Systems and Internet

‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

An Evil Copy: How the
Loader Betrays You

Xinyang Ge'3, Mathias Payer? and Trent Jaegers3
Microsoft Research!
Purdue University?
Penn State University?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example -

// main.c // test.c
foo; foo = 10;
main()

*(*)&foo = 100;
9;

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example -

// main.c // test.c
extern const int foo; net int foo = 10;

int main()

@nt *)&foo;%')seg“‘e
9;

Fault

}

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example @

| Executable

» CC main.c test.c

| Executable + | Library
» cCc -fPIC -shared test.c -o libtest.so

» cc [-fPIE] main.c -L. -ltest

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example @

| Executable

Signal name: SIGSEGV
Signal meaning : Segmentation fault

» CcC main.c test.c o]

| Executable + | Library
» cCc -fPIC -shared test.c -o libtest.so

» cc [-fPIE] main.c -L. -ltest

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example -

| Executable

Signal meaning : Segmentation fault

» CcC main.c test.c o]

| Executable + | Library

» cCc -fPIC -shared test.c -0 libtest.so ...Nothing happened?
» cc [-fPIE] main.c -L. -ltest

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example -

| Executable

Signal meaning : Segmentation fault

» CcC main.c test.c o]

| Executable + | Library

» cc -fPIC -shared test.c -o libtest.so ...Nothing happened?

» cc [-fPIE] main.c -L. -ltest

« | Executable + | Library
» cCc -fPIC -shared test.c -o libtest.so

» cc -fPIC main.c -L. -ltest

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Problem: A Motivating Example -

| Executable

Signal meaning : Segmentation fault

» CcC main.c test.c o]

| Executable + | Library

» cc -fPIC -shared test.c -o libtest.so ...Nothing happened?

» cc [-fPIE] main.c -L. -ltest

« | Executable + | Library

) e inferior stopped because it received a signal from the Operating
\ W/ System.
3 - signal name . SIGSEGV
» CC - —-sSnare est.C -0 110test.so Signal meaning : Segmentation fau

» cc -fPIC main.c -L. -ltest

Systems and Internet Infrastructure Security Laboratory (SIIS)

What happened so far... e

i

non-PIC executable

PIC executable

® sSignal received

‘ ‘f ’ ’ , The inferior stopped because it received a signal from the Operating g The inferior stopped because it received a signal from the Operating
I : : a I : : /) system.

' System.
Signal name: SIGSEGV
Signal meaning : Segmentation fault ‘

® sSignal received

Signal name : SIGSEGV
Signal meaning : Segmentation fault

P

® sSignal received

;'S;Ln;érior stopped because it received a signal from the Operating
foreign “foo” Qothing happened? } “ Signalname: SIGSEGV

Signal mea

ning : Segmentation fault

Pox

Obviously, foo is not in
read-only memory in the
above case, but WHY?

/

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Building Process S

compiling linking loading

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Building Process S

compiling

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

What does “extern” mean >

// maln.c
fo0;
main()

*(*)&foo = 100;
9;

Systems and Internet Infrastructure Security Laboratory (SIIS)

What does “extern” mean o

PENNSTAT

// maln.c
main()
{
*(
}

*)&foo
9;

fo0;

= 100;

gumm—

“—

foo is defined in a different file but

still in the same image
(w/o0 -fPIC flag)

foo is defined in a different file and

potentially in a different image
(w/ =-fPIC flag)

Systems and Internet Infrastructure Security Laboratory (SIIS)

What does “extern” mean o

PENNSTAT

// maln.c
main()
{
*(
}

*)&foo
9;

fo0;

= 100;

— foo is defined in a different file but

still in the same image
(w/o0 -fPIC flag)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

foo Is defined in the same image =

// main.o - assuming same image

<main>:
push %rbp
mov %rsp,%srbp
mov $0x64,offset to foo(%rip)
mov $0x0,%rax
pop 7%rbp
ret

Systems and Internet Infrastructure Security Laboratory (SIIS)

foo Is defined in the same image B

PENNSTATE

// main.o - assuming same image

<main>:
push %rbp
mov %rsp,%rbp
| mov $0x64,offset to foo(%rip) |
mov $0x0,%rax
pop %rbp
ret

Systems and Internet Infrastructure Security Laboratory (SIIS)

The compiler assumes
foo’s location can be
statically determined by
the linker; and emits a
single MOV instruction to
write to foo.

PENNSTATE

foo Is defined in the same image =

data
""""""""""""""""""" foo
. —e
Y 4
Y 4
/
/
/4
I
| GOT
\
\
\
\
\
\\ code
\
\
\

Systems and Internet Infrastructure Security Laboratory (SIIS)

What does “extern” mean g

PENNSTAT

// maln.c
main()
{
*(
}

*)&foo
9;

fo0;

= 100;

Systems and Internet Infrastructure Security Laboratory (SIIS)

“—

foo is defined in a different file and

potentially in a different image
(w/ =-fPIC flag)

PENNSTATE

foo Is defined in a different image g

// main.o - assuming same 1image

<main>:
push %rbp
mov %rsp,%rbp
mov offset to foo got(%rip),%rax
mov $0x64, (%rax)
mov $0x0,%rax
pop %rbp
ret

Systems and Internet Infrastructure Security Laboratory (SIIS)

foo Is defined in a different image =

PENNSTATE

<main>:
push
mov

// main.o - assuming same 1image

%rbp
%rsp,%rbp

mov
mov

offset to foo got(%rip),%rax
$0x64, (%rax)

mov

pop
ret

$0x0, %rax
%rbp

Systems and Internet Infrastructure Security Laboratory (SIIS)

The compiler assumes
foo’s location cannot be
statically determined
and emits two MOV
Instructions: one to
retrieve foo’s address
from its GOT slot, and
the other to actually
write to foo.

PENNSTATE

foo Is defined in a different image g

data
,;7
\
DS \,
GOT e
-
___ -
> (I foo'’saddress €
Y 4
y
\
\\ code
N

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

i

Without —fPIC flag, GCC and Clang
on Linux assumes foo iIs defined In
the same image.

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Building Process S

compiling linking

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Copy Relocation ==

data 4 N

Hi, | am the linker. Oops, foo is
actually defined in a different
image. How can | resolve the
reference to foo!

GOT

OXO

code

<main>:

mov $0x64,offset to foo(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Copy Relocation ==

data 4)
Let me allocate a local copy of
foo and have the dynamic
loader to relocate the original
variable to this new copy.
/
GOT
code

<main>:

mov $0x64,offset to foo(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Copy Relocation =

data 4)

Let me allocate a local copy of
foo = 0 foo and have the dynamlc. |

loader to relocate the original
variable to this new copy. Y

GOT

code

<main>:
mov $0x64,0x200970(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Building Process S

compiling linking loading

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Copy Relocation —

data data

foo=0

GOT

address of foo
GOT rodata
foo=10
code code

<main>:

mov $0x64,0x200970(%rip)

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Copy Relocation —

data data
foo=0 K
\ GOT
\
\
\
\\ address of foo
GOT \ rodata
\
\ foo=10
code code
<main>:
56@ $0x64,0x200970(%rip)

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Copy Relocation —

data data
foo =10 N
\ GOT
\
\
\
\\ address of foo
GOT \ rodata
\
\ foo=10
code code
<main>:
56@ $0x64,0x200970(%rip)

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Copy Relocation —

data data
S foo =10 j N
- \ GOT
\
\
\
\\ address of foo
GOT \ rodata
\ ,
\ C foo=10 j
code code
<main>:
ﬁé& $0x64,0x200970(%rip)

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Copy Relocation —

data data
S foo =10 j N
- \ GOT
\
\
\
\\ address of foo
GOT \ rodata
\ ,
\ C foo=10 j
code code
<main>:
EQQ $0x64,0x200970(%rip)

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Security Concerns S

« Expose “read-only” data to memory corruption attacks
» Making C++ vtables mutable can break existing defenses
« VTV, Interleaving, SafeDispatch

» Making format string writable can enable printf-oriented
programming

* Printf-oriented programming requires mutable format string to
implement branching

» File names

» IP addresses

4

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Security Concerns S

« Copy Relocation Violation does not directly lead to
exploitation

« Defenses depending on read-only data being
immutable can be bypassed

» vtables
» format strings
» file names

» IP addresses

> ...

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Evaluations ™

* Do Copy Relocation Violations commonly exist?
» Analyze 54,045 packages in Ubuntu 16.04 LTS
« 34,291 executables + 58,862 dynamic libraries

« Do Copy Relocation Violations weaken security
mitigations!

» Evaluate a set of CFl defenses in face of copy relocation
violations

* Implications on other platforms!?
» Windows and macOS

Systems and Internet Infrastructure Security Laboratory (SIIS)

Real-world Copy Relocation Violations =3

Copy Relocation Violations

vtables func. ptrs.
B generic ptrs. ™ format str
B file names generic strs

others

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

69,098 copy relocation
violations in 6,449 (out of
34,291) executables

28,497 vtables copied to
writable memory in 4,291
executables

Among the top 10 most
common copy relocation
violations, 8 of them are
vtables from libstdc++.so

PENNSTATE

Security Evaluation =

Developed a small C++ program that has an
intentional vtable corruption vulnerability

 Evaluate the program under 7 CFl defenses

Defenses Check Func Check VTable Bypassable

VTrust |
X v ()
VTV y X
vfGuard ’
Interleaving Y X
SafeDispatch ‘
P X ()
SafeDispatch?2 X
Rock]IT

Systems and Internet Infrastructure Security Laboratory (SIIS)

Other Platforms e

« Windows

» MSVC requires explicit annotation to differentiate “intra-
module extern” from “inter-module extern”

» The example program cannot be built on Windows

« macOS

» The compiler conservatively assumes “extern” is from a
different image

» The linker uses GOT to serve those references

» Copy relocations do not exist on macOS

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

macOsS issue S

« macOS has its own issue that results in the same
consequence

» macOS’s compiler allocates data that potentially
requires runtime patching in _ DATA_ . const section

» However, the loader does not reprotect it as read-only
after runtime patching

» Read-only data (e.g., vtable) remains writable

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

i

Copy relocation violations seem
prevalent in current Linux systems.
Then, how can we get rid of them?

PENNSTAT

Mitigations v

 Eliminate copy relocations entirely

» Recompile executable using -fPIC flag, -fPIE not enough

» -fPIC flag forces the compiler to treat non-static global variables
as defined in a different image

» Respect the memory protection while performing copy
relocations

» Determine the memory protection permission at link time

» Allocate the variable copy from a section protected by RELRO

» Both GNU Binutils and LLVM are adopting this approach

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Mitigations

) () D28272 ELF:Reserve X + — O X

@) 8 livm.org M <% = Z Q

° @ Phabricator

£ Differential > D28272

ELF: Reserve space for copy relocations of read-only symbols in relro.

¥ Closed @ Public

3S
Authored by pec on Jan 3 2017, 6:14 PM. -
Details
Reviewers O rafael
O davide & Download Raw Diff
© ruiu >
O - tstellarAMD
Commits rL291524: ELF: Reserve space for copy relocations of read-only symbols in relro. r
[= SUMMARY

When reserving copy relocation space for a shared symbol, scan the DSO's

program headers to see if the symbol is in a read-only segment. If so,

reserve space for that symbol in a new synthetic section named .bss.rel.ro Tags
which will be covered by the relro program header. None
This fixes the security issue disclosed on the binutils mailing list at:
https://sourceware.org/ml/libc-alpha/2016-12/msg00914.html Subscribers

nhaehnle, emaste, eugenis and 2 others

Diff Detail
Repository rL LLVM
pcc retitled this revision from to ELF: Reserve space for copy relocations of read-only symbols in relro..

pecc updated this object

ded reviewers: rafael, ruiu, davide.

ded subscribers: llvm-commits, tmsriram, eugenis.

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Conclusions -

* l|dentified a design flaw in the compiler toolchain on Linux

» Copy relocation can strip the “const” attribute specified by the
programmer

« Proposed mitigations
» Eliminate copy relocations entirely

» Preserve the memory protection of the relocated variables

 Evaluated copy relocation violations in real world
» Studied 54,045 packages in Ubuntu 16.04 LTS
» Copy relocation violations occur commonly in many programs

» Copy relocation violations can subvert existing defenses

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

i

Questions

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Variable Type Inference g

« Requirements
» No source code

» No debug information

« Heuristics

» Pointers:

« Use relocation information to identify pointers in general

« Use pointer value to determine code pointer vs data pointer
» Strings:

 All bytes are ASCII characters

« Use /’ to determine file paths and ‘%’ to determine format strings

Systems and Internet Infrastructure Security Laboratory (SIIS)

Copy Relocation

PENNSTATE

|2

data

GOT

address of foo

rodata

foo=10

data
foo=10
GOT
code
<main>:
mov $0x64,0x200970(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

code

What if the library accesses foo?

library

PENNSTATE

Copy Relocation —

data data

foo=10 K PN

<main>: ks foo?

mov $0x64,0x200970(%rip)

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

Copy Relocation

PENNSTATE

|2

data

GOT

address of foo

rodata

foo=10

data
foo=10
GOT
code
<main>:
mov $0x64,0x200970(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

code

What if the library accesses foo?

library

PENNSTATE

Copy Relocation —

data data
foo= 10
\ GOT
\
\
\
\\ address of foo
GOT rodata
\
\ foo=10
code code
<main>: What if the library accesses foo?
mov $0x64,0x200970(%rip) Can the library access foo without

the GOT indirection?

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Copy Relocation =

data data

foo= 10
\ GoT
\

O
<main>: ses foo?
mov $0x64,0x200970(%rip) Can the library access foo without

the GOT indirection?

executable library

Systems and Internet Infrastructure Security Laboratory (SIIS)

Copy Relocation

PENNSTATE
i

data
foo=10
GOT
code
<main>:
mov $0x64,0x200970(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

data

GOT

address of foo

rodata

\ — —
<\" foo=10

code

What if the library accesses foo?

Can the library access foo without
the GOT indirection?

library

Copy Relocation

PENNSTATE
i

data
foo=10
GOT
code
<main>:
mov $0x64,0x200970(%rip)

executable

Systems and Internet Infrastructure Security Laboratory (SIIS)

data

GOT

address of foo

rodata

\ — —
<\" foo=10

code

What if the library accesses foo?

Can the library access foo without
the GOT indirection?

library

