
MaMaDroid: Detecting Android
Malware by Building Markov
Chains of Behavioral Models

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis,
Emiliano De Cristofaro, Gordon Ross, Gianluca Stringhini.

NDSS 2017, 28-02-2017

Motivation: Android & Malware

•  Android market share is growing
–  In 2016, 85% of smartphone sales

•  At the same pace the interest by cybercriminals
is growing
– Bypassing two-factor authentication
– Stealing sensitive information, etc.

2

Motivations: Current Defenses

•  Can’t use complex on-device operations
–  Limited battery and memory resources

•  Google’s centralized analysis
– Previous work shown a few incidents
– Users buy apps from third party markets

•  Lots of research in the field! However
– Permission-based models prone to false positive
– Relying on API calls frequently used by malware

needs constant, costly retraining

3

Motivations: Our Idea

Intuition: malware uses calls for different actions
and in different order than benign apps
– E.g. android.media.MediaRecorder used by any app

with permission to record audio
– Only using it after calls to getRunningTasks(), which

allows to record conversations, may suggest
maliciousness

Rely on the sequence of abstracted calls
1.  Sequence captures the behavioral model
2.  Abstraction provides resilience to API changes

4

MaMaDroid

5

Overview

6

Call Graph Extraction

•  Based on static analysis
– Given an apk, extract call graphs

•  Tools
– Soot (Java optimization and analysis framework)
– FlowDroid

7

Call Graph

8

Overview

9

Sequence Extraction

•  Soot gives the call graph from which we
extract the sequence of functions that are
potentially called by the program, but…

•  When running example multiple times…
– Execute() may be followed by different calls, e.g.,

getShell() only in try or getShell() + getMessage() in
catch

10

Sequence Extraction

•  We proceed as follows:
1.  Identify set of entry nodes
2.  Enumerate paths
3.  Output set of all paths as the sequences of API

calls

•  But we said we were using abstracted calls!

11

Abstraction

12

android.os.Bundle: void <init()>

java.lang.thowable: String getMessage()

android.text.style.CharacterStyle: void <init>()
Package

Package

Family Package

Family

Family

Abstraction

•  Packages
– Using the list of 243 packages (as of API level 24) +

95 from the Google API
– Packages defined by developers à “self-defined”
–  If we can’t tell what its class implements à

“obfuscated”

•  Families
–  9 families: android, google, java, javax, xml, apache,

junit, json, dom
– Plus self-defined and obfuscated

13

Example

14

Example

15

Overview

16

Markov Chain

•  Memoryless models
–  Probability of transition from a state to another only

depends on the current state

•  Represented as a set of nodes
–  Each corresponding to a different state, and a set of

edges labeled with the probability of transition.

•  Sum of all probabilities associated to all edges
from any node is exactly 1

17

Building the Markov Chains

18

Nodes / States

Features set

Edges / Transition
Probabilities

Sequence of
abstracted API
calls

Example

19

Java Android

Self-defined

0.25 0.25

0.5

Feature Extraction

•  For each app:
– Feature vector = probabilities of transition from one

state to another in the Markov chain
– With families, 11 possible states à 121 possible

transitions in each chain
– With packages, 340 states à 115,600 transitions

20

Overview

21

Classification

•  Build a classifier using the extracted features
– Each app labeled as benign or malware

•  We tested our idea using:

– Random Forests
–  1-NN, 3-NN
– SVM

•  SVM was less efficient than the other systems
22

Dataset

23

Datasets

24

Category Name Date Range #
Samples

Samples
(API Calls)

Samples
(Call Graph)

Benign
OldBenign Apr 13 – Nov 13 5,879 5,837 5,572

NewBenign Mar 16 – Mar 16 2,568 2,565 2,465

Total Benign 8,447 8,402 8,037

Malicious

Drebin Oct 10 – Aug 12 5,560 5,546 5,538

2013 Jan 13 – Jun 13 6,228 6,146 6,123

2014 Jun 13 – Mar 14 15,417 14,866 14,827

2015 Jan 15 – Jun 15 5,314 5,161 4,725

2016 Jan 16 – May 16 2,974 2,802 2,657

Total Malicious 35,493 34,521 33,870

How many API calls?

25

Evaluation

26

Evaluation

•  Accuracy of classification on benign and malicious
samples developed around the same time

•  Robustness to the evolution of malware as well as
of the Android framework (using older datasets for
training and newer ones for testing and vice-versa)

27

Same Year

28

Training on older samples

Families abstraction! 29

Training on newer samples

30 Families abstraction!

MaMaDroid Vs DroidAPIMiner

DroidAPIMiner is the previous work operating detection of
malware samples from benign ones based on
sequences of API calls.

31

Tests DroidAPIMiner MaMaDroid
Same
Year 0.56 0.96

Older samples
Training 0.42 0.68

Newer samples
Training 0.50 0.96

Discussion and
Limitations

32

Case Studies (2016/newbenign)

•  False Positives (164 samples)
– Most of them “dangerous permissions”
– E.g., SMS permissions not clear why requested

•  False Negatives (114 samples)
– Actually not classified as malware by VirusTotal,

might be legitimate
– Most of them adware

33

Evasion

•  Repackaging benign apps
–  Difficult to embed malicious code while keeping similar

Markov chain, viceversa is also hard

•  Imitating Markov chains
–  Likely ineffective

•  Obfuscation/Mangling
–  Still captured by the [obfuscated] abstraction

•  More in the paper…

34

Limitations

•  Classification is memory hungry

•  Soot is buggy, we lose ~4% of the samples

•  Limits of static analysis only methods

35

Future Work
•  Further investigate resilience to evasion

–  Focus on repackaged malicious apps
–  Injection of API calls to mess with Markov chains

•  Enhancements

–  Fine-grained abstractions (e.g., class)
–  Seed with dynamic analysis

•  Releasing
–  MaMaDroid’s python code
–  The list of used samples and their hashes
–  Parsed dataset

 36

Thanks for listening

Enrico Mariconti!

37

Conclusions

•  We created MaMaDroid, a system for android malware
detection

•  Static analysis only, based on Markov Chain modeling of
sequences of API calls

•  Up to 0.99 F-measure in tests, resilient to changes over time

