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•  Code diversity techniques are vulnerable to information leakage 

•  Recent leakage-resilient techniques employ “execute-only” memory 

permissions to prevent information leakage 

•  We present a generic type of attack called Address-Oblivious Code 

Reuse (AOCR) that can bypass recent leakage-resilient techniques 

•  We provide 3 real-world exploits 

Bottom-Line Upfront 
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Memory Corruption Attacks 

Spatial Memory Violation Temporal Memory Violation 
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Code Diversification Techniques 

Address Space Layout 
Randomization (ASLR) 
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‡ J. Hiser, et al. "ILR: Where'd My 
Gadgets Go?.” IEEE S&P, 2012 

† T. Jackson, et al. "Compiler-generated software 
diversity." Moving Target Defense. Springer, 2011 
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Information Leakage (Direct Memory Disclosure) 
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Information Leakage (Indirect Memory Disclosure) 
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Memory Permissions 
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Leakage Resilient Diversity 
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Indirect Leakage Prevention 
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•  Indirect code pointers create a surrogate for code 

•  Can attackers reuse code at the granularity of indirect code pointers? 

•  Can they accurately identify the corresponding functions? 

•  Can they chain indirect code pointers together? 

Research Questions 
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•  Goal: identify the function corresponding to each indirect code pointer 
 

Profiling Indirect Code Pointers 
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Address-Oblivious Code Reuse 
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Accurate Profiling 
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Accurate Profiling using 
 Malicious Thread Blocking (MTB) 

time 

•  A thread can force another threat to halt by maliciously setting a mutex 
•  Mutexes are readily accessible is memory 
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Chaining Gadgets Together using  
Malicious Loop Redirection (MLR) 

while (task) {!
   task->fptr(task->arg);!
   task = task->next;!
}!
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1.  Locate a mutex for MTB 

2.  Profile an indirect code pointer for open (1st AOCR gadget) 

3.  Profile an indirect code pointer for _IO_new_file_overflow (2nd AOCR gadget) 

4.  Corrupt Nginx’s task queue to call our profiled trampolines using MLR 

Nginx Proof-of-Concept Exploit 
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•  Forged Direct Memory Access (FDMA) 
–  A malicious application forges a software-based DMA call to kernel 

–  Uses O_DIRECT flag in Linux 

–  DMA request bypasses memory permissions 

•  Procfs 
–  Ubiquitous facility in Linux 

–  Provides memory maps and addresses 

–  Blocking it breaks many benign applications 

–  Protections such as GRSecurity’s permissions will not block it 

Implementation Challenges of  
Execute-Only Permissions 
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Impact on Leakage-Resilient Diversity Techniques 
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•  Complete memory safety 

•  Data randomization 

•  Authentication of indirect calls and returns  

–  Use HMAC tokens to disallow redirection of indirect code pointers 

–  Similar to cryptographically-enforced CFI (CCFI) 

Possible Countermeasures 
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•  Code pointers pose a major challenge to leakage-resilient diversity 

•  AOCR attacks bypass code pointer obfuscation by profiling indirect code pointers 

•  Malicious threat blocking (MTB) allows accurate profiling 

•  Malicious loop redirection (MLR) allows chaining AOCR gadgets 

•  Effective defenses should incorporate aspects of diversification and enforcement 

Conclusion 
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Questions? 


