An Evil Copy: How the Loader Betrays You

Xinyang Ge
Microsoft Research
xing @microsoft.com

Abstract—Dynamic loading is a core feature used on current
systems to (i) enable modularity and reuse, (ii) reduce memory
footprint by sharing code pages of libraries and executables
among processes, and (iii) simplify update procedures by elim-
inating the need to recompile executables when a library is
updated. The Executable and Linkable Format (ELF) is a generic
specification that describes how executable programs are stitched
together from object files produced from source code to libraries
and executables. Programming languages allow fine-grained con-
trol over variables, including access and memory protections, so
programmers may write defense mechanisms assuming that the
permissions specified at the source and/or compiler level will hold
at runtime.

Unfortunately, information about memory protection is lost
during compilation. We identify one case that has significant
security implications: when instantiating a process, constant
external variables that are referenced in executables are forcefully
relocated to a writable memory segment without warning. The
loader trades security for compatibility due to the lack of memory
protection information on the relocated external variables. We call
this new attack vector COREV for Copy Relocation Violation.
An adversary may use a memory corruption vulnerability to
modify such “read-only”’ constant variables like vtables, function
pointers, format strings, and file names to bypass defenses (like
FORTIFY_SOURCE or CFI) and to escalate privileges.

We have studied all Ubuntu 16.04 LTS packages and found
that out of 54,045 packages, 4,570 packages have unexpected
copy relocations that change read-only permissions to read-write,
presenting new avenues for attack. The attack surface is broad
with 29,817 libraries exporting relocatable read-only variables.
The set of 6,399 programs with actual copy relocation violations
includes ftp servers, apt-get, and gettext. We discuss the cause,
effects, and a set of possible mitigation strategies for the COREV
attack vector.

I. INTRODUCTION

Software written in C/C++ is prone to memory corruption
vulnerabilities through memory safety violations and type
confusions, allowing an attacker to corrupt both data and code
pointers. A generic memory corruption vulnerability allows
an attacker to overwrite an arbitrary memory address with
attacker-controlled data. Each memory corruption is different
and some only allow partial control of the target address and/or

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA

Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23199

Mathias Payer
Purdue University
mathias.payer @nebelwelt.net

Trent Jaeger
The Pennsylvania State University
tjaeger @cse.psu.edu

the value that is being written. Despite significant investment in
bug finding techniques, memory corruption is still an important
problem, as 745 individual CVEs for 2015 and 692 CVEs for
2016 are reported. While not all these vulnerabilities allow an
attacker to compromise a system with arbitrary code execution,
many do.

Without any defense, attackers inject and execute code to
take control of a system through memory corruption vulner-
abilities. Over the past decade, a set of defense mechanisms
have been deployed on commodity systems. Data execution
prevention [3]] is a common defense that enforces code in-
tegrity. Code integrity prohibits an attacker from injecting new
code into a running process and is usually enforced by hard-
ware (e.g., through the non-execute flag on a per-page basis on
x86). With the rise of code-injection protection [32], [39], [22],
attackers have moved towards code-reuse attacks. In a code-
reuse attack, the attacker combines existing code fragments
(called gadgets) to achieve arbitrary computation. While code-
reuse attacks are Turing complete, they are generally used
to disable code integrity and to allow an attacker to execute
injected code. Two other deployed defense mechanisms, stack
canaries [25] and address space layout randomization [40],
protect against some control-flow hijack attacks and make it
harder for an attacker to find suitable gadgets. Unfortunately,
as the list of CVEs shows, these defenses are often mitigated
by an attacker.

New defenses like Control-Flow Integrity (CFI) [3], [L1]
are on the verge of being widely adopted. Several proposed
mechanisms are highly practical, have low overhead, and are
suitable for production (i.e., they support common features
like modularity and do not require source code annotations,
changes, or blacklisting) [41], [43], [30], [20], [21], [L6],
[26], [10], [29]], [31], [34]. CFI verifies that the target address
observed at runtime is feasible according to a statically con-
structed control-flow graph. Individual CFI mechanisms differ
in the underlying analysis of the control-flow graph and in the
enforcement mechanism.

Current programs rely on dynamic loading (e.g., through
the 1d.so dynamic loader on Linux) to support shared
libraries, position independent code, and defense mechanisms
like address space layout randomization (ASLR). Dynamic
loading is central to how current systems execute applications.
Through clever design, dynamic loading enables sharing of
code across multiple processes, thereby reducing memory
usage. As most pages of a library are read-only code, they
can easily be shared across processes that use the same library
as long as the pages do not contain hard-coded addresses.
Shared libraries solve this problem by using relative addressing
that redirects accesses through a set of per-process pages that

are writable for each library. In ELF binaries, these pages are
referred as Global Offset Tables (GOT). As part of the loading
process, the dynamic loader has to allocate space for individual
shared objects and resolve references among them.

Dynamic libraries are generally created by linking position
independent code. All references are either relative to the
current module or use indirection through a set of tables such
as GOTs. These tables are then updated at runtime whenever
the code is placed at a certain location. Dynamic executables
(as opposed to static executables or executables located at a
fixed address) on the other hand are generally not created
from position independent code. Any reference to external data
would therefore have to be resolved and patched at runtime.
The ELF standard defines different types of relocations for this
purpose, allowing online patching. While relocations generally
patch the location of the reference (i.e., they patch the location
with the correct address used at runtime), modifying read-
only regions should be avoided. If the code region in the
executable contains external references, then all such code
pages would have to be modified, making it harder to share
code among processes. Copy relocations fill this gap and
enable dynamic executables to relocate the target object. The
executable allocates space for the target object in its .bss
section and the loader will then copy the object from the source
shared library to the .bss section of the executable. As all
shared objects use indirect references to access this object, the
loader then modifies all these pointers to point to the copy in
the executable.

Such copy relocations may result in severe security viola-
tions because the loader is unaware of the protection flags of
the original symbol and can therefore no longer enforce mem-
ory protection. The original symbol may be allocated in read-
only memory, but if the dynamic executable references this
object, the loader will copy it to a writable memory location.
An attacker can now use a memory corruption vulnerability
to modify the presumed read-only symbol. This has security
implications if defenses depend on assumed read-only memory
permissions. Format string protections [27] assume that the
format string is in a read-only section. Modifying the format
string allows an attacker to read or write arbitrary memory
and to execute Turing-complete code [12]]. For CFI, many
mechanisms [41], [10], [26] assume that C++ vtables are in
read-only memory, as guaranteed by the compiler, but these
guarantees are broken by the linker and the dynamic loader.
As vtables are assumed to be immutable, they are not checked,
and an attacker may circumvent any CFI or other control-flow
hijacking mechanism that assumes immutable vtables. We call
this attack vector COREV for Copy Relocation Violation.

COREV is not just a theoretic attack vector, but such dan-
gerous relocations actually exist in current software. We have
examined all 54,045 Ubuntu 16.04 packages and found that
6,339 binaries feature such relocations. We classify vulnerable
relocations into the following seven categories: (i) vtables, (ii)
function pointers, (iii) generic pointers, (iv) format strings,
(v) file and path names, (vi) generic strings, and (vii) others.
Writable format strings allow an attacker to mitigate any printf-
based defenses and enable printf-oriented programming [12]
while writable file and path names allow an attacker to,
e.g., redirect input and output. Writable vtables and function
pointers on the other hand allow an attacker to mitigate

future defenses that protect against control-flow hijacking by
overwriting code pointers that are assumed to be read-only
and therefore not checked. In total, we have found 69,098
copy relocations that change the original memory protection.
These include 24 format strings, 44 file and path names, 711
function pointers and 28,497 vtables. Our evaluation under
approximates the total attack surface and shows the severity of
COREV. These dangerous copy relocations may not directly
lead to successful exploitations, however, because adversaries
must additionally find a memory corruption vulnerability to
modify the relocated variables, but the prevalence of COREVs
provides adversaries with more opportunities for bypassing
defenses and/or launching attacks.

We propose a set of three mitigations against COREV.
First, for existing binaries, the best we can do is to detect
such malicious relocations and prohibit execution (or at least
warn the user). Second, if compiler flags can be changed, we
propose to recompile dynamic executables using —£P IC which
compiles dynamic executables using the same indirection for
references as used for dynamic libraries, removing the need for
copy relocations. Third, if the binary cannot be compiled as
position independent code, we propose to change the toolchain
to make the constraints that are only available at the source
code and compiler level explicit and preserved along the
toolchain, so that both linker and loader are aware of the read-
only nature of individual symbols. The loader can then update
the permissions accordingly after initial relocation.

This paper presents the following contributions:

1) Discussion of a new attack vector called COREV
based on copy relocations that allow attackers to
violate memory integrity assumptions.

2) An evaluation of the prevalence of COREV by ex-
amining copy relocations for all packages of Ubuntu
16.04. We show that 4,570 packages have unexpected
copy relocations that change memory protections.

3) A presentation of three possible mitigations of this
new attack vector.

II. BACKGROUND
A. Dynamic Linking and Loading

Modern operating systems adopt dynamic linking and
loading to enable modularity. Dynamic linking has two major
advantages over the traditional static linking. First, the library
code can be shared among processes, so that a system needs
only one physical copy in memory per binary. Second, once a
bug is found in a library implementation, fixing the bug and
distributing the updated library suffices if it is dynamically
linked; otherwise, rebuilding every single binary that statically
linked the vulnerable library is required. As a result, all major
operating systems (e.g., Windows, Linux, and macOS) rely
on dynamic linking by default. For the rest of the paper, we
focus, without loss of generality, on the dynamic linking im-
plementation in GNU/Linux. In[Section VII-E| we discuss how
other operating systems implement dynamic linking regarding
COREV attacks.

Most Linux systems use a unified format called Executable
and Linkable Format (ELF) for executables, dynamic libraries
(*.s0) and object files (*.0) [19]. Conceptually, an ELF file

RN 1 N i
a.c E » ao E
B i B i
b.c : > b.o T
B ! B !
X.C T > X0 1

™ ! N i

y.c L > y.0 H

source fle ——— » object file
compile linking

| w| a.out

a.out

» libtest.so

libtest.so

executable/library ————» running process
loading

Fig. 1: An overview of compilation, static linking and dynamic loading.

contains a set of sections. Some sections are required for
execution and will be mapped into the process address space at
runtime (e.g., code and data), while others may store optional
descriptive information (e.g., symbol table and debug infor-
mation). Each mapped section is associated with a memory
permission. For example, code sections and read-only data
sections are mapped as non-writable while the other data
sections are mapped as writable (but not executable). A special
section called the relocation section stores a list of unresolved
references (i.e., absolute/relative addresses) that require further
attention at a later time (i.e., link time and/or runtime). For
example, an object file may have a relocation entry on the
operand of a direct call instruction. At link time, the relocation
entry will be resolved so that the call goes to the right function.
Each relocation entry contains necessary information to help
determine how it should be resolved.

Dynamically-linked programs require runtime support to
reference code and/or data that reside in different modules
(e.g., a library). A program does not statically know (1) which
module provides the required code/data and (2) where in the
address space of the process the module is loaded at runtime.
Consequently, modern systems rely on a small runtime called
dynamic loader (1d. so) to handle both issues. The dynamic
loader is responsible for loading libraries into the address space
and resolving necessary inter-module references so that the
program runs correctly.

In addition, dynamically-linked programs require coopera-
tion from the compiler toolchain (including the static linker) so
that the dynamic loader may resolve inter-module references at
runtime without modifying their code sections. On Linux, this
is achieved through the use of another level of indirection: the
Global Offset Table (GOT). Each module has its own GOT
section. The GOT contains the addresses used for external
references needed by the module. Each address is filled by
the dynamic loader at runtime, as a result of resolving the
corresponding relocation entry. For example, to invoke the
printf function in libc, an executable first makes a direct
call to a local trampoline in the Procedure Linkage Table
(PLT), which in turn jumps to the actual address of printf
stored in the corresponding GOT entry. However, as we will
show in [Section III} not all external references use the GOT

in practice, which creates security issues.

We present an overview of how a program is compiled,
linked, and loaded in A program often consists
of multiple source files. First, the compiler compiles each
source file into an object file. A typical object file contains
a code section, multiple data sections and necessary relocation
information. Second, the static linker takes as input the object
files, resolves references that can be done statically based on
the relocation information, allocates GOT entries for references
that need to be resolved by the dynamic loader at runtime, and
outputs an executable or a library. Third, when executing a
program, the dynamic loader loads its dependent libraries into
the process, performs dynamic linking by resolving remaining
references that require runtime relocation (e.g., filling GOT
entries of each module), and transfers the control to the
entry point (i.e., main function) of the program. Note that
dynamic linking can be done lazily, resolving individual targets
whenever first needed.

B. The Importance of Read-Only Data

It is now widely accepted that code sections must be
read-only and executable while data sections must be non-
executable to prevent attacks. Solutions like PaX [32] and
DEP [3] prevent the execution of writable memory to prevent
code injection attacks. If adversaries find a way to modify
executable code, then they can attack the process by injecting
and executing code of their choosing. PaX and DEP aim
to partition the process into immutable and executable code
sections and mutable but non-executable data sections to
prevent such attacks. Researchers even argue that code sections
should be execute-only [7]], [15].

In addition, processes often include a variety of data
that must be read-only. To enable the memory protection,
the compiler toolchain produces the information necessary to
inform the dynamic loader that certain program data should
be restricted to read-only memory. Typically, an ELF file
often includes a section for read-only data, namely . rodata.
When the compiler detects constant variables in the program
source, it adds those variables to the .rodata section of
the generated object files. The linker then combines individ-
ual .rodata sections of the object files to form a single

.rodata section for the executable or library binary. Finally,
the dynamic loader maps the ELF file’s . rodata section into
read-only memory to enable memory protection.

The security of the processes often depend on the read-
only memory protection. The read-only data section in an
ELF file consists of static constants and variables that are
used by the program. Note that the compiler may also choose
to place such read-only data in the code section to reduce
the number of required memory pages. Such constants may
include fixed strings (e.g., format strings or filenames), fixed
data values (e.g., structured data, arrays, or IP addresses), and
fixed code information (e.g., arrays of function pointers, C++
virtual tables, or jump tables). Programmers assume the values
of static constant variables are stored in read-only memory and
remain immutable after initialization. Failing to adhere to the
assumption can lead to security breaches [42].

Program security often leverages read-only data. While
normal program data may be maliciously modified when a
memory corruption error is exploited by an adversary, read-
only data cannot be modified. As a result, security experts
encourage the use of read-only data to prevent attacks and
sometimes apply read-only data in their defenses. For example,
researchers have proposed that a solution to format string
vulnerabilities is to hard-code format strings [[14]], [27]. If printf
invocations leverage adversary-controlled format strings, then
the call can be used to create a Turing-complete exploit envi-
ronment [[12]. As another example, some control-flow defenses
for C++ programs depend on an adversary not being capable
of modifying virtual tables [41]. These defenses assume the
integrity of virtual tables and simply check if an intended
virtual table is used during a virtual method invocation to
restrict the possible targets and prevent code reuse attacks.
While using the C++ virtual table to identify targets is not the
only way to restrict control flow targets for C++ virtual method
invocations, it presents performance advantages, as discussed

in [Section TV-Al

Programs may also leverage read-only data to prevent
attacks on system calls. One problem is that adversary input
may be used to construct resources names, such as file names
and IP addresses. However, if such resource names are hard-
coded in the program, then the program cannot be tricked into
serving as a confused deputy [24]. Further, even if there is a
memory corruption error in the program, as described above,
adversaries cannot maliciously modify such resource names
when they are read-only data.

III. PROBLEM DEFINITION

The loader may fail to maintain the implicit requirement
that data in the . rodata section of an ELF file must always
be protected read-only. When a program references read-
only data that is defined in a library, the loader moves the
data into a data section of the program that is writeable,
enabling adversaries to modify such data. Since programmers
and defense mechanisms depend on such data being read-
only, this loader behavior introduces a new attack vector for
adversaries to exploit. We call the new attack vector COREV
for Copy Relocation Violation. Next, we describe how and why
current loaders enable COREV.

Makefile

1 all: main.c test.c

! gcc -fPIC -shared test.c \
-0 libtest.so

gcc main.c -L. -ltest

l
i
1
int mainQ) { :
int *p = (int *)&foo; |
*p = 100; // page fault! :
return 0; : run: a.out libtest.so

1

I

I

1
1
1
1
1
1
1
1
|
1

LD_LIBRARY_PATH=. ./a.out :
1
1
1
1
1
1
1
1
1
[

data data
[TTiosi0 T
"""""""" ‘— N SN, GOT
\\\ ________________
address of foo
cor | 0~ /Sl
rodata
[~ T fo=10
code code
executable library

Fig. 3: Copy relocation for the example program. The dotted
arrow shows the variable copy, and the dashed arrow indicates
the points-to relationship. Solid arrows indicate data accesses
in the program.

A. Example Scenario

Consider an example program in In this example,
the main executable references a constant variable foo defined
in a library and tries to change its value. Presumably, this will
trigger a page fault because the constant variable foo resides
in the library’s read-only data section.

Counterintuitively, this access does not trigger a page
fault in practice (the example program was tested on Ubuntu
16.04). When an executable references a constant variable
defined in a library, the dynamic loader “relocates” (moves)
the constant variable from the library’s read-only data section
to the executable’s writable .bss section (which typically
contains uninitialized data of a program). This action removes
the read-only memory protection of the variable foo, allowing
the variable to be written in the example program. Other
types of read-only variables defined in a library, but used by
an executable, are relocated in a similar way. As described

in [Section VIl 6,339 out of 34,291 programs exhibit this

behavior, making them vulnerable to unexpected exploits.

Such variable movement is initiated by a special reloca-
tion type called copy relocation applied to variables in the

executable. We show its effects in Basically, a copy
relocation instructs the dynamic loader to move a variable to

the address specified by the relocation entry. The dynamic
loader not only copies the variable value (shown as the dotted
arrow), but also redirects the references in other libraries
(including the one which actually defines the variable, e.g.,
libtest.so in our example) to the new location by set-
ting up the variable’s corresponding GOT entries accordingly
(shown as dashed arrow). This ensures the old copy in the
library can be safely discarded.

B. The Purpose of Copy Relocation

Copy relocations are an artifact of the process imple-
mented by the compiler toolchain to unify how references
to external variables are resolved between static and dynamic
linking. Modern compiler toolchains split the build process
into multiple stages as shown in In particular, the
separation between the compilation and linking steps makes
separate compilation possible, enabling program modules to
be produced independently and linked either with other object
files or libraries to run the executable. This feature improves
build efficiency, encourages collaborations on the same project,
and simplifies code management. However, such a design
limits the information available at each stage. As we will
show, the current practice of separate compilation for read-
only variables is the root cause of COREV.

As shown in the compiler takes a source file and
generates an object file. When the source code references an
external symbol (e.g., a variable or a function), the compiler
creates a placeholder for its address in the emitted instruction
and allocates a relocation entry for the placeholder. Conse-
quently, the generated instructions do not go through GOT
by default. The implicit assumption made by the compiler
here is that the placeholder can always be updated with the
actual address by resolving the relocation entry when the
program is eventually linked. While this assumption may hold
for statically-linked programs, it is not always the case for
dynamically-linked programs where the referenced symbol
may be externally defined in a library (e.g., the variable foo
in and hence its address is not known until runtime.

There are two kinds of external references, and the linker
handles them in different ways. In the first case, the exe-
cutable references external code by calling library functions.
To resolve the relocation statically and hence satisfy the
compiler’s assumption, the linker can relay the control transfer.
Specifically, it updates the placeholder (e.g., a call operand)
to point to a linker-generated trampoline in the Procedure
Linkage Table (PLT), and makes the trampoline perform a
GOT-based indirect jump to redirect the control to the actual
library function.

In the second case, the executable references external data
by using library variables. Unlike external code references,
the linker cannot effectively relay data accesses. Thus, the
linker has two choices. First, it can leave the placeholder
to the dynamic loader and let it resolve the relocation entry
at runtime. Unfortunately, since the placeholder resides in
the program’s code section, this implies that the loader has
to modify the program’s instructions at runtime. Thus, the
same binary cannot be shared among concurrent processes.
Furthermore, on x86-64 Linux, the placeholder generated
by the compiler only has four bytes by default, which is

insufficient to encode an eight-byte address of an arbitrary
library variable. Second, the linker can collude with the loader
by allocating a local copy within the executable as if it were
locally defined. Specifically, the linker allocates zero-initialized
space for the external variable in the .bss section of the
executable, and updates the placeholder to reference the local
copy when linking. The dynamic loader then copies the value
of the originally referenced library variable to the local copy at
runtime as shown in After moving the variable from
the library to the executable, all libraries that are using this
variable must update their references from the original location
in the library to the location in the executable by updating
their GOT sections. The library that hosts the original copy
of the variable must update its location to the executable as
well. This ensures a consistent program state for all libraries.
Therefore, the linker is able to resolve the relocation entry
for the placeholder statically. As a result, the current compiler
toolchain adopts the second solution by using copy relocations.

However, as shown in the example in copy relo-
cations move an external variable to the executable’s writable

data section regardless of its original memory protection. There
are two reasons for this design. First, the linker cannot reliably
determine the original memory protection set on the moved
library variable. This is because dynamic linking allows the
overriding of symbols based on the order in which libraries
are loaded, while the actual loading order may not be statically
known. Second, making a read-only variable writable does not
break program functionality, while the opposite assumption
could trigger page faults and crash the program. Compatibility
is of paramount priority in software engineering practice and
the current design of the dynamic loader favors compatibility
over security.

How the change of memory protection affects security
depends on the availability of memory corruption vulnera-
bilities and the type of the copied variables. Intuitively, if a
program’s security relies on the read-only protection of the
moved variables, then copy relocations will increase the attack
surface and/or even negate existing defenses. Copy relocations
increase the program’s attack surface because the adversary
could potentially modify more program data than without copy
relocation through memory corruption. As program defenses
depend on the immutability of such data, adversaries may
be able to circumvent defenses like control-flow integrity
(e.g., based on vtables [41]]), format string protection [14], or
confused deputy mitigation [42].

IV. COREV IMPLICATIONS

Unintended copy relocations that change memory protec-
tion are a new attack vector that enables several classes of
attacks. Code pointers, format strings, and other static data
assumed to be read-only by a defense or the program may
suddenly be writable. We discuss these classes by examples.

A. Virtual Method Tables

C++ programs use a special data structure called virtual
method tables (or vtables) to dispatch virtual functions for
polymorphism. We show the conceptual memory layout of
vtable data structures and the assembly code that makes virtual
method calls in An object with virtual methods
stores the pointer to the vtable at its beginning. The vtable is

[etetaiaieiataieiie i ittt T Entuiaieint ettt it [aiadtnteieiei it [T ittt ittt ittt it

Iclass A { P v v b !

| int m_a; . obj_a H | o int A::al(void) { I 'main

| virtual int al(void); ! ! Vtable pir ,,4”1/" A::al ”T/'1 return m_a; i E ..

! . _P Lo A::a2 Lo ' 1 // NOW obj_b is in %rdi '

! virtual int aN(void); 1 m_a [- ! [I

E}; b Vo AN ' i i ' // load vtable ptr in %rbx E

H b Vol o 1 ! 11 movq (%rdi),%rbx

:class B: public A { : : : : :) : 1 // load al to %rax

! int m_b; o [[' movg (%rbx),%rax

i virtual int bil(void); | | " B::al —» int B::al(void) { 1! // obj_b->al()

i - b obj_b VO B::a2 b return m_a + m_b; | ! callg *%rax

! virtual int bN(void); 1 ! [[.

|) ! I [l

e ! E vtable_ptr E E —— E ! ' | // vtable ptr remains in %rbx
! m_a B | 9

! [= [! ! // load a2 to %rax

| void main() { . m_b . B::bl i i | E movq @x8(%rbx),%rax

! A *obj_a = new A; Lo b B::b2 b | 1 // obj_b->a2()

1 B *obj_b = new B; vl . - ! H 1 | callq *%rax

! obj_b->al(); o "o - 0 P |

I obj_b->a2(); bl - B::bN . oo |

! [[[[|

' 1 [[! |

(a) source code (b) object memory layout

(c) vtables

(d) methods (e) assembly of virtual method calls

Fig. 4: vtable memory layout and virtual call sites.

main:
// NOW obj_b is in %rdi // NOW obj_b is in %rdi

// load vtable ptr to %rbx // load vtable ptr to %rbx

movq (%rdi),%rbx movq (%rdi),%rbx
// load al to %rax // load al to %rax
movq (%rbx),%rax assert %rbx is a valid vtable

// obj_b->al()
assert %rax is valid target
callq *%rax

1
1
1
1
1
1
1
1
1
1
1
1
1
:
movq (%rbx),%rax :
// obj_b->a1() |
callq *%rax 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

// vtable ptr remains in %rbx
// load a2 to %rax

movq ©x8(%rbx),%rax

// obj_b->a2()

assert %rax is valid target
callq *%rax

// vtable ptr remains in %rbx
// load a2 to %rax

movq ©Ox8(%rbx),%rax

// obj_b->a2()

callg *%rax

Fig. 5: Two types of instrumentations for protecting virtual
method calls.

essentially an array of function pointers to the implementations
of the virtual functions declared by its class (or its ancestor
classes). Objects of different classes along the inheritance
chain can have different implementations of the same virtual
method (e.g., A::al vs B::al). Therefore, by embedding
the vtable pointer into every object, the vtable can dispatch
the virtual method calls based on the object’s runtime type.
Vtables are not supposed to change at runtime, thus they are
statically initialized at compile time and allocated from read-
only memory.

Attackers have demonstrated successful exploits by hi-
jacking virtual method calls [38]]. Broadly speaking, these
attacks either corrupt the vtable in place or overwrite the vtable
pointer stored in some object so that it points to something
under the attacker’s control. Current defenses [41] focus on the
latter because the defenses (wrongly) assume that the vtable
is allocated in a read-only section and cannot be modified by
the attacker.

Furthermore, current defenses leverage the read-only nature
of vtables to optimize their checks for better performance [41].

In we show two types of instrumentations for virtual
call sites shown in (e). Both types of instrumentations
aim to ensure that only valid methods can be targeted at
each virtual call site. The first type of instrumentation directly
checks the target function address obtained from the vtable.
Alternatively, the second type of instrumentation assumes
vtables are write protected, and checks if the referenced vtable
is legitimate based on the object’s static type.

There are two advantages of the second-type instrumen-
tation compared to the first type. First, given that a vtable
commonly contains multiple function pointers, there are fewer
vtables than actual targets, making checking vtables more
efficient. Second, if a program continuously makes virtual
method calls on the same object and the compiler keeps the
vtable pointer in a callee-saved register (e.g., $rbx), only one
check is necessary when checking the vtable, while the first
type of instrumentation needs to check on every virtual method
call. As a result, researchers propose to check the vtable pointer
to achieve better performance [41], [LO]. Note that mechanisms
using the second type of instrumentation must consider the
security implications of spilling the register to the stack where
it could potentially be overwritten [4].

However, vtables are not always read-only because of
unintended copy relocations. This will render the defenses that
are based on the second type of instrumentation ineffective,
such as [41]. For instance, if an adversary corrupts the function
pointers in the vtable but leaves the vtable pointer untouched,
she can potentially redirect control flow to arbitrary code
locations without detection.

To trigger vtables being moved to writable memory, a
program must satisfy the following two invariants:

e A class having virtual methods is implemented in a
dynamic library and its vtable is in the library’s read-
only region.

e The constructor of the same class is implemented in
the executable. This is possible when a class does
not have an explicit constructor or its constructor is
defined in a header file.

We revisit the cause of copy relocations to illustrate why
the two invariants lead to writable vtables. A copy relocation
occurs when the executable references a symbol defined in
an external dynamic library. In the case of vtables, the first
invariant ensures that vtables are externally-defined symbols.
The second invariant further ensures that there exists a symbol
reference to the vtables in the executable because the construc-
tor needs to initialize the object’s memory including the vtable
pointer (b)). On the other hand, if the constructor is
implemented as an external library function, the executable
simply makes an inter-module call into the constructor for
initializing objects, which eliminates the vtable reference from
the executable.

B. Format Strings

Functions like printf use format strings as templates
to direct outputs. Researchers have long known that such
functions may be vulnerable if an adversary controls the
format string input or the program uses directives that enable
unauthorized memory accesses, which have become known as
format string vulnerabilities [6]. More recently, researchers
have shown that, by controlling the format string used in
printf, an adversary can basically use the function as
an interpreter and achieve Turing-complete computation [12]]
that evades control-flow defenses that they call printf-oriented
programming.

One obvious defense against such vulnerabilities is to use
static format strings. While such a defense may not always be
possible, it is simple and encouraged where it is possible [14].
When enabled, the fortify gcc patch [27] enforces read-only
format strings at the compiler level. The compiler-based check
assumes that format strings allocated from read-only sections
remain immutable (which is not true for COREV). For exam-
ple, printf-oriented programming requires that the adversary
be able to modify the format string at runtime to implement
branches in their attack. Thus, the current assumption is that
the use of static format strings will prevent attacks on functions
that use format strings.

Unfortunately, copy relocations can make format strings
writable, enabling such attacks. Specifically, if a format string
(i.e., a constant char array) is defined in a library and ref-
erenced from the executable, the loader will copy the entire
string to writable memory and make it susceptible to memory
corruption. Then, an adversary can implement printf-oriented
programming simply by modifying the value of a supposedly
static format string.

C. Other Static Data

Programs use a variety of other static data, such as static
file names and IP addresses to utilize system resources uncon-
ditionally, such as program configuration files and well-known
IP addresses like “727.0.0.1”. Researchers have long been
concerned about adversaries modifying the names of system
resources accessed by programs. In general, various types
of confused deputy attacks [24], such as link traversal [17]
and Time-Of-Check-To-Time-Of-Use (TOCTTOU) [9], [28],
enable an adversary to direct a vulnerable program to a
resource of the adversary’s choosing. Such an attack may
enable an adversary to access a resource that is available to the

victim, but not to the adversary (e.g., password files or secret
key files). Alternatively, such attacks may enable an adversary
to direct the victim to use an adversary-controlled resource
instead (e.g., adversary-defined configuration or IP address). In
these attacks, adversaries gain unauthorized access over victim
resources or control inputs the victim depends upon.

Current defenses to prevent such attacks focus on filter-
ing adversary-controlled file names [8] or restricting system
calls that use adversary-controlled input in constructing file
names [13], [35]], [42]. For example, one recent defense iden-
tifies the data dependence between adversary-controlled inputs
and the system call arguments that use them to restrict the
resources accessible to system calls [42]. This approach uses
a dynamic analysis to detect where system calls use adversary-
controlled input in file names. However, such a dynamic
analysis is unlikely to detect how to craft inputs necessary
to overwrite file names that were thought to be immutable.
As a result, when copy relocations make file names and other
system resource names writeable, these will go undetected by
such defenses.

V. MITIGATION

The presented COREV attack vector has existed for
decades. We propose three fundamental mitigation approaches:
(1) detection through a simple checker, (2) recompiling the
underlying software as position independent code which does
not require copy relocations (i.e., enabling a compiler switch),
or (3) changing the toolchain to include additional informa-
tion about the memory permissions of external symbols to
enable permission-aware copy relocations. In addition, it is
also possible to leverage source code annotations to eliminate
copy relocations. We discuss the annotation approach in detail

in [Section VII-E| when we evaluate other operating systems.

A. Detecting Permission Violations

A straightforward mitigation simply refuses execution of
programs that violate the intended memory protection during
copy relocations. The key idea is to detect copy relocations that
violate permissions for any given executable. Our approach
consists of three steps. First, we identify a list of symbols
that are copied at runtime. This information is collected by
parsing the relocation sections and identifying copy relocations
from the program executable. Second, we locate the origins of
those symbols. In this step, we parse the .dynamic section
and follow the search order to enumerate dependent libraries.
Finally, given a relocated symbol and a dependent library, the
third step is to identify (i) whether the library defines the
symbol and (ii) whether the symbol is in the library’s read-
only data section. If both are true, we report this memory
protection violation and mark the program as potentially unsafe
for execution.

B. Recompiling Software

Given that the static linker may not know the memory
protection of referenced symbols in a dynamic library, a
principled way to mitigate corruptions on read-only variables
is to eliminate copy relocations. Therefore, the executable ref-
erences external variables that reside in their original locations
with untampered memory protections.

(i) access library variables

________________________ R gy Al
1
1

1 // load GOT entry to %rax

y// load GOT entry to %rax,
1 // ©x@ requires link-time 1movq GOT_ENTRY(%rip),%rax |
1 // load var to %rax '

1

1

\movq (%rax),%rax
1

:// relocation
1 movq 0x0(%rip),%rax
1 // load var value to %rax

1

|

=

: :// load var address to %rax
1 :1ea VAR_ADDR (%rip) ,%rax
i

]

]

|

|
|
1// load var value to %rax
]
ymovq (%rax),%rax

(a) assembly of object file (b) assembly of executable

Fig. 6: Object files compiled with -fPIC and the resultant
executable that accesses (i) library’s globals and (ii) its own
globals.

Recall that the motivation of copy relocations is to enable
GOT-unaware code to reference external library variables.
Therefore, to eliminate copy relocations, such references must
go through the GOT, which is designed for serving inter-
module references. To do so, we propose to change the
compiler flags and add the —fPIC flag. This flag instructs
the compiler to generate object files that are suitable for use
in a dynamic library. It has two effects on the generated code.
First, the code uses IP-relative addressing mode to access
global variables. Second, the code accesses global variables
through the GOT. We rely on the second effect to eliminate
copy relocations. The —fPIE flag, which is typically used
for creating position-independent executables (e.g., to support
ASLR) as opposed to the —~fPIC flag for creating dynamic
libraries, cannot be used to eliminate copy relocations. This is
because, the —fPIE flag only ensures the use of IP-relative
addressing mode (the first effect), but does not force global
variable accesses to go through the GOT (the second effect),
which is key to avoiding copy relocations.

We show the generated instructions at the compilation stage
in (a) to explain how the —fPIC flag helps eliminate
copy relocations. For each symbol access, the compiler emits
two memory accesses, where the first retrieves the address of
the symbol from the GOT and the second actually loads its
value. Consequently, at link time, the linker can allocate a GOT
entry for variables that are externally defined in a dynamic
library. This saves the linker from creating a copy relocation
to cover the “mistake” of the clueless compiler.

One concern of this mitigation is the cost for accessing
a global symbol. It seemingly incurs an unnecessary memory
load operation for accessing globals that are defined within
the executable, since their locations are statically known and
hence do not require GOT indirections. In fact, on x86, the
static linker can optimize the code sequence to save one
memory access by changing the first instruction to be an
LEA instruction, which simply computes the effective address
instead of actually fetching the value from the memory (shown
in (b)). This is possible because the LEA instruction
has the same byte sequence as the corresponding MOV instruc-
tion except for the second byte in their opcodes.

However, despite this optimization, compiling executables

as position independent does come with additional perfor-
mance costs compared with copy relocations. First, accessing
all library variables (including mutable variables that are not
affected by COREV) now require two memory accesses, while
copy relocations only need one. Second, relative addressing
mode can be costly especially for 32-bit x86 architecture where
such a mode is not natively supported [33].

C. Adapting the Toolchain

The mapping between protection modifiers at the source
code level and the protection enforced at runtime is crude.
The protection modifiers change between languages and are
mapped to read and write permissions at the linker and
loader level. Especially for externally defined variables, this
mapping can be imprecise. In the example shown in
the declaration of variable foo has the keyword const. A
dynamic library often has a header file that declares exported
read-only variables in such a way, so that executables can
reference them after including the header file.

Unfortunately, source-level protection information is lost
when a source file is compiled into an object file (x.o0),
primarily due to how ELF specifies the memory protection
for variables. Recall that ELF sets memory protections at the
granularity of sections (see [Section II). Thus, the way ELF
specifies a variable as read-only is to allocate the variable
from a read-only section (e.g., . rodata), so that the linker
can preserve the intended memory protection when combining
these sections into a single read-only section at link time.
However, the compiler does not actually allocate externally-
defined variables in object files. Instead, the compiler marks
them as undefined. An undefined reference is insufficient
for the linker to determine the originally intended memory
protection settings for these variables.

Our proposed solution is to adapt the current toolchain to
preserve such information along the compiler toolchain from
source code to object files. To be compatible with the current
ELF specification, we allocate a separate section (referred as
COREYV section) in the object file to store memory protection
information for each externally-defined variable. Specifically,
each entry in the COREV section contains a permission flag
to specify the intended memory protection (i.e., read-only
or read-write), as well as an ELF symbol index to specify
the variable for which the permission flag applies. Therefore,
based on the added information, the linker can create variable
copies in corresponding data sections with respect to the
originally intended memory protection.

Finally, we also adapt the dynamic loader so that it
can perform copy relocations on read-only data sections by
mapping them as writable during startup and protecting them
as read-only afterwards. This process is similar to how the
current dynamic loader handles the .data.rel.ro section
as mentioned in This approach requires changing
the entire toolchain (i.e., compiler, linker, and loader), and we
leave its prototype implementation to future work.

VI. COREV INVESTIGATION

We have implemented two mechanisms to assess the new
attack vector. Both tools are implemented in Python, using the

PyELF library to handle object files, with a total of 174 lines
of code.

The first tool takes an executable as parameter and gen-
erates a list of copy relocations that may alter the memory
protection set on the imported library variables. It has two
components. The first part identifies all exported, read-only
variables in a given dynamic library. Specifically, for each
exported library variable, we check whether it resides in a
read-only data section (e.g., .rodata). One subtlety here
is that some writable data sections (e.g., .data.rel.ro
and GOT) can be reprotected as read-only at runtime through
the RELRO program header [2]. The dynamic loader imple-
ments functionality to handle relocations on read-only data
by (1) grouping them into a dedicated section so that the
other read-only data without relocations can still be shared
among processes, and (2) resolving the relocations during
startup and then remapping the writable section to read-only
afterwards. We treat those sections as read-only (ignoring
the small window for a TOCTTOU attack during startup).
The second component enumerates all copy relocations in an
executable. For each copy relocation, we iterate through each
of the executable’s dependent libraries (i.e., extracted from
the executable’s .dynamic section) and check whether the
copied variable is present and read-only in the library. If so,
we report this copy relocation as potentially unsafe.

The second tool infers the data type for a given library
variable. To enable our tool to analyze arbitrary libraries, we do
not require source code or debug information. Instead, we infer
data types using binary analysis. We classify the symbols into
seven categories: (i) C++ vtables, (ii) function pointers, (iii)
generic pointers, (iv) format strings, (v) file and path names,
(vi) generic strings, and (vii) other variables.

First, we broadly infer pointers and strings in the dynamic
libraries. To discover pointer variables, we rely on relocation
information in the library. Specifically, given a dynamic library
can be loaded at an arbitrary address at runtime, a pointer in
the data sections must be properly patched to run. That said,
each pointer in the dynamic library will have a corresponding
relocation entry. For example, an R_X86_64_RELATIVE
entry instructs the loader to add the loading base address to
a pointer variable so that it points to the correct location at
runtime. Furthermore, for the discovered pointers, we check
whether they point to code or data, and classify them into
function pointers and data pointers accordingly (see below). A
pointer can be part of a composite variable such as a structure
or an array. For simplicity, we classify the entire variable into
the pointer category as long as one of its fields is a pointer.

To determine strings, we check whether the variable con-
tains only ASCII characters and if it is NULL-terminated. We
further identify format strings and file names from discovered
string variables (see below). We highlight format strings and
file names because memory corruption on them could lead to
security breaches.

Next, we discuss how we infer and classify the types of
exported library variables in detail:

C++ vtables: if the variable contains a set of code pointers
and is named through standard name mangling rules (e.g.,
if the variable name starts with _ZTV);

Function pointers: if the variable is a pointer and the pointer
references a code segment;

Generic pointers: if the variable is a pointer into the current
library or relocated to a different library and not a function
pointer (i.e., references data);

Format strings: if the variable is a string and contains at least
one format specifier (%);

File names and paths: if the variable is a string and contains
at least one path separator (/);

Generic strings: if the variable is a string and is neither a
format string nor a filename/path;

Other variables: all other variables.

While the current prototype uses simple heuristics, they
work well in practice. We currently restrict automatic type
discovery through heuristics and binary analysis as debug
information is not always available. In future work we will
evaluate further heuristics and approaches for identifying a
broader set of data types, e.g., by using debug information
(whenever available).

VII. EVALUATION
A. Attack Surface

In this section, we study the distribution of read-only
variables in dynamic libraries of a real Linux distribution.
Specifically, we collect all packages available to Ubuntu 16.04
LTS and identify the exported read-only variables for each
dynamic library. In theory, all these variables can be relocated
into writable data memory at runtime if they are referenced
by an executable; however, in practice, not all of them may
be accessed. First, not all read-only variables in dynamic
libraries are equally likely to be referenced by executables.
For example, if the constructor of a C++ class is implemented
in the library (see [Section TV-A)), it is highly unlikely for the
executable to directly reference the vtable of the particular
class. Second, if a library is used by an executable that
is compiled with —fPIC and hence does not have copy
relocations, the read-only variables in the library will not be
relocated at runtime. Thus, we treat the set of exported read-
only variables as a theoretical upper bound of the attack surface
for COREV attacks, and evaluate the actually relocated read-

only variables in [Section VII-B]

We analyzed 58,862 libraries from 54,045 packages.
Among them, 29,817 libraries export read-only variables. In
total, we found 5,114,127 exported read-only variables across
these libraries, making an average of 86.9 such variables
per library (including those that do not export any read-only
variable). We show the number of exported read-only variables
in each dynamic library in (sorted from low to
high). There are 55 libraries with over 10,000 exported read-
only variables. For example, the main library (1ibxul.so)
used by Firefox browser has over 40,461 exported read-only
variables. Fortunately, the Firefox executable is compiled with
—fPIC and has no copy relocations. However, a broad attack
surface for potential COREV-based memory corruption attacks
remains should another executable uses the same library but
is not compiled as PIC.

We further classify these read-only variables based on their
inferred data types. In our analysis we distinguish between
C++ vtables, function pointers, generic pointers, format strings,

Variable Type . Attagk Su.rface . Vulnerable

variables | # libraries | # packages || # variables | # executables | # packages
C++ vtables 714,617 14,563 3,692 28,497 4,291 1,609
function pointers 115,071 1,054 541 711 105 78
generic pointers 694,846 12,118 3,830 33,057 4,910 2,082
format strings 874 161 107 24 14 12
file names 6,822 454 252 44 20 10
generic strings 654,429 13,220 4,145 1,347 197 108
others 2,927,468 19,437 5,185 5,418 1,890 671

TABLE I: Potential attack surface and vulnerable subset of variables for all available Ubuntu 16.04 packages. Under the Attack
Surface column, we list the number of exported read-only variables, involved libraries and packages. Similarly, under the
Vulnerable column, we list the number of actually copied read-only variables, involved executables and packages.

5000

10000 15000 20000 25000 30000

Fig. 7: Number of exported read-only variables in each dy-
namic library from all Ubuntu 16.04 packages (sorted from
low to high). X-axis denotes each individual library and Y-
axis indicates the number of exported read-only variables.

file names, generic strings, and other variables. We single out
vtables, function pointers, format strings, and file names due
to the security implications if their permissions are changed
through a copy relocation.

We show the results in the “attack surface” column in
For the exported read-only variables with inferred
types, C++ vtables are the majority — 32.68% of all the
variables with inferred types. Function pointers occupy another
5.26%. These code pointers are often of interest to an adversary
because corrupting code pointers may give her arbitrary control
of the program execution [37], [38]], [23], [18]]. In the case of
COREYV, these attacks are possible despite strong defenses as
we show in

Generic pointers have the second largest population
(31.78%). Programs use generic pointers to access memory
indirectly. Therefore, if a constant pointer becomes modifiable,
an adversary could trick the program to access something
vastly different that is under her control. The security impli-
cation depends on what the constant pointer points to. For
example, if the constant pointer points to a format string, an

10

350

B0 |

=10 S Ot S SR PPUPOP ST SRR SUPPPUPRRRRPR S SURPRRPR

B0y

0 1000 2000 3000

4000

5000 6000 7000

Fig. 8: Number of actually copied variables per executable that
are vulnerable to COREV from all Ubuntu 16.04 packages
(sorted from low to high). X-axis denotes individual executa-
bles and Y-axis indicates the number of COREVs.

adversary can then corrupt the constant pointer to point to a
malicious format string to trigger printf-oriented programming.
As mentioned in our current type inference does
not follow generic pointers, and we leave a more proactive
type discovery to future work.

Format strings and file names are also exported by libraries,
although many fewer are relocated in comparison to other
types. Writable format strings allow an attacker to execute
arbitrary computation and file names allow an attacker to
possibly change the input and output of the program.

B. Real-World Permission Violations

In this section, we study the real-world programs that
have unsafe copy relocations in Ubuntu 16.04 LTS. We have
examined 34,291 executables across 54,045 packages. 6,339
of these executables have 166,543 copy relocations in total,
among which, 69,098 alter the memory protection. In|[Figure 8|
we display the number of COREVs for each executable in all
Ubuntu 16.04 packages. There are 54 executables that have
more than 100 COREVs (with a maximum of 345 COREV5s).

Variable # Copies
(V) __cxxabivl::__si_class_type_info 3,676
(V) __cxxabivl::__class_type_info 2,988
(V) std::basic_ios(char, std::char_traits(char)) 1,842
(V) std::basic_streambuf(char, std::char_traits(char)) 1,819
(V) __cxxabivl::__vmi_class_type_info 1,641
(V) std::__cxx11::basic_stringbuf(char, 1,319
std::char_traits{char), std::allocator(char))
(T) std::exception 1,169
(T) std::runtime_error 1,020
(V) std::basic_filebuf(char, std::char_traits(char)) 953
(V) std::__cxx11::basic_ostringstream(char, 894
std::char_traits(char), std::allocator(char))

TABLE II: The ten most commonly copied read-only variables
in Ubuntu 16.04. They are all from the libstdc++ library.
(V) denotes vtable and (T) denotes typeinfo. The “copies”
column list the number of executables that actually copy the
corresponding variable.

mysql-workbench: library/forms/mforms/container.h

' class Container :

public:
Container() {}
virtual void set_padding(...);
virtual void set_back_image(...);

public View {

Fig. 9: An example of C++ vtable that is copied to mysql-
workbench executable.

This experiment shows that COREVs do commonly exist in
real-world programs and present a real threat to the ELF-
based dynamic linking procedure. However, an unsafe copy
relocation is not exploitable by itself. Instead, it provides an
adversary with more potential corruption targets to launch
attacks and/or bypass existing defenses.

We list the types of these unsafe copy relocations in
in the “vulnerable” column. In particular, 44.75% of
all relocated read-only variables with discovered types are
C++ vtables. This is proportional to the exported C++ vtables
listed in the attack surface, and makes COREV an unignorable
problem because it enables attacks that can potentially evade
current defenses as shown in

Finally, we study the common COREVs in these exe-
cutables. Surprisingly, the top 10 most commonly copied
variables are all from libstdc++. We list them in
Among the 10 COREVs, 8 of them are actually vtables
of widely used classes. For example, the vtable of class
__cxxabivl::__si_class_type_info are copied by
3,676 executables in Ubuntu 16.04. Given the prevalent use of
libstdc++, it is likely that future C++ programs can also be
susceptible to COREV-based attacks.

C. Case Study

In this section, we study how COREVs occur in real-world
programs.

11

gettext-0.19.7

''struct catalog_input_format {
void (*parse)(..);
bool produces_utf8;

¥

input_format_properties = f
properties_parse,

]
]
I
I
I
|
:
|
const struct catalog_input_format '
]
:
true '

I

I

|

Fig. 10: A system library with read-only function pointers that
are relocated to various executables.

1) C++ Vtable (mysql-workbench): We use mysql-
workbench, a complex, GUI-based, network-facing C++ appli-
cation, as an example of of C++ vtable relocations. Note that
we have found many other C++ applications with such unsafe
relocations that are not listed here. The mysql-workbench is
a unified visual tool for database management that divides its
functionality into multiple dynamic libraries. As a result, it
relocates 19 vtables from 5 different libraries in total. We show

one of them in [Figure 9

Container is a class implemented in the libmform library
and serves as a base class for graphic components such as
MySQL table. It defines two additional virtual functions, thus
the Container class has a corresponding vtable for dispatching
virtual method calls. In addition, given that the Container class
does not have an explicit constructor, the mysql-workbench
executable will define a default one. The default construc-
tor will need to reference Container’s vtable for initializing
object memory. Consequently, the vtable is relocated to the
executable’s .bss section and becomes writable, potentially
mitigating vtable-based defenses.

2) C++ Vtable (apt-get): We found that apt-get also con-
tains a set of five vtables that are copy relocated from libstdc++
and libapt-pkg.s0.5.0. Four of them overlap with the already
mentioned vtables in the last one is the vtable of
class OpTextProgress in libapt-pkg. Assuming that apt-get is
compiled with an upcoming control-flow hijacking defense like
VTV [41] and that a memory corruption vulnerability exists,
the adversary may use COREV to bypass such defenses.

3) Function Pointer (gettext): We use the gettext library to
show how constant function pointers are copied in a typical
program. The gettext library is in the gettext-base package
which is installed on every Ubuntu 16.04 machine. It exports 6
read-only function pointers and affects 15 built-in executables.
We show one of its exported function pointers in
The exported function pointer is actually a field of a structure.
Each structure corresponds to an input stream format and the
function pointer points to an internal library function that
parses the format. Thus, a program can leverage it to process
the input stream based on its own needs. Similarly, these
constant data structures defined in gettext become modifiable
due to copy relocation and hence susceptible to memory
corruption attacks.

libow-3.1: src/c/error.c

| const char mutex_unlock_failed[] =

! "mutex_unlock failed rc=%d [%s]\n";

libow-3.1: src/include/ow_mutex.h

e
:exter‘n const char mutex_unlock_failed[];

|
| #define my_pthread_mutex_lock(mutex) \
''odo {\
/* skip some code here */
mrc = pthread_mutex_lock(mutex); \
if (mrc !'= 0) {
vsprintf(buf, mutex_unlock_failed, ..
JE
} while (@)

D5\

Fig. 11: An example of format string
COREYV in libow-3.1.

main.cpp
----------------------------------- | Feemmmmmmmemmee—eee oy
1
1

| #include <stdio.h> class A {
:#include "A.hpp" ! public:

1
i
virtual int al(); \
i
1

1
:// hardcoded symbol for class A’s vtable :};
iextern unsigned long _ZTV1A[]; ! !
1
ivoid hijack(void) { i A.cpp
| printf("vulnerable!\n"); 1 mTmTo T o—-——-—-—-—
'} \ :#1nclude "A.hpp 1
1
' no i
Lint main() { Dorint Asal() { |
| // corrupt A’s vtable slot for Lo return 1; 1
. // method al as if an attack happens 1 :} .
! _ZTV1A[2] = (unsigned long) hijack; "~~~ ~~"~"""""""°"""--°*
I 1]
Makefile
| // allocate an object and make .
1 // the virtual call ! Jall: main.cpp A.cpp
1 A *obj = new A(); '} g++ -fPIC -shared \ !
! obj->al(); v A.cpp -o libA.so
!) LolgH -L. -1A\ !
i return @; . main.cpp |
'} ol |
: ' 1
' | : |

Fig. 12: A test program for vtable defenses.

4) Format String (libow): We identified a dynamic library
(libow-3.1 [[1]) that exports a set of 22 format strings, causing
three different executables (owftpd — an ftp server, owserver —
a backend server for 1-wire control, and owexternal) to copy
them into writable memory at runtime. These format strings
are for debugging purposes, and we show one of them in |Fig-
The format string mutex_unlock_failed is de-
fined in the libow-3.1 library and exported in a header file. As
a result, an executable that includes the header file and uses the
library-provided macro my_pthread_mutex_lock will
cause the format string to be relocated. If an adversary corrupts
the relocated format string and exploits a concurrency bug
to cause the mutex lock operation to fail, she can potentially
launch printf-oriented programming and achieve arbitrary code
execution.

D. Affected Defenses

In this section, we evaluate how unsafe copy relocations
affect current defenses.

12

Defenses check fptr check vtable CoReV?
VTrust [43] V4 v X
VTV [41] X v v
viGuard [36] v X X
Interleaving [[1O] X v v
SafeDispatch [26] v X X
SafeDispatch (2) X v v
RockJIT [30]] v X X

TABLE III: Evaluation of vtable defenses, whether they check
function pointers, vtables, or both. Three defenses [41], [10],
[26] assume vtables are write-protected and only check the
vtable pointer, thus are affected by CoReV and may allow
vtable corruption attacks.

Recent research proposals on control-flow integrity (CFI)
focus on protecting forward edges (i.e., indirect call-
s/jumps) [41], [43], [44], [10]. In particular, given the preva-
lence of virtual method calls in C++ programs (see [Sec-
[tion TV-A)), researchers have proposed many defenses to protect
these dynamic calls. To evaluate how they are affected by
unsafe copy relocations, we come up with a simple exploitation

test as shown in

The test program has two parts. The first part is a library
which defines a class A with a virtual method (A.hpp and
A.cpp). The second part is an executable which allocates
an instance obj of the class and invokes the virtual method
(main.cpp). In the executable, we hard-code the symbol
name used for A’s vtable (_ZTV1A) and perform an emulated
memory corruption on the function pointer of the virtual
method A: :al in A’s vtable and see if it is accepted by the
evaluated defense deployed on this program.

We evaluate a set of six CFI defenses and show the results
in We choose these defenses because they apply to
C++ programs on Linux. An effective defense must check the
pointer to the vtable to defend against COOP attacks [38]] but
must also check the actual value of the function pointer in the
vtable to defend against COREV. Only defenses that check
both targets protect against COREV and COOP.

Among the defenses, three are vulnerable to unintended
copy relocations because they assume read-only protection for
vtables and only check if the vtable pointer points to a valid
vtable (see [Section IV-A). Interleaving [10] does not currently
support dynamic linking so we evaluate its vulnerability based
on their proposed instrumentation. SafeDispatch [26] proposes
two different instrumentations where the first checks the virtual
method target and the other checks the vtable pointer. It
claims the latter provides better security regarding COOP-style
attacks [38]]. However, the latter is vulnerable to COREV-based
vtable corruption attacks.

E. Other Platforms

Dynamic linking is enabled by default on major operating
systems such as Windows and macOS. We evaluate COREV
implications on the dynamic linking implementations on both
Windows and macOS.

Recall that the cause of copy relocations is due to the
ambiguity in declaring external variables at source level (see

[Figure 2). Compilers cannot know whether these variables are
defined by another object file in the same binary or in a dy-
namic library. How compilers handle this ambiguity results in
performance or security implications. To understand COREV
on other platforms, we compile the program in and
examine the generated instructions that access the external
variable foo.

1) Windows: The MSVC linker on Windows refuses to
build the example program. This is because the MSVC com-
piler requires the program to explicitly specify an external
library variable using the __declspec(dllimport) at-
tribute in addition to the extern keyword. Otherwise, the
declared external variable is assumed to be defined in another
object file that links to the same binary. If the linker cannot find
the symbol definition when performing static linking, it will
report an error rather than creating a copy relocation. Thus,
Windows removes the ambiguity by forcing declarations to
be explicit, removing the need for copy relocations. Through
these annotations, the MSVC compiler can achieve high perfor-
mance for symbols in the same module and keep permissions
for symbols in other modules. Hence COREV does not affect
Windows.

2) macOS: macOS handles the ambiguity by making the
opposite assumption of Linux, trading performance for safety.
The compiler assumes all variables declared as external are
potentially from dynamic libraries, and generates instructions
in (a) for external variables. This is the mitigation

approach we proposed in Naturally, accesses to
library variables use the GOT indirection. Consequently, copy

relocations do not exist on macOS and COREV does not affect
macOS either.

However, memory corruption over “read-only” data is still
possible on macOS. Specifically, based on our observation,
the compiler allocates read-only data that potentially requires
runtime relocation from the _ DATA.__ const section. For
example, code pointers in vtables may require adding the
module loading base at runtime, and thus are allocated from
the _ DATA._ const section. This supposedly read-only
section is, however, mapped as read-write at runtime. We
tested the example program in [Figure 12]and examined several
system libraries such as 1ibc++.dylib on macOS 10.12.
This design simplifies the implementation of the dynamic
loader. If the relocated data (i.e., the code pointers) resides on
writable pages, the loader can freely patch relocations at any
time without worrying about page faults. Unfortunately, similar
to the security concerns raised by COREV, this design weakens
the security of applications by exposing memory corruption
targets to an adversary, enabling her to launch attacks and/or
bypass defenses.

VIII. CONCLUSION

Dynamic loading enables modularity and reduces the mem-
ory footprint of applications. Due to the incomplete mapping
between source level primitives (like extern const) and
imported and exported symbols on the ELF/binary level,
memory protection information is inadvertently lost. When
an executable references a read-only variable exported from a
library, the dynamic loader 1d. so relocates this variable into
the writable .bss section of the executable, which effectively

strips the const attribute specified by the programmer. As
a result, this enables an adversary to modify “read-only”
variables when exploiting a memory corruption vulnerability.
We call this attack COREV for Copy Relocation Violation.
This attack vector has existed for decades and, as we show
for Ubuntu 16.04, is widespread. The attack surface is broad
with 29,817 libraries exporting relocatable read-only variables.
The set of 6,399 programs with actual unsafe copy relocations
includes ftp servers, apt-get, and gettext out of 4,570 packages.

An attacker can use COREV to escalate her privileges,
leveraging a memory corruption vulnerability to modify format
strings, file names, vtables, code pointers, or other supposedly
read-only data. We discuss three possible mitigation strategies
that (i) detect the attack vector by analyzing binaries and
libraries — as a fast mitigation, (ii) mitigate the attack through
recompilation (if possible), or (iii) change the toolchain to
make the linker and loader aware of source level permissions
even for externally defined variables.

ACKNOWLEDGEMENT

We thank our shepherd, Engin Kirda, and the anonymous
reviewers for their constructive feedback on this work. The
work was supported, in part, by the National Science Foun-
dation under grants number CNS-1408880, CNS-1513783,
and CNS-1657711. The research reported here was supported
in part by the Defense Advanced Research Projects Agency
(DARPA) under agreement number N66001-13-2-4040. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of any of the above organizations or any person connected with
them.

REFERENCES

[1] libow-3.1. http://packages.ubuntu.com/xenial/libow-3.1-1.

[2] RELRO - a memory corruption mitigation technique. http://tk-blog.
blogspot.com/2009/02/relro- not-so-well-known-memory.html.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340-353.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “A theory of secure
control flow,” in Proceedings of the 7th International Conference on
Formal Methods and Software Engineering, ser. ICFEM’05, 2005.

[5] S. Andersen and V. Abella, “Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3: Memory
protection technologies,” 2004.

[6] S. V. Archives, “Wu-ftpd remote format string stack overwrite vulner-
ability,” 2008.

[71 M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Niirnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp. 1342—
1353.

[8] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic anal-
ysis to validate sanitization in web applications,” in /IEEE Symposium
on Security and Privacy (Oakland 2008). 1EEE, 2008, pp. 387-401.

[9] M. Bishop and M. Digler, “Checking for race conditions in file
accesses,” Computer Systems, vol. 9, no. 2, Spring 1996.

[10] D. Bounov, R. Kici, and S. Lerner, “Protecting c++ dynamic dispatch
through vtable interleaving,” in Network and Distributed System Secu-
rity Symposium (NDSS), 2016.

http://packages.ubuntu.com/xenial/libow-3.1-1
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and Perfor-
mance,” ACM Computing Surveys, 2017.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in Pro-
ceedings of the 24th Usenix Security Symposium (USENIX Security),
2015.

S. Chari, S. Halevi, and W. Venema, “Where do you want to go
today? escalating privileges by pathname manipulation.” in Network
and Distributed System Security Symposium (NDSS), 2010.

C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen,
and J. Lokier, “Formatguard: Automatic protection from printf format
string vulnerabilities.” in USENIX Security Symposium (USENIX Secu-
rity), vol. 91. Washington, DC, 2001.

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy (S&P 2015), 18-20 May 2015, San Jose, California, USA,
2015.

J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-
flow integrity for commodity operating system kernels,” in 2014 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2014, pp. 292-307.

CWE, “CWE-59: Improper Link Resolution Before File Access,” http:
/lcwe.mitre.org/data/definitions/59.html.

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium (USENIX Security).
San Diego, CA: USENIX Association, Aug. 2014, pp. 401-416.

U. Drepper, “How to write shared libraries,” Retrieved Jul, vol. 16, p.
2009, 2006.

X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding control flows
using intel processor trace,” in Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2017.

X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in IEEE European Symposium on Security
and Privacy (EuroSP). 1EEE, 2016.

X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” in Proceedings of the 3rd IEEE
Mobile Security Technologies Workshop (MoST 2014), May 2014.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Proceedings of the 35th
1IEEE Symposium on Security and Privacy, May 2014.

N. Hardy, “The confused deputy,” Operating Systems Review, vol. 22,
pp. 36-38, 1988.

E. Hiroaki and Y. Kunikazu, “ProPolice: Improved stack-smashing
attack detection,” IPSJ SIG Notes, pp. 181-188, 2001.

D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: Securing c++ virtual
calls from memory corruption attacks.” in Network and Distributed
System Security Symposium (NDSS), 2014.

J. Jelinek, “FORTIFY_SOURCE,” https://gcc.gnu.org/ml/gcc-patches/
2004-09/msg02055.html, 2004.

W. S. McPhee, “Operating system integrity in OS/VS2,” IBM Syst. J.,
1974.

B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2014, p. 58.

B. Niu and G. Tan, “RockJIT: Securing just-in-time compilation using
modular control-flow integrity,” in Proceedings of the 2014 ACM SIG-
PLAN Conference on Computer and Communications Security. ACM,
2014, p. 58.

B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 914-926.

PaX Team, “Documentation for the PaX project - overall description,”
https://pax.grsecurity.net/docs/pax.txt, 2008.

M. Payer, “Too much PIE is bad for performance,” ETH Zurich Tech-
nical Report http://nebelwelt.net/publications/files/12TRpie.pdf, 2012.

14

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2015, pp. 144-164.

M. Payer and T. R. Gross, “Protecting Applications Against TOCTTOU
Races by User-Space Caching of File Metadata,” in VEE’12: Proc. 8th
Int’l Conf. Virtual Execution Environments, 2012.

A. Prakash, X. Hu, and H. Yin, “vfGuard: Strict protection for virtual
function calls in cots c++ binaries.” in Network and Distributed System
Security Symposium (NDSS), 2015.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 15, no. 1,
p- 2, 2012.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in 2015 IEEE
Symposium on Security and Privacy (Oakland). 1EEE, 2015, pp. 745—
762.

A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 335-350, 2007.
P. Team. (2003) Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm,” in USENIX Security Symposium, 2014.

H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger, “JIGSAW: Protecting
resource access by inferring programmer expectations,” in 23rd USENIX
Security Symposium (USENIX Security), 2014, pp. 973-988.

C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song,
“VTrust: Regaining trust on virtual calls,” in Network and Distributed
System Security Symposium (NDSS), 2016.

C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “VTint:
Protecting virtual function tables’ integrity.” in Network and Distributed
System Security Symposium (NDSS), 2015.

http://cwe.mitre.org/data/definitions/59.html
http://cwe.mitre.org/data/definitions/59.html
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://pax.grsecurity.net/docs/pax.txt
http://nebelwelt.net/publications/files/12TRpie.pdf

	Introduction
	Background
	Dynamic Linking and Loading
	The Importance of Read-Only Data

	Problem Definition
	Example Scenario
	The Purpose of Copy Relocation

	CoReV Implications
	Virtual Method Tables
	Format Strings
	Other Static Data

	Mitigation
	Detecting Permission Violations
	Recompiling Software
	Adapting the Toolchain

	CoReV Investigation
	Evaluation
	Attack Surface
	Real-World Permission Violations
	Case Study
	C++ Vtable (mysql-workbench)
	C++ Vtable (apt-get)
	Function Pointer (gettext)
	Format String (libow)

	Affected Defenses
	Other Platforms
	Windows
	macOS

	Conclusion
	References

