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Motivation: Android & Malware 

•  Android market share is growing 
–  In 2016, 85% of smartphone sales 

•  At the same pace the interest by cybercriminals 
is growing 
– Bypassing two-factor authentication 
– Stealing sensitive information, etc. 
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Motivations: Current Defenses 

•  Can’t use complex on-device operations 
–  Limited battery and memory resources 

•  Google’s centralized analysis 
– Previous work shown a few incidents 
– Users buy apps from third party markets 

•  Lots of research in the field! However 
– Permission-based models prone to false positive 
– Relying on API calls frequently used by malware 

needs constant, costly retraining 
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Motivations: Our Idea 

Intuition: malware uses calls for different actions 
and in different order than benign apps 
– E.g. android.media.MediaRecorder used by any app 

with permission to record audio 
– Only using it after calls to getRunningTasks(), which 

allows to record conversations, may suggest 
maliciousness 

 

Rely on the sequence of abstracted calls 
1.  Sequence captures the behavioral model 
2.  Abstraction provides resilience to API changes 
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MaMaDroid 
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Overview 
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Call Graph Extraction 

•  Based on static analysis 
– Given an apk, extract call graphs 

 

•  Tools 
– Soot (Java optimization and analysis framework) 
– FlowDroid 
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Call Graph 
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Overview 
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Sequence Extraction 

•  Soot gives the call graph from which we 
extract the sequence of functions that are 
potentially called by the program, but… 
 
  

•  When running example multiple times… 
– Execute() may be followed by different calls, e.g.,  

getShell() only in try or getShell() + getMessage() in 
catch 
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Sequence Extraction 

•  We proceed as follows: 
1.  Identify set of entry nodes 
2.  Enumerate paths 
3.  Output set of all paths as the sequences of API 

calls 

•  But we said we were using abstracted calls! 
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Abstraction 
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android.os.Bundle: void <init()> 

java.lang.thowable: String getMessage() 

android.text.style.CharacterStyle: void <init>() 
Package 

Package 

Family Package 

Family 

Family 



Abstraction 

•  Packages 
– Using the list of 243 packages (as of API level 24) + 

95 from the Google API 
– Packages defined by developers à “self-defined” 
–  If we can’t tell what its class implements à 

“obfuscated” 
 

•  Families 
–  9 families: android, google, java, javax, xml, apache, 

junit, json, dom 
– Plus self-defined and obfuscated 
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Example 
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Example 
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Overview 
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Markov Chain 

•  Memoryless models 
–  Probability of transition from a state to another only 

depends on the current state 

•  Represented as a set of nodes 
–  Each corresponding to a different state, and a set of 

edges labeled with the probability of transition.  

•  Sum of all probabilities associated to all edges 
from any node is exactly 1 
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Building the Markov Chains 
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Example 

19 

Java Android 

Self-defined 

0.25 0.25 

0.5 



Feature Extraction 

•  For each app: 
– Feature vector = probabilities of transition from one 

state to another in the Markov chain 
– With families, 11 possible states à 121 possible 

transitions in each chain 
– With packages, 340 states à 115,600 transitions 
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Overview 
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Classification 

•  Build a classifier using the extracted features 
– Each app labeled as benign or malware 

 
•  We tested our idea using: 

– Random Forests 
–  1-NN, 3-NN 
– SVM 

•  SVM was less efficient than the other systems 
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Dataset 
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Datasets 
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Category Name Date Range # 
Samples 

# Samples 
(API Calls) 

# Samples 
(Call Graph) 

Benign 
OldBenign Apr 13 – Nov 13 5,879 5,837 5,572 

NewBenign Mar 16 – Mar 16 2,568 2,565 2,465 

Total Benign 8,447 8,402 8,037 

Malicious 

Drebin Oct 10 – Aug 12 5,560 5,546 5,538 

2013 Jan 13 – Jun 13 6,228 6,146 6,123 

2014 Jun 13 – Mar 14 15,417 14,866 14,827 

2015 Jan 15 – Jun 15 5,314 5,161 4,725 

2016 Jan 16 – May 16 2,974 2,802 2,657 

Total Malicious 35,493 34,521 33,870 



How many API calls? 
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Evaluation 
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Evaluation 

•  Accuracy of classification on benign and malicious 
samples developed around the same time  
 

•  Robustness to the evolution of malware as well as 
of the Android framework (using older datasets for 
training and newer ones for testing and vice-versa) 
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Same Year 

28 



Training on older samples 

Families abstraction! 29 



Training on newer samples 

30 Families abstraction!



MaMaDroid Vs DroidAPIMiner 

DroidAPIMiner is the previous work operating detection of 
malware samples from benign ones based on 
sequences of API calls. 
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Tests DroidAPIMiner MaMaDroid 
Same  
Year 0.56 0.96 

Older samples 
Training 0.42 0.68 

Newer  samples 
Training 0.50 0.96 



Discussion and 
Limitations 
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Case Studies (2016/newbenign) 

•  False Positives (164 samples) 
– Most of them “dangerous permissions” 
– E.g., SMS permissions not clear why requested 
 

•  False Negatives (114 samples) 
– Actually not classified as malware by VirusTotal, 

might be legitimate 
– Most of them adware 
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Evasion 

•  Repackaging benign apps 
–  Difficult to embed malicious code while keeping similar 

Markov chain, viceversa is also hard 

•  Imitating Markov chains 
–  Likely ineffective 

•  Obfuscation/Mangling 
–  Still captured by the [obfuscated] abstraction 

•  More in the paper… 
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Limitations 

•  Classification is memory hungry 

•  Soot is buggy, we lose ~4% of the samples 

•  Limits of static analysis only methods 
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Future Work 
•  Further investigate resilience to evasion 

–  Focus on repackaged malicious apps 
–  Injection of API calls to mess with Markov chains 

 
•  Enhancements 

–  Fine-grained abstractions (e.g., class) 
–  Seed with dynamic analysis 

•  Releasing 
–  MaMaDroid’s python code 
–  The list of used samples and their hashes 
–   Parsed dataset 
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Thanks for listening 

Enrico Mariconti!
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Conclusions 

•  We created MaMaDroid, a system for android malware 
detection 

•  Static analysis only, based on Markov Chain modeling of 
sequences of API calls 

•  Up to 0.99 F-measure in tests, resilient to changes over time 


