjacent memory
rows [5, 40].

In contrast to all these existing spraying techniques, our
targeted stack-spraying target the stack instead of the heap.
More importantly, our stack spraying technique is deterministic
and stealthy (thus is hard to detect), and our exhaustive memory
spraying technique is highly reliable.

B. Kernel Exploits and Automated Exploits

Since the kernel is often a part of the trusted computing base
of a system, avoiding exploitable kernel vulnerabilities is critical

12



for the security of a system [9]. Nonetheless, despite the efforts
of kernel developers to find and eliminate these vulnerabilities,
new such vulnerabilities are still frequently detected. As of
the paper writing, a total of 1,526 vulnerabilities have been
reported in the Linux kernel alone, 203 of which were reported
in 2016 [37]. With Linux kernel vulnerabilities being on the
rise, corresponding exploitation techniques have caught the
interests of attackers. One recent approach exploits use-after-
free vulnerabilities in the Linux kernel by leveraging its memory
recycling mechanism [51], while another one circumvents
existing defenses by manipulating the kernel page table [21].

Although many vulnerabilities and their corresponding
exploits are still discovered manually, automatic detection
and exploit generation is becoming increasingly popular, as is
evidenced by the DARPA Cyber Grand Challenge (DARPA
CGC) [43]. In this challenge, teams are required to build
automated vulnerability scanning engines, which they then
use to compete in a Capture The Flag tournament. One of the
tools specifically developed for this challenge is Fuzzbomb [28],
which combines static analysis with symbolic execution and
fuzzing to detect vulnerabilities in programs. The combination
of symbolic execution and fuzzing is also used for the Driller
tool [45], which has also been tested on 126 of the DARPA CGC
binaries. Driller, like our approach, uses symbolic execution
to guide its fuzzing engine in case it fails to generate input
to satisfy complex checks in the code. This combination is
also used together with static and dynamic program analysis
to automatically generate exploits for a wide variety of
applications [47]. Similar to these approaches, we also use
a combination of symbolic execution and fuzzing to discover
execution paths that can achieve targeted spraying in the Linux
kernel.

C. Uninitialized Use Exploits

Despite the fact that uninitialized-use bugs are seldom
considered to be security-critical, a number of exploits for these
vulnerabilities have become known in recent years. Flake [16]
used a manual approach towards exploiting uninitialized local
variables on the user-space stack, while Cook [12] used an
unchecked copy_from_user() call with an uninitialized variable
to exploit the Linux kernel and gain root privileges. Jurczyk
in turn exploited CVE-2011-2018, a stack-based uninitialized-
variable reference vulnerability in the Windows kernel, which
allows an attacker to execute arbitrary code with system
privileges [17]. Last but not least, Chen exploited an heap-
based uninitialized-use vulnerability in Microsoft’s Internet
Explorer (CVE-2015-1745) using fuzzing [8]. Unlike these
ad-hoc attacks, our targeted stack-spraying is general and
automated.

D. Uninitialized Use Detection and Prevention

Researchers have proposed some detection mechanisms
for uninitialized uses; however, only few defenses against
uninitialized uses have been proposed. For detection, tools such
as kmemcheck [33], Dr.Memory [6], and Valgrind [41] leverage
dynamic instrumentation and analysis to track memory accesses
while compiler-based approaches like MemorySanitizer [44]
and Usher [52] insert tracking code to find uninitialized uses
at runtime. For defense mechanisms, Kurmus and Zippel [20]

proposed a technique for preventing exploits of memory-
corruption vulnerabilities. Their approach relies on single-split
kernels where system calls of untrusted processes can only
access a hardened kernel version while trusted processes can
access the unmodified kernel. A solution that is specifically
targeted towards uninitialized-use vulnerabilities is offered by
the PaX team, known for the invention of ASLR. Their GCC
compiler plugins, STACKLEAK and STRUCTLEAK, clear
the kernel stack on kernel-to-user transitions and initialize
all local variables that might be copied to user space, which
effectively prevents uninitialized uses of kernel memory [46].
A key difference of our efficient defense against uninitialized
uses is that instead of initializing all local variables, we
specifically initialize pointer-type fields that have not been
properly initialized before. While STACKLEAK and Split
kernel introduce a significant performance overhead (e.g.,
STACKLEAK introduces an average of 40% runtime overhead
in system operations [26]), our lightweight defense imposes
almost no performance overhead.

E. Memory Safety Techniques

Memory-corruption errors such as dangling pointers are a
long-known problem in unsafe programming languages like C.
In the last ten years, several approaches have been proposed
to mitigate the exploits of these errors.

Watchdog [32] and its successor WatchdogLite [29] both
leverage hardware supports to store and check allocation meta-
data to prevent use-after-free vulnerabilities. Softbound [30]
and CETS [31] are software-based approaches that aim to
prevent memory-corruption errors at compile-time. Softbound
enforces spatial memory safety by storing base and bound
information as metadata for every pointer, while CETS enforces
temporal memory safety by storing unique identifiers for each
object, which are then used to check if the object is still
allocated upon pointer dereferences. Notably, although these
memory safety techniques claim full memory safety, they
currently do not cover uninitialized use as a prevention target. In
contrast to these metadata-based approaches, DieHard [4] and
its successor, DieHarder [34] both focus on randomizing the
location of heap objects to make dangling-pointer dereferences
hard to exploit. Since both techniques focus on heap objects,
they cannot detect and prevent uninitialized-use errors on the
stack. StackArmor [10] also adopts randomization to achieve
the memory safety for stack. All these randomization-based
memory-safety techniques are probabilistic.

IX. DISCUSSION

In this section, we discuss the potential limitations of
targeted stack-spraying and corresponding defenses. We also
discuss the requirements to port targeted stack-spraying to other
programs such as web browsers.

A. Exploitability of Uninitialized-Use Vulnerabilities

Not all uninitialized-use vulnerabilities are exploitable. First,
in order to benefit from targeted stack-spraying, the execution
path that triggers an uninitialized-use vulnerability must not
overwrite the prepared malicious data. Otherwise, the targeted
stack-spraying technique will lose control of the uninitialized
memory thus cannot exploit this uninitialized-use vulnerability.

13



To verify if the prepared data persists until triggering the
uninitialized-use vulnerability, attackers can obtain the address
of the instruction using the uninitialized memory and use
kprobes to intercept the instruction to verify if the prepared
data persists. Second, our current deterministic stack spraying
does not consider the case in which the preparation of the
malicious data occurs in the same syscall that also triggers
the uninitialized-use vulnerability. We ensure only that the
prepared malicious data persists until the entry point of the
syscall triggering the uninitialized-use vulnerability.

B. Porting to Other Programs

To port the deterministic stack spraying technique to other
programs such as the JavaScript engine in web browsers, we
need interface definition (e.g. the JavaScript API), a targeted
symbolic execution engine (e.g Kudzu [39]), and a fuzzer
(e.g. jsfunfuzz [1]). Test suites are usually available for well-
maintained programs, which can be used to automatically
generate the test cases needed for symbolic execution and
fuzzing. When these resources are available, the deterministic
stack spraying technique can be conveniently ported to support
other programs. To port the exhaustive spraying technique
to other programs, we only need to provide the function for
allocating large memory and the size of available memory.

C. Improving Mitigation and Other Defenses

As mentioned in §VII, we can efficiently mitigate
uninitialized-use exploits by zero-initializing all pointer-type
fields for which the compiler cannot prove that they are properly
initialized before reaching a sink (i.e., they are used). This
lightweight approach works for most cases. However, false
negatives cannot be fully excluded: If a pointer is modified
by (or depends on) an uninitialized non-pointer value, zero-
initializing this pointer cannot effectively prevent the exploits
because the resulting pointer is still controllable by attackers if
they can control the non-pointer value. Therefore, one possible
improvement for our proposed defense is to zero-initialize non-
pointer values as well. Two approaches that already offer a
broader defense in this respect are PaX’s STACKLEAK [46]
and split kernel [20] (see §VIII for details). Both approaches
provide strong security to prevent uninitialized-use exploits,
but come at the cost of a significant runtime overhead [26].
As such, a sophisticated inter-procedural and field-sensitive
analysis is necessary to filter out safe allocations. We leave
this challenging problem for future work.

Another defense direction is to defeat targeted stack-
spraying. A mitigation against the deterministic stack spraying
technique is to randomly adjust the stack base upon syscall
entry so that the malicious data prepared in the previous syscall
may not overlap the uninitialized variable in the vulnerable
syscall. Since the kernel stack has only 8KB or 16KB, the
entropy of such a randomization is limited. To detect the
exhaustive memory spraying technique, systems can monitor a
large amount of process creations or large memory allocations.
However, this spraying technique can be stealthy by reducing
the amount of process creations and the size of memory
allocations, and probing more times.

X. CONCLUSION

Using uninitialized variables (uninitialized use) constitutes
a common type of memory error in the Linux kernel. Reliably
exploiting uninitialized uses on the kernel stack has been
considered infeasible since the code executed prior to triggering
the vulnerability must leave an attacker-controlled pattern on the
stack. As a consequence, uninitialized uses are widely tolerated
as undefined behaviors, and full memory safety techniques
such as SoftBound+CETS therefore exclude uninitialized use
as a prevention target. Moreover, uninitialized uses are even
intentionally used as a randomness source by popular systems
such as OpenSSL.

We have shown in this paper that uninitialized use consti-
tutes a severe attack vector that future memory safety techniques
should seriously defend against. We have proposed the fully
automated targeted stack-spraying approach, which includes
a deterministic stack spraying technique and an exhaustive
memory spraying technique. While exhaustive memory spray-
ing reliably controls 89% of the kernel stack on average,
deterministic stack spraying controls 32% of the frequently
used stack region, which cannot be reached by exhaustive
memory spraying. Therefore, attackers can use the targeted
stack-spraying approach to readily exploit an uninitialized-
use vulnerability for a privilege escalation attack. To mitigate
uninitialized use exploits, we have proposed a compiler-based
mechanism, which initializes potentially unsafe pointer-type
fields with almost no performance overhead.

ACKNOWLEDGMENT

We thank Chengyu Song, Taesoo Kim, Insu Yun, and the
anonymous reviewers for their valuable feedback. This work
was supported by the German Federal Ministry for Education
and Research (BMBF) through funding for the Center for
IT-Security, Privacy and Accountability (CISPA). Kangjie Lu
and Wenke Lee were supported in part by the NSF award
CNS-1017265, CNS-0831300, CNS-1149051, CNS-1563848
and DGE-1500084, by the ONR under grant N000140911042
and N000141512162, by the DHS under contract N66001-
12-C-0133, by the United States Air Force under contract
FA8650-10-C-7025, by the DARPA Transparent Computing
program under contract DARPA-15-15-TC-FP-006, by the
ETRI MSIP/IITP[B0101-15-0644]. Any opinions, findings,
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the BMBF, NSF, ONR, DHS, United States Air Force,
DARPA or MSIP.

REFERENCES

[1] jsfunfuzz: a JavaScript-based fuzzer, 2016. https://github.com/
MozillaSecurity/funfuzz.

[2] Kernel Probes, 2016. https://www.kernel.org/doc/Documentation/kprobes.
txt.

[3] Virtio: Paravirtualized drivers for kvm/Linux, 2016. http://www.linux-
kvm.org/page/Virtio.

[4] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety for
unsafe languages. In Acm sigplan notices, volume 41, pages 158–168.
ACM, 2006.

[5] E. Bosman, K. Razavi, H. Bos, , and C. Giuffrida. Dedup est machina:
Memory deduplication as an advanced exploitation vector. In Proceedings
of the 37th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, USA, May 2016. IEEE.

14

https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
http://www.linux-kvm.org/page/Virtio
http://www.linux-kvm.org/page/Virtio


[6] D. Bruening and Q. Zhao. Practical memory checking with dr. memory.
In Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO), Washington, DC, Mar. 2011.

[7] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), San Diego, CA, Dec. 2008.

[8] Chen. Hey Man, Have You Forgotten To Initialize Your Memory?, 2015.
URL https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-
Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf.

[9] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek.
Linux kernel vulnerabilities: State-of-the-art defenses and open problems.
In Proceedings of the Second Asia-Pacific Workshop on Systems, page 5.
ACM, 2011.

[10] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida.
StackArmor: Comprehensive Protection from Stack-based Memory Error
Vulnerabilities for Binaries. In Proceedings of the 2015 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb. 2015.

[11] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-vivo
multi-path analysis of software systems. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[12] K. Cook. Kernel Exploitation Via Uninitialized Stack. 2011.
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/
DEFCON-19-Cook-Kernel-Exploitation.pdf.

[13] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz. Readactor: Practical code randomization
resilient to memory disclosure. In 2015 IEEE Symposium on Security
and Privacy, pages 763–780. IEEE, 2015.

[14] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou. Heap taichi: exploiting
memory allocation granularity in heap-spraying attacks. In Proceedings
of the 26th Annual Computer Security Applications Conference, pages
327–336. ACM, 2010.

[15] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 88–106. Springer, 2009.

[16] H. Flake. Attacks on Uninitialized Local Variables. 2006. http://www.
blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf.

[17] M. "j00ru" Jurczyk. The story of CVE-2011-2018 exploitation, 2012. URL
http://j00ru.vexillium.org/blog/20_05_12/cve_2011_2018.pdf. [Online;
accessed 16-Aug-2016].

[18] D. Jones. Trinity: A Linux System call fuzz tester, 2015. http:
//codemonkey.org.uk/projects/trinity.

[19] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kguard: Lightweight
kernel protection against return-to-user attacks. In Proceedings of the
21st USENIX Security Symposium (Security), Bellevue, WA, Aug. 2012.

[20] A. Kurmus and R. Zippel. A tale of two kernels: Towards ending kernel
hardening wars with split kernel. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages
1366–1377. ACM, 2014.

[21] J. Lee, H. Ham, I. Kim, and J. Song. Poster: Page table manipulation
attack. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1644–1646. ACM, 2015.

[22] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators
in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1), Jan. 1979.

[23] LLVM. LLVM Alias Analysis Infrastructure, 2016. http://llvm.org/docs/
AliasAnalysis.html.

[24] LLVM. The LLVM Compiler Infrastructure, 2016. http://llvm.org/.
[25] LLVMLinux. The LLVMLinux Project, 2016. http://llvm.linuxfoundation.

org/index.php/Main_Page.
[26] K. Lu, C. Song, T. Kim, and W. Lee. UniSan: Proactive Kernel Memory

Initialization to Eliminate Data Leakages. In Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016.

[27] L. W. McVoy and C. Staelin. Lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conference, 1996.

[28] D. J. Musliner, S. E. Friedman, M. Boldt, J. Benton, M. Schuchard,
P. Keller, and S. McCamant. Fuzzbomb: Autonomous cyber vulnerability
detection and repair. In Fourth International Conference on Communica-
tions, Computation, Networks and Technologies (INNOV 2015), 2015.

[29] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watchdoglite:
Hardware-accelerated compiler-based pointer checking. In Proceedings of
the 2014 International Symposium on Code Generation and Optimization

(CGO).
[30] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound:

Highly compatible and complete spatial memory safety for C. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Dublin, Ireland, June
2009.

[31] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS: compiler
enforced temporal safety for C. In International Symposium on Memory
Management, 2010.

[32] S. Nagarakatte, M. M. Martin, and S. Zdancewic. Watchdog: Hardware for
safe and secure manual memory management and full memory safety. In
ACM SIGARCH Computer Architecture News, volume 40, pages 189–200.
IEEE Computer Society, 2012.

[33] V. Nossum. Getting Started With kmemcheck, 2015. https://www.kernel.
org/doc/Documentation/kmemcheck.txt.

[34] G. Novark and E. D. Berger. Dieharder: securing the heap. In Proceedings
of the 17th ACM conference on Computer and communications security,
pages 573–584. ACM, 2010.

[35] J. Obdrzalek and M. Trtik. Efficient loop navigation for symbolic
execution. In Proceedings of the 9th International Conference on
Automated Technology for Verification and Analysis, ATVA’11, 2011.

[36] S. Özkan. CVE Details: Linux kernel security vulnerabilities - gain privi-
lege, 2016. URL https://www.cvedetails.com/vulnerability-list/vendor_id-
33/product_id-47/opgpriv-1/Linux-Linux-Kernel.html. [Online; accessed
12-Aug-2016].

[37] S. Özkan. CVE Details: Linux kernel security vulnerabilities - overview,
2016. URL https://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33l. [Online; accessed 15-Aug-2016].

[38] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. Nozzle: A defense
against heap-spraying code injection attacks. In USENIX Security
Symposium, pages 169–186, 2009.

[39] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for javascript. In Proceedings of the
31th IEEE Symposium on Security and Privacy (Oakland), Oakland, CA,
May 2010.

[40] M. Seaborn and T. Dullien. Exploiting the dram rowhammer bug to gain
kernel privileges. Black Hat, 2015.

[41] J. Seward and N. Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In Proceedings of the 2004 USENIX Annual
Technical Conference (ATC), Anaheim, CA, June–July 2005.

[42] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting and
protecting dynamic code generation. In NDSS, 2015.

[43] J. Song and J. Alves-Foss. The darpa cyber grand challenge: A
competitor’s perspective. IEEE Security & Privacy, 13(6):72–76, 2015.

[44] E. Stepanov and K. Serebryany. MemorySanitizer: fast detector of unini-
tialized memory use in C++. In Proceedings of the 2015 International
Symposium on Code Generation and Optimization (CGO).

[45] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In Proceedings of the Network
and Distributed System Security Symposium, 2016.

[46] P. Team. PaX - gcc plugins galore, 2015. URL https://pax.grsecurity.
net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdft. [Online; accessed
15-Aug-2016].

[47] H. A. Thanassis, C. S. Kil, and B. David. Aeg: Automatic exploit
generation. In ser. Network and Distributed System Security Symposium,
2011.

[48] L. Torvalds. Linux Kernel Git Repository, 2016. URL git://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git. [Online; accessed 5-Aug-
2016].

[49] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Undefined behavior: What happened to my code? In Proceedings of the
3rd Asia-Pacific Workshop on Systems (APSys), Seoul, South Korea, July
2012.

[50] T. Wei, T. Wang, L. Duan, and J. Luo. Secure dynamic code generation
against spraying. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 738–740. ACM, 2010.

[51] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu. From collision
to exploitation: Unleashing use-after-free vulnerabilities in linux kernel.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 414–425. ACM, 2015.

[52] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detection of uses of
undefined values with static value-flow analysis. In Proceedings of the
2014 International Symposium on Code Generation and Optimization
(CGO).

15

https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Chen-Hey-Man-Have-You-Forgotten-To-Initialize-Your-Memory.pdf
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf
http://j00ru.vexillium.org/blog/20_05_12/cve_2011_2018.pdf
http://codemonkey.org.uk/projects/trinity
http://codemonkey.org.uk/projects/trinity
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/
http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/opgpriv-1/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/opgpriv-1/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33l
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33l
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdft
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdft
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

	Introduction
	Challenges
	Contributions

	Uninitialized Uses and the Kernel Stack
	Uninitialized Uses in OS Kernels
	Kernel Stack Management
	Stack Usage of Syscalls

	The Targeted Stack-Spraying Approach
	Deterministic Stack Spraying
	Exhaustive Memory Spraying

	Design
	Deterministic Stack Spraying
	Symbolic Execution of Syscalls
	Guided Fuzzing
	Coordination

	Exhaustive Memory Spraying
	Occupying Memory
	Polluting Memory


	Implementation
	Deterministic Stack Sprayer
	Symbolic Execution Engine
	Guided Fuzzer
	Coordinator

	Exhaustive Memory Sprayer

	Evaluation
	Experimental Setup
	Stack Spraying Coverage
	Coverage Distribution and Frequency
	Reliability of Exhaustive Memory Spraying
	Efficiency of Spraying
	Case Study

	Mitigation
	Identifying Unsafe Pointer-Type Fields
	Implementation
	Evaluating Pointer Initialization

	Related work
	Memory Spraying
	Kernel Exploits and Automated Exploits
	Uninitialized Use Exploits
	Uninitialized Use Detection and Prevention
	Memory Safety Techniques

	Discussion
	Exploitability of Uninitialized-Use Vulnerabilities
	Porting to Other Programs
	Improving Mitigation and Other Defenses

	Conclusion

