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Abstract—Memory corruption vulnerabilities not only allow
modification of control data and injection of malicious payloads;
they also allow adversaries to reconnoiter a diversified program,
customize a payload, and ultimately bypass code randomization
defenses. In response, researchers have proposed and built various
leakage-resilient defenses against code reuse. Leakage-resilient
defenses use memory protection techniques to prevent adversaries
from directly reading code as well as pointer indirection or
encryption techniques to decouple code pointers from the ran-
domized code layout, avoiding indirect leakage. In this paper, we
show that although current code pointer protections do prevent
leakage per se, they are fundamentally unable to stop code
reuse. Specifically, we demonstrate a new class of attacks we
call address-oblivious code reuse that bypasses state-of-the-art
leakage-resilience techniques by profiling and reusing protected
code pointers, without leaking the code layout. We show that
an attacker can accurately identify protected code pointers of
interest and mount code-reuse attacks at the abstraction level
of pointers without requiring any knowledge of code addresses.
We analyze the prevalence of opportunities for such attacks in
popular code bases and build three real-world exploits against
Nginx and Apache to demonstrate their practicality. We analyze
recently proposed leakage resilient defenses and show that they
are vulnerable to address oblivious code reuse. Our findings
indicate that because of the prevalence of code pointers in realistic
programs and the fundamental need to expose them to “read”
operations (even indirectly), diversity defenses face a fundamental
design challenge in mitigating such attacks.
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I. INTRODUCTION

Memory corruption has been a primary attack vector
against computer systems for decades [2]. Memory corruption
attacks range from conventional stack smashing techniques [44]
to more sophisticated code-reuse attacks (CRAs) such as
return-oriented programming (ROP) [50], which emerged in
response to the widespread adoption of defenses such as W⊕X
(Write⊕eXecute). Part of the appeal of memory corruption to
attackers is the ability to execute arbitrary code on a remote
target system after hijacking the control flow. Despite numerous
advances, comprehensively protecting native code written in
C/C++ from ROP and other CRAs remains an open challenge.

Code-reuse defenses are either based on enforcement [1, 33,
41] or randomization [7, 23, 34, 37]. In this paper, we focus
on state-of-the-art code randomization techniques that provide
resilience against information leakage attacks and have shown
to be both efficient and scalable to large codebases. We call
such techniques leakage-resilient defenses.

Preventing all types of information leakage is extremely
challenging. Direct leakage of memory content (a.k.a., memory
disclosure) [53, 56], indirect leakage of addresses from the
stack or heap [17], and side-channels [5, 9, 42, 48] are different
forms of information leakage that have been used successfully
to bypass recent code randomization defenses [17, 18]. Due to
the prevalence and threat of such information leakage attacks,
recent defenses have been based on a threat model that assumes
the attacker can read and write arbitrary memory if allowed
by the page permissions [7, 11, 15, 16].

Execute-only code memory (a.k.a. execute-no-read, XnR,
or X-only) is used by many leakage-resilient defenses [3, 11,
15, 22] to shield randomized code layouts from direct leakage.
Some defenses [3, 58, 61] relax ideal X-only code permissions
to handle legacy binaries that may embed readable data in code,
but these defenses have been shown to be lacking [54, 61]. The
most powerful leakage-resilient defenses also prevent indirect
leakage by hiding code pointer destinations, e.g., using pointer
encryption [38] or an indirection layer [15].

Goals and Contributions.

In this paper, we will consider a state-of-the-art leakage-
resilient defense that combines the strengths of all concrete,
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leakage-resilient defenses [3, 11, 15, 16, 22, 38] proposed
to date. We will not consider leakage-tolerant defenses
which seek to obsolete leaked information via runtime re-
randomization [7, 23, 37]. We use Readactor–one of the
most comprehensive implementations of a leakage-resilient
code randomization defense–to demonstrate a new class of
CRAs, which we call Address-Oblivious Code Reuse (AOCR),
that can generically bypass leakage-resilient defenses without
knowledge of the code layout. The intuition behind AOCR
is that execute-only permissions apply just to code, not code
pointers (e.g., function pointers and return addresses). Code
pointers/identifiers must be readable for programs to function
correctly. Various execute-only defenses use indirection or
encryption to protect these code pointers, but these alternative
code pointer representations remain exploitable by adversaries.

Specifically, we demonstrate that an attacker can profile this
layer of indirection in code pointers by observing the state of
the protected program remotely, and extract these indirect code
pointers. We then show that by only reusing these indirect code
pointers, an attacker can achieve malicious behavior without
explicitly requiring read access to the diversified code. We call
our attack Address-Oblivious Code Reuse because its strength
lies in the fact that it does not need to leak or otherwise learn the
address of code snippets in order to successfully exploit them.
Rather, by stitching together their indirect code pointers, the
attacker can successfully execute code snippets while remaining
oblivious to their randomized (hidden) addresses. Unlike COOP
attacks [47], our AOCR attack does not rely on the layout of
vtables, the allocations, or the use of registers. In a sense, AOCR
can be thought of as position-independent form of CRA.

To accurately profile indirect code pointers in a running
process remotely, we devise a new attack technique that we
call Malicious Thread Blocking (MTB). To chain indirect
code pointers, we show a new exploitation technique against
imperative programming languages we call Malicious Loop
Redirection (MLR).

Using these techniques, we build two real-world AOCR
exploits against Nginx and one against Apache, that each
hijack the control flow and execute arbitrary code. Unlike
recent attacks on some leakage-resilient techniques that focus
on particular technique-specific or implementation weaknesses
[39], these attacks generically bypass leakage-resilient tech-
niques, and are not limited to Readactor, which we solely
use for demonstration and evaluation purposes. We discuss
the generality of these attacks against other recent defenses
and show that many of them are also vulnerable to AOCR in
Section VII.

In contrast to previous attacks on the implementation of
leakage resilience [39], our AOCR attack can bypass ideal
implementations and comprehensive applications of leakage-
resilience techniques. However, we also show that enforcing
ideal and comprehensive execute-only defenses is surprisingly
difficult. We call these caveats implementation challenges and
discuss two practical attack vectors in Linux systems. The first
vector maliciously redirects Direct Memory Access (DMA)
operations that do not abide by page permissions. Unlike related
work in this domain that focuses on abusing DMA through
malicious hardware devices, we show that an attacker can trick
the system to issue malicious DMA requests on its behalf using
software-only attacks. The second vector uses Linux’s proc

filesystem to directly leak memory content even in the presence
of defenses such as GRSecurity [55]. Both these vectors can
be used to maliciously leak actual non-readable code pages,
after which conventional ROP attacks become straightforward.
In other words, if these vectors are not blocked by the defense,
the attacker can use conventional ROP attacks instead of having
to resort to AOCR.

In summary, our contributions are as follows:

• We present AOCR, a new class of CRAs that generi-
cally bypass state-of-the-art leakage-resilient defenses
by reusing indirect code pointers. Unlike existing
attacks, AOCR does not rely on the layout of vtables
or the allocation and use of registers which renders
COOP-centric defenses ineffective [16, 59].

• We demonstrate that code-reuse attacks can be con-
structed out of protected code pointers without direct
knowledge of the code layout. We do so by building
three AOCR exploits targeting Nginx and Apache.

• We present two techniques to accurately profile the
indirection layer (Malicious Thread Blocking) and
chain (Malicious Loop Redirection) AOCR gadgets
that make our attacks highly practical.

• We discuss two main implementation challenges to
achieve ideal leakage resilience in modern operating
systems that further demonstrate the difficulty of effec-
tively and universally enforcing memory permissions.

II. THREAT MODEL

Our threat model assumes that a remote attacker uses a
memory corruption vulnerability to access arbitrary memory
and achieve remote code execution on the victim machine.
We assume W⊕X is deployed to prevent code injection and
modification. Moreover, we assume that the software executing
on the target system is protected by a state-of-the-art leakage-
resilient randomization-based defense capable of stopping
conventional [50] and just-in-time [53] CRAs. In particular, we
assume that the target system:

1) maps code pages with execute-only permissions to
prevent direct leakage [3, 15, 22];

2) hides, encrypts, or obfuscates code pointers to prevent
indirect leakage [11, 15, 38];

3) randomizes the code layout at any granularity up to
(and including) individual instructions [27, 45];

4) randomizes the entries of function tables [16] ren-
dering COOP [47] and return-into-libc attacks
cumbersome.

We assume that dynamically generated code is protected in the
same way as code compiled ahead of time since the alternative
is insecure as mentioned by Crane, et al. [15]. We do not
consider side-channel attacks arising from memory sharing
and deduplication between processes and virtual machines or
attacks exploiting weaknesses in the underlying hardware. Our
threat model is consistent with related work on leakage-resilient
randomization-based defenses against code reuse.

While strong enforcement-based and randomization-based
defenses in the literature have assumed that the adversary can
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read and write arbitrary memory, we demonstrate that practical
attacks can in fact be mounted by a less powerful adversary.

III. ADDRESS-OBLIVIOUS CODE REUSE (AOCR) ATTACK

Current state-of-the-art randomization-based defenses [3, 4,
11, 15, 16, 22, 38] aim to prevent CRAs by limiting an attacker’s
ability to disclose the code layout, either by leaking the code
itself or by leaking code pointers. As noted in Section II,
the adversary is assumed to have arbitrary read and write
capabilities. Two primary techniques are employed to stop
these adversaries:

• Execute-only permissions prevent read accesses to code
pages (existing W⊕X policies already prevent writes
to code pages). Thus, any attempts by an attacker to
directly disclose the locations and contents of code
pages will lead to a segmentation violation. Execute-
only permissions are either implemented in software
using page fault handlers [3] or with hardware-assisted
paging (e.g., Extended Page Tables) [15, 16, 29].

• Code pointer indirection and encryption seeks to
prevent indirect memory disclosure by decoupling
code pointers from the code layout. Indirect memory
disclosure happens when an attacker learns about code
locations from the code pointers temporarily stored
on stack or heap. Some approaches alter the pointer
representation using fast XOR encryption [11, 14, 38]
to prevent indirect leakage. Others use indirection
mechanisms [4, 15]. For instance, Readactor [15]
replaces all observable code pointers with pointers to
trampolines. A forward trampoline is simply a direct
jump to a function stored in execute-only memory.
Because the location of the forward trampoline and
the function it jumps to are randomized independently,
attackers cannot infer the function layout by observing
the trampoline layout.

In this section, we describe a code-reuse attack that
generically circumvents leakage-resilience techniques described
above, even under the strong assumption that these techniques
are universally and ideally enforced. We show how an attacker
can indeed use indirect code pointers to launch meaningful
exploits, without requiring the knowledge of code addresses.
This is achieved by profiling indirect code pointers to determine
the underlying code to which they point. We demonstrate how
multiple profiled indirect code pointers can be used together
to launch a chained AOCR attack akin to traditional ROP, but
at the granularity of code blocks identified by indirect code
pointers.

A. Profiling and Malicious Thread Blocking

The goal of profiling is to determine the original function
F() that is invoked by an indirect code pointer icptr. Various
X-only defenses use different names for indirect code pointers.
For example, Readactor [15] calls them trampoline pointers,
while ASLR-Guard [38] calls them encrypted code locators.
We use the generic name “indirect code pointers”, but the
discussions apply to these and similar defenses.

An attacker who can identify the mapping of icptr→F can
redirect control flow to F indirectly via icptr. “→” denotes

No Hiding

F:

ptr

RW stack

Observable

RX code
Hiding

t_F: …

F:

icptr

RW stack

Hidden

Observable

Observable

Adversary

XO code

XO trampolines

attacker infers that icptr →  F( )

Fig. 1. Profiling of indirect code pointers by comparing Protected and
Unprotected Execution States

that icprt is the pointer to the indirection layer (trampoline
or encrypted pointer) that corresponds to F.

To infer this mapping, we exploit the fact that programs
execute in a manner that inherently leaks information about
the state of execution. Knowledge about the execution state of
a program at the time of a memory disclosure enables us to
infer the icptr→F mapping from a leaked icptr.

An attacker can use her knowledge about function addresses
in the unprotected version of the program (i.e., attacker’s local
copy) to infer the locations of indirect code pointers in the
protected version. We illustrate this idea in Fig 1. By observing
what function pointers are placed in observable memory (i.e.,
stack or heap) in the unprotected version, an attacker can infer
that the pointers observed in the protected version must be the
corresponding indirect code pointers of the same functions.

At a high-level, to perform the profiling, the attacker collects
a list of function pointers from an unprotected version of
the application offline, then she collects some indirect code
pointers from the protected application in an online manner
by sending the victim a few queries and observing parts
of its data memory (e.g., stack). This allows the attacker
to create a mapping between the discovered indirect code
pointers and their underlying functions. The attacker can
then chain these indirect code pointers to achieve the desired
malicious behavior. Since the code snippets pointed to by these
indirect code pointers behave like traditional ROP gadgets
we call them AOCR gadgets. Note that this attack can be
completed successfully without knowing the actual location
(addresses) of the underlying functions. Although these steps
look straightforward, in practice the attacker faces a number
of technical challenges. Here, we describe the techniques we
devised to overcome these challenges.

Repeatedly disclosing memory with precise timing to read
indirect code pointers is a naı̈ve first approach to create an
accurate mapping of pointers to underlying functions. However,
since the state of the system changes rapidly, this can result in
inaccuracies in the mappings that may eventually cause a crash
at exploitation time. To enhance the precision of the mapping,
we devised a technique that we call Malicious Thread Blocking
(MTB).
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Fig. 2. Normal vs. Malicious Thread Blocking

In the case of programs that utilize threading, we can employ
MTB to enable us to profile a broader range of indirect code
pointers and avoid dependence upon strict timing requirements
for triggering the disclosure vulnerability.

The approach of MTB is to use one thread, TA, to cause
another thread, TB , to hang at an opportunistic moment by
manipulating variables that cause TB’s execution to block, e.g.,
by maliciously locking a mutex. By opportunistically blocking
a thread, we can more easily locate and map desired indirect
code pointers without worrying about rapid changes in memory.
A memory disclosure vulnerability may be triggered in TA that
enables memory inspection at a known point in execution in
TB . Note that this technique avoids any timing unpredictability
that the attacker may face when trying to trigger a disclosure
in thread TA at the appropriate time in execution for thread
TB . The idea of this approach is illustrated in Figure 2.

As one example of this technique in practice, we show in
Section IV how an attacker can lock a mutex in Nginx to cause
a thread to block upon returning from a system call. Triggering
a memory disclosure vulnerability in another thread at any point
after the system call enables the attacker to inspect a memory
state that she knows contains indirect code pointers relevant
to the system call. To more easily distinguish one system call
from another, the attacker can supply a unique input and scan
disclosed memory for that input. For instance, if the attacker
wishes to profile the open() call, she may supply a unique
file name as normal input to the program. Upon inspecting the
stack of a blocked thread, the attacker would expect to find this
unique value as an argument to the open() call. An attacker
can continually block and unblock a thread by manipulating
the mutex until this value is discovered in disclosed memory,
which indicates that the attacker has located the relevant frame
for open(). We illustrate this technique in more depth in our
real-world exploits.

B. Passing Proper Arguments

After the attacker has mapped relevant indirect code pointers
to their underlying functions, it is straightforward to redirect
control flow to one of the functions. For the purpose of control-
flow hijacking, knowing an indirect code pointer address is just
as good as knowing the address of a function.

Consider the following code fragment:

call(int arg1, int arg2) {
fptr(arg1, arg2); }

call_with_defaults() {
fptr(default_arg1, default_arg2);}

If the attacker modifies the region of memory
containing fptr, the next invocation of call or
call_with_defaults will be redirected to an indirect
code pointer chosen by the attacker. Unlike ROP and similar
attacks, this redirection is consistent with the high-level
semantics of C, and is thus unaffected by any underlying
randomization (at the instruction-level, basic block-level,
function-level, or library-level). In a valid C program fptr
can potentially point to any function in the program.

Hijacking control flow in this manner does have limitations.
If the attacker ends up hijacking a call like the one in call, the
attacker will have very limited ability to control the arguments.
The x86 64 ABI mandates a calling convention in which the
first few arguments must be passed via registers. It is much
more difficult to control a register value than it is to control a
memory value. Some diversity techniques further complicate
this by randomizing how registers are allocated to variables and
how registers are saved to and restored from the stack [15, 45].

An attacker can overcome these defenses by concentrating
on hijacking calls like the call in call_with_defaults.
call_with_defaults invokes fptr on global variables.
As global variables are stored in memory, they are trivial
to modify. If an attacker is able to locate a function like
call_with_defaults, she will be able to redirect control
to a function of her choosing, with up to two arguments of her
choosing. We found many such cases in our experiments with
Nginx and Apache, as discussed in Section IV.

C. Chaining via Malicious Loop Redirection

An attacker wishing to chain multiple AOCR gadgets
together faces another challenge: after calling an indirect code
pointer, the execution returns to the original call site. This
makes it difficult for the attacker to take the execution control
back after a single function call. For example, in Readactor,
trampolines consist of a call immediately followed by a jump
to the original call site; any redirected call will end with a
return to normal program execution. Theoretically, there is a
window, potentially very narrow, between the invocation of a
redirected call and the return of the redirected call in which
an attacker may modify the return address to maintain control.
This approach requires a very precise level of timing which
may be difficult to achieve in practice.

Another option can be to use COOP-style attacks [47] to
chain AOCR gadgets together using virtual functions. How-
ever, COOP attacks have various limitations that make them
undesirable in an address oblivious attack. First, COOP relies
on the dynamic dispatch implementation based on vtables; as
such, it requires the leakage of vtable addresses. Second, COOP
is hindered by vtable-randomization or register-randomization
defenses [16, 59]. Third, COOP only applies to object-oriented
languages, and is thus unavailable in applications developed in
C (e.g., Nginx).
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while (task) {
task->fptr(task->arg);
task = task->next;

}

Fig. 3. A loop with a corruptible call site appropriate for MLR
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Fig. 4. Malicious Loop Redirection (MLR)

To overcome this, we introduce a new technique we call
Malicious Loop Redirection (MLR), which only depends on
language-level semantics widely found in C applications (loops
over function pointers). In an MLR attack, an attacker chains a
set of indirect code pointers (i.e., AOCR gadgets) using loops
that contain indirect call sites in their body.

An appropriate redirectable loop gadget in MLR is a loop
that:

1) has a loop condition that can be subverted by an
attacker (e.g., the loop condition is in RW memory),
and

2) it must call functions through code pointers

A simple example is presented in Fig 3. If task points
to attacker-controllable memory, the attacker can cause the
program to perform calls to multiple functions of her choosing
by creating several fake task structures and setting up their
task->next pointers to point to the next AOCR gadget.
When the loop runs, AOCR gadgets are executed one by one
without loss of control on attacker’s side. We depict this attack
graphically in Fig 4.

While some defenses implement register randomization to
prevent chaining computations together, it does not prove to be
an effective deterrent in this situation. The high-level semantics
of the call dictate that the first argument will be taken from
task->arg and moved to rdi, so our method of chaining
AOCR gadgets using MLR succeeds against any randomization
technique that preserves the x86 64 ABI.

IV. REAL-WORLD EXPLOITS

In this section we present three real-world exploits combin-
ing various techniques described earlier. The first two exploits

target Nginx and the third targets the Apache HTTP Server.
The attacks are tested on Readactor as a proof-of-concept, but
they are generally applicable to other leakage-resilient defenses
as we discuss in Section VII. Nginx Attack 1 uses profiling to
locate and call indirect code pointers (trampolines) for open
and _IO_new_file_overflow and uses these to hijack
control. Nginx Attack 2 and the Apache Attack use profiling
to locate call trampolines for functions that eventually reach
exec. Our exploits only assume the existence of memory
corruption vulnerabilities akin to CVE 2013-2028 (Nginx) and
CVE-2014-0226 (Apache).

A. Nginx Attack 1

We ran our experiments on stock Nginx 1.9.4 configured
with support for asynchronous I/O. While this configuration is
not default, it is very commonly used. The default configuration
is generally not used in practice, and Nginx strives to be as
portable as possible in its default configuration. By default,
Nginx does not support HTTP SSL (https), ipv6, asynchronous
I/O, or threading and runs a single worker process. Nginx
specifically recommends the use of thread pools for performance
benefits [6].

The aim of our attack is to cause Nginx to perform a
malicious write to a file from a buffer located in execute-only
memory. This requires locating addresses of functions that open
and write files. We must also locate an indirect call site with
enough corruptible arguments to call our target functions.

We began by inspecting the Nginx source code for suit-
able, corruptible call sites. We were able to find an indirect
call site that retrieved both of its arguments from memory
in Nginx’s main loop for worker threads. On line 335 of
core/ngx_thread_pool.c, the following call is made:

task->handler(task->ctx, tp->log);

This call site is ideal for our purposes: both the function
pointer itself and the arguments are obtained by referencing
fields of structs retrieved from memory, which are thus
corruptible.

While this call site is suitable for calling open, which only
requires two arguments, it does not allow us to call write,
which requires three. As it seemed unlikely that a better callsite
could be found, we began searching for ways to perform a write
via a function that only takes two arguments. We eventually
found _IO_new_file_overflow, an internal function in
the GNU C Library (glibc) used when a write to a file is about
to overflow its internal buffer. The signature for this function
is included below:

_IO_new_file_overflow(_IO_FILE *f,int
ch)

f is a pointer to an _IO_FILE, glibc’s internal version
of the C standard library type FILE. ch is the character that
was being written when the overflow occurred. If a pointer to
an attacker controlled _IO_FILE were to be passed to this
function, they would be able to reliably perform a write from an
arbitrary buffer of arbitrary size to an arbitrary file descriptor.

To locate the indirect code pointers of these functions during
an attack, we perform profiling as described in Section III.
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_IO_new_file_overflow can be located using only anal-
ysis of in-memory values. Locating open, however, requires
the use of the MTB technique. At a high level this attack
proceeds in four phases:

1) Locate a mutex for MTB.
2) Profile an indirect code pointer for open (our first

AOCR gadget).
3) Profile an indirect code pointer for

_IO_new_file_overflow (our second AOCR
gadget).

4) Corrupt Nginx’s task queue so that a worker thread
makes calls to our profiled trampolines using the MLR
technique.

1) Locating a mutex: During execution, Nginx makes
several open system calls. During these calls, the address of the
trampoline (i.e., indirect code pointer) for open is vulnerable
to being read by an attacker. However, in practice, determining
the exact address of this trampoline is difficult. Furthermore,
the attacker would have to perform a read within the very
narrow window of opportunity in which the address is on the
stack. We overcome this difficulty by employing MTB. glibc’s
threading implementation supports a feature known as thread
cancellation. There are two forms of cancellation: asynchronous,
which means a thread’s execution can be cancelled at any point
in its execution, and deferred, which means any cancellation
requests are deferred until a special predetermined point known
as a cancellation point.

Every thread in a program contains a Thread Control Block
(TCB). This structure contains thread-specific information and
is used by glibc for maintaining metadata such as thread local
storage, the current extent of the thread’s stack, and thread can-
cellation. Inside the TCB is a field named cancelhandling.
This field contains flags representing various aspects of a
thread’s cancellation state. We are concerned with the following
flags:

• TCB CANCELTYPE: indicates that the thread can be
cancelled asynchronously via a signal.

• TCB CANCELING: indicates that the thread’s cancel-
lation state is being mutated.

• TCB CANCELED: indicates that the thread was
successfully canceled.

Before entering a cancellation point, glibc executes
__pthread_enable_asynccancel, a function that en-
ables asynchronous cancellation by setting TCB_CANCELTYPE
to true. After exiting a cancellation point, glibc executes
__pthread_disable_asynccancel, a function that dis-
ables asynchronous cancellation by setting TCB_CANCELTYPE
to false. A thread’s cancellation can be requested by calling
pthread_cancel, which will set TCB_CANCELED to true
if asynchronous cancellation is disabled. If asynchronous
cancellation is enabled the requesting thread will send a signal
to the target thread and a signal handler will mark the thread for
cancellation. This use of signals creates the possibility of a data
race: if a thread is in the process of requesting a cancellation
and the target thread disables asynchronous cancellation before
the requesting thread sends its signal, the target thread will be
forced to execute its cancellation handler while in an unexpected

state. To prevent this, before sending a signal, the requesting
thread uses a Compare and Exchange instruction that can ensure
TCB_CANCELING is false, TCB_CANCELTYPE is true and
set TCB_CANCELING to true atomically. pthread_cancel
performs this instruction in a loop until it succeeds.

Analogously, upon exiting a cancellation point, a thread
uses a Compare and Exchange instruction to both ensure
TCB_CANCELING is false and to set TCB_CANCELTYPE to
false. This instruction is also executed in a loop until it succeeds.
Therefore TCB_CANCELING is a Mutual Exclusion Device
(mutex) that prevents concurrently disabling asynchronous
cancellation and sending an asynchronous cancellation signal.
By setting TCB_CANCELING to true, an attacker can force
a thread to loop in __pthread_disable_asynccancel,
forever waiting for a signal that will never come.

Many cancellation points map directly to
system calls and these system calls are surrounded
by __pthread_enable_asynccancel and
__pthread_disable_asynccancel. A simplified
example of glibc’s implementation of open is presented below:

__pthread_enable_asynccancel();
open syscall;
__pthread_disable_asynccancel();

Since glibc’s open function uses a cancellable system
call we can profile a trampoline for open by setting
TCB_CANCELING to true and reading it off the stack when it
hangs in the __pthread_disable_asynccancel after
open.

Having identified a suitable mutex for MTB, we then
determine a way to locate it at runtime. As cancelhandling
is a field of a thread’s TCB, given the base address of a TCB,
it is trivial to locate cancelhandling. In glibc every TCB
contains a header with the type tcbhead_t. The first field of
this structure is defined as void *tcb; which is, actually, just
a pointer to itself. The fact that the TCB begins with a pointer
to itself makes it easily distinguishable in memory. Given an
8-byte value aligned at a known 8-byte aligned address, if the
address is equal to its contents the address might represent the
beginning of a TCB. In practice, for Nginx, the TCB is the only
value on the stack that satisfies this property. Thus, starting
from a known stack address, we can locate a thread’s TCB
by scanning backward for self-referential pointers. Once we
locate a thread’s TCB we can leverage cancelhandling to
execute MTB against the thread. Additionally, since all TCBs
are connected via linked list pointers, locating a single TCB
allows us to locate the TCBs of all other threads.

2) Profiling open: Using the mutex found in the previous
section, we can cause a thread of our choosing to hang at a
non-determinate system call. By modifying TCB_CANCELING
to false then true in quick succession, we can permit that
thread’s execution to continue and then stop again at a non-
determinate system call. As Nginx makes many system calls
that involve cancellation points, locating open requires the
ability to distinguish when a thread is blocked at open versus
when it is blocked at some other cancellable system call. We
distinguish these situations by exploiting knowledge of how
Nginx responds to requests for static files.
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When Nginx receives an HTTP GET request for static
content, it transforms the requested path into a path on the
local filesystem. It calls open on this path and, if successful,
responds with the file’s contents. If open fails, it responds
with HTTP 404 Not Found. During this process, a pointer
to a string containing the path will be present on the stack. To
determine whether or not Nginx is blocked at an open call
we craft an HTTP request with a unique string and examine
all strings pointed to from Nginx’s stack.

void next_syscall(struct pthread *tcb)
{

/* Rapidly mutate the cancelhandling field
* to allow thread to proceed to next system
* call
*/
tcb->cancelhandling |= 4;
tcb->cancelhandling &= ˜4;

}

void *profile_open()
{

const char *fprint = "4a7ed3b71413902422846"
struct pthread *main_tcb = find_main_tcb();
while (next_syscall()) {

if (string_in_stack(rsp, fprint)) {
return *rsp

}
}

}

Fig. 5. Pseudocode for profiling open

If our string is sufficiently distinct (an example request is
provided below), we can easily determine whether or not the
current system call was made while processing our request.
In practice, if Nginx does not find a requested file, the string
holding the path is discarded and no pointers will appear to
it on the stack in subsequent system calls. Thus, if we know
that both (1) Nginx is blocked at a system call and (2) Nginx’s
stack contains a pointer to our constructed string, we can be
sure Nginx is blocked at open. On average, we have been
able to locate open by inspecting under 50 blocked system
calls. The pseudocode for profiling open is shown in Fig 5.

GET /4a7ed3b71413902422846 HTTP/1.1

3) Profiling _IO_new_file_overflow: We profile
_IO_new_file_overflow by taking advantage of glibc’s
implementation of the stdio FILE type. Every FILE
contains a file descriptor, pointers to the file’s buffers,
and a table of function pointers to various file operations.
_IO_new_file_overflow is included among these func-
tion pointers. By locating a valid FILE, we can easily locate
_IO_new_file_overflow as the ordering of functions
within the table is fixed. Finding a valid FILE pointer in Nginx
proved to be a challenge as Nginx uses file descriptors instead
of FILE pointers. In this situation, scanning the stack will not
yield a pointer to a valid FILE object. To overcome this, we
locate glibc’s FILE for the standard output stream stdout.
stdout is a global variable and is always automatically
initialized on startup. Since stdout is a global variable defined
by glibc, it is located in glibc’s data segment. Due to ASLR,
the location of glibc’s data segment cannot be known a priori;
nor can it be directly inferred from the address of the stack.
Additionally, Nginx does not keep many pointers to glibc

structures in local variables, meaning few pointers to glibc’s
data segment are on the stack. The attack is further complicated
by the fact that we cannot dereference random stack values
due to the risk of causing a segmentation fault.

Instead, we find a pointer into the heap, which occur
more frequently in the stack. While pointers into the heap
are common, they are not easily distinguishable from non-
pointer values. To distinguish heap pointers we perform a
simple statistical analysis on the values of the stack, the details
of which we will present in a technical report for the sake of
brevity. Here we briefly describe this analysis.

We collect 8-byte values from a 2-page range starting at the
bottom of the stack. We bin these values based on their top 48
bits; i.e., all values in the range (0, 0x0FFFFF) are placed in
the first bin, all values in the range (0x100000, 0x1FFFFF) are
placed in the second bin, and so on. We then sort the bins by
their size. In our experiments, when Nginx’s stack is partitioned
in this fashion, the largest bin corresponds to non-pointers, the
second largest bin corresponds to stack pointers, and the third
large bin corresponds to heap pointers. This is due to the size of
the address space available to a 64-bit program; any individual
region of allocated memory will be several orders of magnitude
smaller than the distance between the regions causing clustering
of values. We found that, for Nginx, 2 pages of values collected
at a single point in time is enough to reliably distinguish heap
pointers. If, for some reason, we needed a higher degree of
precision, this technique could be extended to either collect
values at multiple points in time, or to collect values from more
pages of the stack.

Now that we have pointers into the heap, it becomes possible
for us to analyze the heap. We leverage this to find a pointer
to main_arena, a glibc global variable. main_arena is a
structure used by glibc to maintain information on allocated
chunks of memory. To accelerate allocation operations, glibc
partitions chunks into pre-sized bins and stores them in
main_arena. Every heap chunk allocated via malloc,
calloc, or realloc is prefixed with metadata containing a
pointer back to the main_arena bin it came from. We take
advantage of this to locate a pointer into main_arena.

Starting from the smallest pointer in our bin of heap pointers,
we collect 8-byte values from a 20 page range of the heap. We
then filter out values unlikely to be pointers.

Our criteria for discarding non-pointers is described below.

1) Discard all values that are not multiples of 8
2) Discard all values greater than 0x7FFFFFFFFFFF
3) Discard all values less than 0x1000

Finally, we partition the remaining values into bins of size
0x100000. The most common pointer of the largest bin will
be a pointer into main_arena. This is due to most chunks
of the heap being allocated out of the same bin.

Now that we have a pointer into glibc’s data section we
can search for stdout. We identify stdout by scanning
backwards from main_arena, and looking for a region
that is both a valid FILE and has the value 1 for its
underlying file descriptor. At this point, the location of
_IO_new_file_overflow can be trivially read off of
stdout.
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4) Corrupting the Nginx Task Queue: The main loop for Ng-
inx worker threads is located in ngx_thread_pool_cycle.
All new worker threads spin in this loop, checking if new tasks
have been added to their work queue. A simplified version of
this loop is presented below:

for (;;) {
task = queue_get(tp->task_queue);
task->handler(task->ctx, tp->log);

}

To carry out the attack, we leverage our MLR technique.
We craft a fake task structure in the region of the stack that
originally contained Nginx’s environment variables. At startup
Nginx copies these to a new location and the original location
goes unused.

We initialize our fake task such that task->handler
points to open and task->ctx points to
html/index.html. We also modify tp->log to
be equal to (O_DIRECT | O_SYNC | O_WRONLY |
O_TRUNC). While this invalidates the tp->log pointer, in
practice, threads do not log unless Nginx is compiled in debug
mode. When the worker thread executes this task, it will
open the file in O_DIRECT mode, allowing us to perform an
FDMA attack.

Once we have our fake task structure, we can append it to
the task queue and wait for Nginx to execute the task. In most
cases, this happens instantaneously, so after a few seconds we
can be confident our call has occurred. We repeat this process
100 times so that there will be at least 100 file descriptors in
O_DIRECT mode opened by the Nginx process.

For the call to _IO_new_file_overflow, we begin by
creating a fake FILE that matches stdout except for the
following fields:

1) file->file__fileno = 75
2) file->file_IO_write_base =

file->vtable->__overflow & 0xFFF
3) file->file_IO_write_ptr =

file->file_IO_write_base + 0x1000
4) file->file_IO_read_end =

file->file_IO_write_base

Next, we modify our fake task such that task->handler points
to _IO_new_file_overflow and task->ctx points to our fake
FILE. We also modify tp->log to be -1 EOF. This will cause
_IO_new_file_overflow to think the write buffer overflowed
just as the end of the file was reached, so it will immediately flush
the buffer via a write. Once we have crafted our fake arguments
we append the fake task to the task queue and wait for the task
to be executed. Conceptually _IO_new_file_overflow will be
executing the equivalent of the following code:

write(75,\_IO\_FILE\_Overflow & ˜0xFFF, 0x1000);

Which results in a dump from execute only memory into the
file html/index.html. We can then retrieve this page of
code by sending GET /index.html HTTP/1.1. We now
have the contents of a page of code at a known location and that
can be reused in arbitrary ways. If necessary, we can perform
this as many times as we want to leak more pages of memory.
Note that this is an optional and additional step to the initial
exploit detailed above. The initial exploit is completely address

oblivious, but further steps built on top of it can take advantage
of conventional ROP or even code injection techniques (after
disabling W⊕X) for ease of implementation.

B. Nginx Attack 2

We now illustrate the generality of our techniques by
performing a second attack against Nginx that both (1) targets
different functions and (2) corrupts a different call site.

This attack relies on invoking Nginx’s master process loop
from an attacker-controlled worker in order to trigger a specific
signal handler and cause arbitrary process execution. There are
three phases to this attack:

1) Use profiling to get the address of the master process
loop.

2) Use MTB to corrupt a function pointer to point at the
master process loop.

3) Set global variables via MTB to cause the master
process loop to call exec under attacker-chosen
parameters.

For the sake of brevity, we describe the details of this attack
in Appendix A.

C. Apache Attack

Finally, we describe an attack using similar techniques
against the Apache HTTP Server. While previous attacks have
focused on Nginx, MTB and profiling are general and can be
applied to other targets. Arbitrary process execution can be
achieved on the Apache web server using a similar approach:

1) Use profiling to find the indirect code pointer of the
exec-like function ap_get_exec_line.

2) Use MTB to corrupt a function pointer to point at
ap_get_exec_line and cause an exec call under
attacker control.

For the sake of brevity, we describe the details of this attack
in Appendix B.

All exploits succeeded in control hijacking while Apache
and Nginx were protected by full-featured Readactor. Note
that Turing completeness is trivially provided if the inputs to
exec() or system() can be compromised. An example of
this is in Nginx Attack 2, where we leverage an exec() call
made by Nginx to execute a reverse shell written in python.

V. GENERALITY OF AOCR ATTACKS

The sophisticated exploitation techniques discussed in this
paper may provide the impression that opportunities for such ex-
ploits are rare. We argue that, in fact, the exploitable constructs
are very common in real-world code bases. Code pointers
are extremely common in any production-level application or
server, so the opportunities for leaking indirect code pointers
are almost certainly present too. It is also a common idiom in
C to pass around structs filled with function pointers as a way
to perform dynamic dispatch, which also provides additional
code pointers.

We also argue that the MTB technique used to facilitate
the exploits is both optional and surprisingly easy to find.
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A. Necessity of MTB

In our exploits, we leveraged MTB to simplify the identifi-
cation of the open() callstack. MTB allowed us to assume
that at the time of our probe Nginx or Apache was blocked
immediately before a system call, reducing the set of possible
callstacks to less than 10 and providing unlimited time to read
the stack. This allowed us to profile a pointer to the open()
system call in seconds.

While MTB makes profiling substantially easier, it is not
required to successfully perform such an attack. The attack
can succeed even if the targeted thread was still running.
However, instead of having to identify the open() callstack
out of approximately 10 possibilities, the attacker would have
to identify it out of potentially hundreds of possibilities. To
quantify the difficulty of such an attack we captured a sample
of stack traces, and analyzed whether an attacker is still able
to identify a targeted function call.

Therefore, we ran Nginx under Linux perf tools in
sampling mode, and captured 2,500 samples of the callstack
(approximately 200 unique) over a period of 10 seconds. Of
those 2,500 sampled callstacks, about 12 samples (∼0.5%) were
the targeted open() callstack from our attack. Without MTB,
the application might modify the stack during a probe. An
attacker can tolerate this by repeating the probes to confirm the
results. Given this small adjustment, we found that our profiling
attack (see Section III-A) is still effective in identifying the
open() callstacks without generating false-positives.

B. Applicability of MTB

While MTB utilizes mutexes to exert control over a target, it
is important to note that this does not mean a program needs to
rely on mutexes to be vulnerable to MTB. In fact, in our exploits,
we do not target a mutex used by Nginx. Instead we target a
mutex used by glibc. Due to the use of mutexes by glibc to
implement POSIX compliance, any application that both (1) is
multithreaded and (2) performs I/O is potentially vulnerable. As
threads are used to perform I/O without blocking an applications
execution, this makes MTB applicable to a very large variety
of server applications. In fact, on Linux, performing I/O on
threads is essentially the only way to achieve non-blocking file
I/O (Nginx claims performance improvements of up to 9x by
simply enabling threaded I/O).

Furthermore, it is not necessary for an application to
be explicitly multi-threaded. There are many situations in
which application frameworks make use of threads internally,
unbeknownst to the application. Examples of this include (1)
libuv: the framework for asynchronous I/O. Used in projects
such as node.js and the Julia language, libuv implements
all file operations via a thread pool; (2) OpenJDK: the
open source implementation of the Java Platform, Standard
Edition. OpenJDK implements asynchronous I/O via a thread
pool; (3) glibc: the POSIX asynchronous I/O functions (e.g.
aio_read()) are implemented with glibc-internal threads and
mutexes. Thus, even seemingly single-threaded applications
may be vulnerable simply due to underlying frameworks
creating threads.

VI. X-ONLY IMPLEMENTATION CHALLENGES

Up until this point, we assumed an ideal and comprehensive
implementation of execute-only memory that our AOCR
attack can bypass. However, actually achieving such an ideal
and comprehensive implementation is surprisingly difficult in
practice. Leaky code pointer protection is not the only challenge
facing code randomization defenses. Modern operating systems
such as UNIX-based systems provide a myriad of facilities
that can potentially leak protected memory to an attacker. In
this section, we briefly discuss two such vectors that are hard
to mitigate and are in fact unprotected in the execute-only
defenses that we studied. The first, Direct Memory Access
(DMA), offers attackers the potential to bypass execute-only
protection by abusing memory access and leaking code directly.
Unlike related work that focuses on abusing DMA via malicious
hardware devices, we discuss an attack that is a form of the
confused deputy attack through which an application can fool
the system to make malicious DMA requests on its behalf
using software-only attacks. The second vector is the proc
filesystem in Linux that can potentially leak information about
execute-only memory. Preventing this vector is hard because
disabling it would break many benign applications.

If these vectors are available, an attacker can use them
to leak code pages directly, and does not have to resort to
AOCR techniques. We discuss them here to further illustrate
the challenges of effectively preventing CRA attacks in complex,
modern systems.

A. Forged Direct Memory Access Attack

Execute-only defenses protect code pages from direct read
accesses by applying additional permissions to memory pages in
software [3] or hardware [15, 22]. This enforcement, however,
applies only to regular memory accesses (i.e., TLB-mediated).
Accesses performed by devices capable of Direct Memory
Access (DMA), e.g., GPUs, disk drives, and network cards, do
not undergo translation by the MMU and are unaffected by
page permission. We call these accesses “non-TLB-mediated.”

The idea of exploiting systems via DMA is well studied, es-
pecially in the context of DMA-capable interfaces with external
connectors, e.g., IEEE 1394 “Firewire” and Thunderbolt.

As described in the threat model (Section II), we are mainly
concerned about a remote attacker. For that, the attacker must
be able to perform software-based DMA from a userspace appli-
cation. Typically, user space applications cannot directly make
requests to DMA-capable devices. However, some user space
functionality is implemented via the kernel requesting a device
to perform DMA against a userspace-controlled address. Ex-
amples of this include OpenCL’s CL_MEM_USE_HOST_PTR
flag and Linux’s O_DIRECT flag.

An attacker can use Linux’s O_DIRECT flag to maliciously
request software-based DMA to bypass execute-only memory
permissions, thus alleviating the need for compromised pe-
ripheral devices or hardware attacks. We call such an attack
a Forged DMA (FDMA) attack which is a form of confused
deputy attack, and briefly demonstrate its feasibility. The novelty
of FDMA is its broad applicability remotely and from user
space applications. Unlike well-studied DMA attacks such the
one used in bypassing Xen [62], FDMA does not require a
malicious device or kernel permissions.
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Applications that use the O_DIRECT flag natively are
vulnerable to our FDMA attack. More surprisingly though,
even applications that never use the O_DIRECT flag, but pass
the flags to file read or write operations through a flags variable
residing in data memory are also vulnerable to this attack. An
attacker can perform a simple data-only attack to maliciously
change the flag variable to O_DIRECT in order to force a
regular file operation to become a DMA access.

We investigated the prevalence of direct I/O and flags vari-
ables is in popular real-world software packages. Our analysis
focused on Internet-facing web servers (AOLserver, Apache,
Boa, lighttpd, Nginx, OpenSSH, Squid, and Firebird) due to
their exposure and database managers (Hypertable, MariaDB,
Memcached, MongoDB, MySQL, PostgreSQL, Redis, and
SQLite) due to their focus on fast I/O. The results indicate that
the majority of web servers and database managers (13 out of
16) do not natively use the O_DIRECT flag; however, 10 out
of 16 of them (AOLserver, Nginx, OpenSSH, Squid, Firebird,
Hypertable, MongoDB, MySQL, PostgreSQL, and SQLite) use
variables to store flags that can be corrupted by an attacker
to set the O_DIRECT flag. As such, an attacker can use an
FDMA attack in these applications to read execute-only code
pages to build a conventional ROP attack even in the presence
of execute-only defenses. The FDMA attack would obviate
the exploit, and does not require an AOCR attack to bypass
execute-only memory permissions.

B. Procfs Attack

The proc filesystem is another implementation challenge
that can obviate execute-only bypasses.

The proc filesystem is a file-like structure that contains
information about each process. It is implemented for a variety
of UNIX-like operating systems [20, 32]. In this paper, we
focus on the Linux implementation of procfs [10].

The Linux kernel creates a directory for each process that
can be accessed via /proc/<process id>/. Processes can
access their own directory via /proc/self/. The files within
the procfs directory are, for the most part, treated in the
same way as any other file in a filesystem. They have ownership
settings and assigned permissions, and are accessed via the
same mechanisms as any other file. Through them, a wealth
of information about the process is made available: details
about program invocation, processing status, memory access,
file descriptors, networking, and other internal details.

Several of the procfs files (e.g., auxv, maps,
numa_maps, pagemaps, smaps, stat, syscall,
exe, stack, and task) include memory addresses that
reveal information about the randomized code layout. The
mem file even allows direct disclosure of the process memory
regardless of memory permissions.

To carry out a procfs attack, the attacker needs to (1)
discover the location of a suitable piece of executable memory,
and (2) leak executable memory directly by corrupting the
filename argument to a file read operation. The maps and
smaps files provide, among other things, the starting and
ending addresses of each mapped memory region, along with
that region’s memory permissions and the file (if any) with
which the region is associated. After that, reading the mem file

directly leaks the executable regions. Note that even when the
vulnerability does not allow arbitrary file reads, the procfs
attack can be mounted by performing a data-only corruption
on any file read operation.

The procfs attack also allows a leakage of the actual
code pointers followed by a traditional ROP attack, without
requiring the sophistication of an AOCR attack.

Because procfs is baked into the Linux ecosystem as the
needed native interface for many system utilities and programs,
removing or otherwise blocking access to it would disrupt a
major kernel API and break a Linux distribution. Fundamental
Linux command-line tools depend on access to procfs, most
notably free, kill, pkill, pgrap, pmap, ps, pwdx,
skill, slabtop, snice, sysctl, tload, top, uptime,
vmstat, w, and watch. Similarly, additional programs in
GNU coreutils and binutils, and the util-linux package make
use of procfs. Debuggers like gdb and system monitoring
tools like nmon are among the many other programs reliant
upon the continued functionality of procfs.

The exposed nature of procfs has long been recognized
and attacks proposed to exploit it especially with regard to
differential privacy [30, 64]. Although it cannot be removed
entirely due to the above-mentioned concerns, some defenses
have attempted to restrict access to procfs. For example,
GRSecurity’s kernel patchset [55] has several configuration
options to restrict access to procfs entries by user or group,
with the intent that different critical processes can run as
different users and be unable to compromise other processes.
One recent defense [63] proposes falsifying information in
procfs to mitigate other types of attacks.

However, these defenses focus on blocking other processes’
access to the procfs of a given process; they do not prevent
access by a process to its own procfs entry set, and any
finer-grained procfs restriction by username would result
in breaking benign applications. As such, effectively securing
procfs without breaking benign applications remains an open
research problem.

VII. IMPACT ON LEAKAGE-RESILIENT DEFENSES

Defenses that do not provide leakage resilience are trivially
vulnerable to AOCR and weaker forms of information leakage.
Therefore, we focus on those that offer (some) resilience.

Direct leakage refers to attacks that read code pages, while
indirect leakage refers to attacks that leak code addresses
from the stack or heap during execution. Since AOCR attacks
leak hidden or indirection (e.g., trampoline) pointers indirectly
from the stack or heap, they are a form of indirect leakage
attacks. Also, since non-TLB-mediated leakages directly read
code pages (using mechanisms not protected by memory
permissions), they are a form of direct information leakage.
Accordingly, there are four sub-classes of information leakage:
direct leakage via TLB-mediated code reads, direct leakage
via non-TLB-mediated code reads, indirect leakage of code
pointers, and indirect leakage of indirect code pointers.

Our attacks are applicable to randomization defenses
regardless of the granularity or type of randomization. For
example, various randomization defenses propose library-level,
function-level, or instruction-level randomization approaches.
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TABLE I. DEFENSES PROTECTING AGAINST DIFFERENT CLASSES OF INFORMATION LEAKAGE ATTACKS

Direct Leaks Indirect Leaks

Defenses TLB-Mediated
(e.g., buffer over-read [56])

Non-TLB-Mediated
(e.g., DMA§ VI)

Code Pointer Leaks
(e.g., Ret addr. leak [17])

Indirect Code Pointer Leaks
(e.g., AOCR § III)

PointGuard [14]

Oxymoron [4]

Isomeron [17]

XnR [3]

HideM [22]

Readactor [15, 16]

Heisenbyte [58]

NEAR [61]

ASLR-Guard [38]

TASR [7]

In AOCR, we abuse and chain indirect code pointers to achieve
control-flow hijacking. Regardless of how the underlying code
has been randomized, as long as the semantics remain intact,
our profiling attack remain applicable. In attacks that use
implementation challenges (FDMA), the exact contents of code
pages are read (via non-TLB-mediated accesses), so regardless
of the how intrusive the randomization is, we can disclose the
randomized code and perform a conventional ROP attack.

Table I summarizes leakage-resilient randomization defenses
and their vulnerabilities to various types of attacks. We briefly
discuss each defense and how our attacks apply in the following.

PointGuard [14] protects all pointers stored in memory by
masking them with an XOR key. It therefore prevents leakage
of code addresses via pointers. However, indirect leakage of
encrypted pointers and direct leakage attacks remain possible.

Oxymoron [4] attempts to prevent JIT-ROP attacks by
adding a layer of indirection to instructions such as branches
that reference other code pages. While Oxymoron thwarts the
recursive disassembly step of the original JIT-ROP attack, it
does not protect all pointers to code. Davi et al. [17] show an
attack against Oxymoron, exploiting indirect address leakage.
They then propose Isomeron that combines execution-path
randomization with code randomization to build indirect leakage
resistance. Neither of these techniques prevent direct code reads.

XnR [3] and HideM [22] perform permission checks on
memory accesses to implement execute-only, thus preventing
TLB-mediated code reads. They, however, do not check non-
TLB-mediated code reads. They are also vulnerable to indirect
leakage attacks, since code pointers are not hidden or protected
in any way during execution. Leakage of return addresses or
function pointers from the stack or heap remains possible during
execution.

Readactor [15] utilizes Extended Page Table permissions to
enforce execute-only permission and adds a layer of indirection
(trampolines) to prevent indirect leaks. Therefore, it prevents
TLB-mediated direct code reads and indirect leaks of code
pointers (e.g., return addresses and function pointers). Its
permissions, however, do not apply to non-TLB-mediated
accesses as demonstrated in Section VI. Moreover, leakage
of trampoline pointers (i.e., indirect code pointers) are possible
as demonstrated by our AOCR attack against Apache and

Nginx.

Heisenbyte [58] and NEAR [61] prevents executable region
leakages by making any code-area read destructive. Therefore,
these techniques can only mitigate TLB-mediated direct leakage.
Non-TLB-mediated memory accesses do not cause a byte
destruction; thus, they are not mitigated. Indirect leakages
also remain possible because code pointers are not protected
in any way.

ASLR-Guard [38] provides leakage resistant ASLR by
decoupling code and data, storing code locators in a secure
region of memory, and encrypting code locators that are stored
in observable memory. As a result, code locators themselves
cannot leak because they are encrypted whenever placed in
regular memory. However, the encrypted forward pointers can
be profiled and reused by an attacker. This is hinted at in the
paper itself: “... attackers may reused [sic] the leaked encrypted
code locators to divert control flow.” Direct code reads, whether
they are through TLB (e.g., buffer over-reads) or not, also
remain possible in ASLR-Guard.

TASR [7] re-randomizes code regions at every I/O system
call pair to mitigate any potential information leakage. It also
fixes the code pointers on the stack and heap for every re-
randomization. It can potentially mitigate all classes of remote
leakage attacks, but it requires source code for compilation
and it cannot mitigate leakages within the application boundary
(e.g., in JIT-ROP attacks).

VIII. MITIGATING ADDRESS-OBLIVIOUS CODE REUSE

Since AOCR attacks induce unintended control flows,
enforcing control-flow integrity is one way to mitigate them.
Isolating indirect code pointers using code-pointer integrity is
another option. These mitigations, however, come with their
own set of performance and security challenges, so we only
consider ways to extend leakage-resilient diversity to counter
AOCR in this section.

Although our variant of code reuse is oblivious to the code
layout, it is not oblivious to the data layout. In particular, it
makes assumptions on the layout of structures as well as the
layout of global variables. Therefore, one might argue that these
areas need randomization too. Techniques to do so are well
known in the literature [13, 23, 36]. However, this would not
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prevent adversaries from reading and writing the data structures
after diversification so our attacks could, at least in theory, be
extended to leak the data layout.

Perhaps a better strategy is to extend the code pointer
indirection layer with an authentication step to prevent misuse.
One way to instantiate this idea is to have every calling function
store a cookie in a register before using an indirect pointer and
have the callee function check the register for the expected
cookie value (after which the cookie register must be cleared
to avoid spills to the stack [35]). Cookies would simply be
random values stored as immediate operands in execute-only
code to prevent leakage. This scheme would prevent abuse
of trampolines for direct calls but would not prevent abuse
of indirect calls or returns because we may not know their
control-flow targets at compile time [19].

To protect indirect calls and returns from abuse, we can
still verify that the function pointer used in an indirect call or
return was correctly stored and not forged without having to
compute the control-flow graph at compile time. To do so, we
can leverage the recently proposed cryptographically-enforced
control flow integrity, CCFI, technique by Mashtizadeh, et
al. [40]. In Readactor, an indirect code pointer is simply the
address of the forward trampoline; to prevent AOCR, we can
associate each indirect pointer and return address with a hash-
based message authentication code, HMAC. Note that if we use
the storage location of the indirect code pointer (not the address
it points to) as input to the HMAC function, copying the indirect
pointer from one storage location to another (as our AOCR
requires) will cause the HMAC check to fail. CCFI uses an
128-bit AES-based HMACs and stored the AES key in SIMD
registers. This led to high performance overheads (52% on
average on SPEC CPU2006), especially relative to conventional
CFI approaches, but has the undeniable advantage of enforcing
a very precise CFI policy without the need for complicated and
brittle static analysis. Moreover, future hardware will likely
include hardware support for protection of return addresses,
which would simplify our task to protection of forward pointers.

Our work adds to the growing body of evidence showing that
it is nigh impossible to avoid all types of information leakage.
If given the choice between randomizing more implementation
aspects or incorporating (or switching to) enforcement-based
mitigations, the latter seems like a better choice w.r.t. attainable
security. Enforcement-based mitigations also have important
practical advantages in that they naturally do not interfere
with code signing, distribution, memory de-duplication, or
debugging; code diversity engines must be carefully designed
to avoid interference in these areas.

IX. RELATED WORK

Our work mainly relates to memory corruption vulnera-
bilities and mitigation thereof. The literature in these areas
is vast. We refer the interested reader to the relevant sur-
veys [12, 34, 43, 52, 57] and focus on closely related work.

Early work on the effectiveness of ASLR found that 32-
bit address spaces do not allow sufficient entropy in the
layout to prevent brute force guessing [51]. A decade later, it
became clear that not even 64-bit ASLR implementations are
impervious to brute-force attacks [8] and exploits now routinely
bypass ASLR using a variety of techniques [42, 49, 56]. This

motivated fine-grained diversity approaches [34] that randomize
at the level of individual code pages [4], functions [31], basic
blocks [60], or single instructions [25, 27, 45]. The emergence
of JIT-ROP [53] and side-channel attacks [5, 28, 48] that
directly or indirectly disclose the randomized code layout
undermined the assumption that these finer-grained diversity
techniques address the shortcomings of ASLR [26]. These
findings led to work on leakage-resilient code randomization
defenses. We already discussed these defenses and how their
security is impacted by AOCR attacks in Section VII. For the
sake of brevity, we do not repeat that discussion here.

Davi, et al. [17] demonstrated the first attack against leakage-
resilient diversity approaches. In particular, they showed that
execute-only memory (on its own) does not provide sufficient
protection against all JIT-ROP attacks. This inspired subse-
quent work on code pointer hiding [15, 38]. Maisuradze, et
al. [39] then demonstrated that the predictability of dynamically
compiled code provides another way to bypass execute-only
defenses without directly disclosing the code. However, our
AOCR attacks are strictly more powerful as none of these
earlier attacks are fully oblivious to the code layout. The attack
by Davi, et al., requires that the code is either readable or that
the code is not randomized below the page level. The attack by
Maisuradze, et al. assumes that i) pointers into JIT compiled
code are not protected against indirect leakage, and ii) that
JIT compiled code is not randomized below the function level.
Since we only rely on the high-level semantics of the code, our
bypass is not even stopped by instruction-level randomization.

In work closely related to ours, Snow, et al. [54] evaluated
the effectiveness of leakage-resilience techniques relying on
destructive reads such as Heisenbyte [58] and NEAR [61]. Their
main finding was that destructive reads can be bypassed using
so called constructive reloads. Such reloads exploit the fact that
multiple copies of the same code are often loaded into the same
process which means that adversaries can disclose one copy
and reuse code from another, thereby avoiding any gadgets
destroyed by adversarial reads. However, the constructive read
techniques are limited to bypassing leakage-resilience defenses
relying on destructive reads while our techniques generalize to
all of the defenses listed in Table I.

Gawlik, et al. [21] reported that the security assumptions of
leakage-resilient defenses can be weakened by using crash resis-
tant exploitation primitives. These primitives allow adversaries
to scan memory without crashing when trying to read execute-
only memory or accessing unmapped memory. However, as
the authors note, crash-resilience techniques cannot bypass the
Readactor++ [16] system, unlike our AOCR attacks.

Göktaş, et al. [24] demonstrated that malicious thread
spraying can, in certain instances, be used to find even very
small hidden memory regions associated with a particular
thread (the safe stack). However, malicious thread spraying
does not disclose the code layout in our threat model since
we assume perfect use of code pointer hiding and fine-grained
randomization.

Memory deduplication between processes or between virtual
machines in a public cloud poses another threat to information
hiding. Early work demonstrated how to leak the base address
of 64-bit ASLR in a cloud environment [5]. Subsequent work
showed how to leak entire pages [9, 46]. These techniques
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rely on timing side channels induced by the copy-on-write
semantics of deduplicated, writable pages and thus do not help
leak the contents of read-only or execute-only memory pages.

X. CONCLUSION

In this paper, we evaluated the effectiveness of leakage-
resilient code randomization. We presented a generic class
of attacks, Address-Oblivious Code Reuse (AOCR), that can
bypass ideal execute-only defenses including the state-of-the
art system, Readactor, and showed two new attack techniques
to facilitate AOCR. We demonstrated that AOCR is a realistic
threat with three concrete attacks against Nginx and Apache.
We also discussed two important implementation challenges that
practitioners must address to correctly deploy leakage-resilient
defenses.

Our findings add to the mounting body of evidence that
preventing information leaks without addressing the root causes
of memory corruption vulnerabilities is fiendishly hard if not
downright impossible. As long as the adversaries can observe
and swap code pointers (or their encrypted/indirect equivalents),
code reuse attacks remain possible. Our main contribution is
to show, for the first time, that such attacks can be constructed
without any knowledge of the randomized code addresses. Thus,
we conclude that i) the research community is running up
against the limits of leakage-resilient diversity techniques and
that ii) enforcement techniques seem like the most attractive
way to further raise the bar against exploitation.
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APPENDIX

A. NGINX ATTACK 2 DETAILS

Nginx’s design employs a master process, which provides
signal handling and spawns worker processes to handle
requests via fork calls. This processing loop is implemented
by the ngx_master_process_cycle function, which
is called from main after Nginx configures itself. The
trampoline address of this function can be determined
via profiling after causing a system call to hang. Since
ngx_master_process_cycle forks, worker processes
inherit the parent’s current stack. This includes the return
address trampoline of ngx_master_process_cycle.
Recall that return addresses are replaced with a pointer to a
trampoline whose code resembles the following:

call ngx_master_process_cycle
jmp callsite_main

The return address points to the jmp instruction. From that
address, we can easily derive where the call instruction is
located.

Identifying the relevant return address on the stack is
straightforward, as Nginx’s initial execution is predictable. The
ngx_master_process_cycle frame will be near the base
of the stack, immediately after the main stack frame.

Once the address of ngx_master_process_cycle
is found, we can take advantage of a function pointer in the
Nginx worker’s log handler. The log_error_core function
contains a pointer to a log handler function taking three
arguments: p = log -> handler(log, p, last-p).
There are multiple system calls in the function prior to the
pointer being dereferenced during a logging event, which
enables us to hang the program via MTB and corrupt the
handler to point instead at ngx_master_process_cycle.
In order to prevent a program crash, we must also modify the
first argument (log) to resemble the ngx_cycle_t expected
by ngx_master_process_cycle. The parameter is not
used in our attack, so any non-crashing value suffices.

ngx_argv[0] = "/usr/bin/python3"
ngx_argv[1] = "-c"
ngx_argv[2] = "import os,socket,subprocess;

s=socket.socket(socket.AF_INET,
socket.SOCK_STREAM);

s.connect((\\\’127.0.0.1\\\’,1234));
[os.dup2(s.fileno(),i) for i in range(3)];
subprocess.call([\\\’/bin/sh\\\’,\\\’-i
\\\’]);"

ngx_argv[3] = 0

Fig. 6. Reverse Shell in Nginx with AOCR

Once we have pointed the log handler at
ngx_master_process_cycle, we must ensure that

the target function’s execution causes an exec under our
control. This can be achieved via the range of signals that
Nginx can handle in ngx_master_process_cycle.
In particular, Nginx provides a new_binary signal used
to provide rolling updates to a new version of the server
without compromising availability. This signal handler
is invoked whenever a global integer variable named
ngx_change_binary is non-zero. The path to the
binary is stored in ngx_argv, another global variable. By
corrupting the first global value we ensure that an exec
call will eventually be made when the log handler pointer is
dereferenced. By corrupting the latter, we ensure that a binary
of our choice is executed. For example, setting ngx_argv to
the values shown in Figure 6 will create a reverse shell bound
to a chosen IP address (127.0.0.1 in this case).

B. APACHE ATTACK DETAILS

In order to maintain portability across operating systems,
Apache uses its own portable runtime libraries (APR and APR-
Util) instead of directly calling functions in libc. However,
modules may call functions in this library that the base Apache
process does not. The build process must ensure that all
APR functions and related utility libraries are linked during
compilation whether or not they are explicitly used in the base
code. This is achieved via an exports.c file for each library.
Each of these files contains function pointers to every function
in that library. They are linked to the executable during program
compilation, and loaded into the data section of memory on
execution.

One of these exported functions is ap_get_exec_line
in Apache’s server utility library (httpd.h), which takes three
arguments: a pointer to a valid memory pool, a command to
run, and the arguments to supply that command. We recover
the trampoline for this function by profiling while hanging
execution via MTB. The region of memory containing pointers
from exports.c is easily identified, as it contains nothing
but function pointers (with common higher-order bits) pointing
to functions in one library. The order in which function pointers
are declared in exports.c is deterministic, so recovering the
pointer for ap_get_exec_line is straightforward.

Next, we corrupt a function pointer to point to the revealed
address. When choosing the pointer, we must ensure that
the parameters passed to ap_get_exec_line are passed
correctly, as this attack does not rely on global variables like the
Nginx variant. Additionally, our ability to modify memory is
limited to the periods surrounding system calls. Only functions
that pass parameters via pointers to memory addresses are
viable. Given these criteria we chose to corrupt the errfn
pointer in sed_reset_eval, part of Apache’s mod_sed.
The errfn pointer is dereferenced in the eval_errf
function, which pulls all of its parameters from pointers to
memory. Similar functions are available in other modules,
should mod_sed not be available.

Finally, we set errfn to point to ap_get_exec_line.
The first argument pointer is corrupted to point at a valid
apr_pool_t object, which the attacker-controller worker will
likely already have. (APR pools are used to handle memory
allocation in Apache.) The second pointer is made to point at
a string containing the path to a binary of our choice. When
the errfn pointer is dereferenced, the binary is executed.

15


