
Robert Rudd1, Richard Skowyra1, David Bigelow1, Veer Dedhia1, Thomas Hobson1, 
Stephen Crane2, Christopher Liebchen4, Per Larsen3, Lucas Davi5, Michael Franz3, 

Ahmad-Reza Sadeghi4, Hamed Okhravi1 
 

1: MIT Lincoln Laboratory      2: Immunant, Inc.      3: UC Irvine      4: TU Darmstadt      5: University of Duisburg-Essen 

Address-Oblivious Code Reuse: On the 
Effectiveness of Leakage-Resilient Diversity 

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. 
FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering. 
 
 
 

© 2016 Massachusetts Institute of Technology. 
Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any 
copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this 
work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work. 



2 

•  Code diversity techniques are vulnerable to information leakage 

•  Recent leakage-resilient techniques employ “execute-only” memory 

permissions to prevent information leakage 

•  We present a generic type of attack called Address-Oblivious Code 

Reuse (AOCR) that can bypass recent leakage-resilient techniques 

•  We provide 3 real-world exploits 

Bottom-Line Upfront 



3 

Memory Corruption Attacks 

Spatial Memory Violation Temporal Memory Violation 

 
 
 
 
 
 
 

Heap 

Buffer 

Function 
Pointer 

Attacker 

 
 
 
 
 
 
 

Heap 

Object Function 
Pointer 

Attacker 



4 

Code Diversification Techniques 

Address Space Layout 
Randomization (ASLR) 

Heap 

Stack 

Libraries 

Program 
Image 

Source 
Code 

Compiler 

Diverse binaries 

Diversifier 

Diverse binaries 

Binary 

Compile-Time Diversity Binary Rewriting † 

‡ J. Hiser, et al. "ILR: Where'd My 
Gadgets Go?.” IEEE S&P, 2012 

† T. Jackson, et al. "Compiler-generated software 
diversity." Moving Target Defense. Springer, 2011 

‡ 

Heap 

Stack 

Libraries 

Program 
Image 

Heap 

Stack 

Libraries 

Program 
Image 



5 

Information Leakage (Direct Memory Disclosure) 

Diversified 
Code Attacker 

Buffer 



6 

Information Leakage (Indirect Memory Disclosure) 

Code 

Attacker Code 

Code 

Code 

 
 
 
 

Stack 

*fptr 1 

ret 



7 

Memory Permissions 

Diversified 
Code 

Data 

Readable  
Executable 

(RX) 

Readable  
Writable 

(RW) 



8 

Leakage Resilient Diversity 

Diversified 
Code 

Data 

Executable Only 
(X) 

Readable  
Writable 

(RW) 

Attacker Direct Leakage 



9 

Indirect Leakage Prevention 

Diversified 
Code 

Executable Only 
(X) 

Readable  
Writable 

(RW) 

Diversified 
Code 

 
 
 
 

Stack 

Executable Only 
(X) 

Readable  
Writable 

(RW) 

Indirect code 
pointer 

 
 
 
 

Stack 

Trampoline 

Diversified 
Code 

Trampoline 

*fptr 1 



10 

•  Indirect code pointers create a surrogate for code 

•  Can attackers reuse code at the granularity of indirect code pointers? 

•  Can they accurately identify the corresponding functions? 

•  Can they chain indirect code pointers together? 

Research Questions 



11 

•  Goal: identify the function corresponding to each indirect code pointer 
 

Profiling Indirect Code Pointers 

Diversified 
Code 

 
 
 

Stack 

*open() 

Attacker’s Local Copy of 
Target Application  

Attacker 

Diversified 
Code 

 
 
 

Stack 

Executable Only 
(X) 

Readable  
Writable 

(RW) 
icptr 

Trampoline 

Remote Target 
Application 

Leakage *open() icptr 

≡ 



12 

Address-Oblivious Code Reuse 

Diversified 
Code 

 
 
 

Stack 

Executable Only 
(X) 

Readable  
Writable 

(RW) 

icptr 

Trampoline 

Remote Target Application 

Trampoline 

Address-Oblivious Code Reuse (AOCR) 
Gadget 

Diversified 
Code 



13 

Accurate Profiling 

 
 
 
 
 
 

Stack 

Readable  
Writable 

(RW) 

icptr 1 

Remote Target Application 

Is it too volatile? 
icptr 2 

icptr 3 

icptr 4 

icptr 5 



14 

Accurate Profiling using 
 Malicious Thread Blocking (MTB) 

time 

•  A thread can force another threat to halt by maliciously setting a mutex 
•  Mutexes are readily accessible is memory 

Thread 
A 

Thread 
B 

Maliciously 
blocked with 
stable stack! 



15 

Chaining Gadgets Together using  
Malicious Loop Redirection (MLR) 

while (task) {!
   task->fptr(task->arg);!
   task = task->next;!
}!

 
 
 
 
 
 

Data 

X 

RW 

Func tramp 1 

fptr 
arg 
next 

fptr 
arg 
next 

Func tramp 2 

Normal Loop Maliciously Redirected Loop 

 
 
 
 
 
 

Data 

X 

RW 

Func tramp 1 

Func tramp 2 

Write tramp 

Open tramp 

… … 

fptr 
arg 
next 

fptr 
arg 
next 



16 

1.  Locate a mutex for MTB 

2.  Profile an indirect code pointer for open (1st AOCR gadget) 

3.  Profile an indirect code pointer for _IO_new_file_overflow (2nd AOCR gadget) 

4.  Corrupt Nginx’s task queue to call our profiled trampolines using MLR 

Nginx Proof-of-Concept Exploit 



17 

•  Forged Direct Memory Access (FDMA) 
–  A malicious application forges a software-based DMA call to kernel 

–  Uses O_DIRECT flag in Linux 

–  DMA request bypasses memory permissions 

•  Procfs 
–  Ubiquitous facility in Linux 

–  Provides memory maps and addresses 

–  Blocking it breaks many benign applications 

–  Protections such as GRSecurity’s permissions will not block it 

Implementation Challenges of  
Execute-Only Permissions 



18 

Impact on Leakage-Resilient Diversity Techniques 

Direct Leak Indirect Leak 
TLB-mediated 

(Buffer Overread) 
Non-TLB-mediated 

(Forged DMA) 
Code Pointer Leak 
(Ret address leak) 

Indirect Code Pointer Leak 
(AOCR) 

PointGuard 

Oxymoron 

Isomeron 

XnR 

HideM 

Readactor 

Heisenbyte 

NEAR 

ASLR-Guard 

TASR 



19 

•  Complete memory safety 

•  Data randomization 

•  Authentication of indirect calls and returns  

–  Use HMAC tokens to disallow redirection of indirect code pointers 

–  Similar to cryptographically-enforced CFI (CCFI) 

Possible Countermeasures 



20 

•  Code pointers pose a major challenge to leakage-resilient diversity 

•  AOCR attacks bypass code pointer obfuscation by profiling indirect code pointers 

•  Malicious threat blocking (MTB) allows accurate profiling 

•  Malicious loop redirection (MLR) allows chaining AOCR gadgets 

•  Effective defenses should incorporate aspects of diversification and enforcement 

Conclusion 



21 

Questions? 


