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Abstract

We present a new security technology called the
Multilayer Firewall. We argue that it is useful in some
situations for which other approaches, such as
cryptographically protected communications, present
operational or economic difficulties. In other
circumstances a Multilayer Firewall can compliment
such security technology by providing additional
protection against intruder attacks. We first present the
operational theory behind the Multilayer Firewall and
then describe a prototype that we designed and
implemented.

1. Introduction

The economic case for designing, implementing and
deploying network and distributed system security
mechanisms is now well established. Recent estimates of
worldwide annual financial losses during 1995-1996
due to improperly protected information assets range
from the hundreds of millions of dollars [1] to as high
as 30+ billion dollars [2]. While actual losses may be
less than the higher figure, losses in the billions of
dollars annually are likely.

Even though there is general agreement that security
mechanisms are necessary to protect information assets,
there is less agreement on the specific technology to use.
It is a thesis of this paper, justified in the next section,
that many factors, including economic, legal and social
constraints, affect whether a particular technology
should be employed in a given situation. Different

circumstances force different tradeoffs, implying that no
technology is optimal for solving all security problems.

Working under this premise, we present a new
technique for securing networks, called the multilayer
firewall, which is useful in many circumstances. This
approach extends the concept of a firewall as a device or
devices that secure the border of a network to include
the coordinated and selective restriction of traffic within
a network, thereby protecting internal network
resources. One of the innovations of our work is the use
of a combination of high-level policy statements,
network topology and a description of which devices are
capable of enforcing security policy to automatically
calculate the filter sets for each enforcing device. Since
these sets are in general different, this relieves the
system administrator from the arduous task of creating
and downloading them to each enforcing device, the
number of which may be large.

Another innovation is the potential to utilize network
devices at both layer 2 and layer 3 to implement the
firewall filtering activity. Traditional security filtering
normally takes place in packet filtering routers or
application level proxy gateways. However, to
accommodate the performance requirements of internal
network traffic, a multilayer firewall can use filtering
functionality in layer two devices, such as 802.x and
ATM switches, in order to achieve acceptable
performance objectives for internal network traffic.

This paper is organized as follows. In the next
section, we present an analysis of several network
security technologies and suggest situations in which
their use is unattractive. This motivates the presentation
of the multilayer firewall, which is given in section 3. In
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section 4 we describe a prototype that we designed and
implemented to test the multilayer firewall concept.
Section 5 presents performance data that demonstrates
the utility of using a combination of layer 3 and layer 2
devices for security filter enforcement. In section 6 we
survey related work. Finally, in section 7 we present our
conclusions from this research.

2. Motivation

Network security researchers and implementors have
focused a great deal on how to protect networks from
external attack. Traditional firewalls [3, 4] are designed
to protect the borders of a network, preventing
unauthorized access to internal resources by outside
agents. Secure virtual private networks (VPNs) [5] have
been used mainly to protect communications between
private networks communicating over a public facility,
such as the internet, or between a remote client and a
border device positioned at a private network. In many
cases VPNs are implemented using a tunneling protocol,
such as PPTP [6], operating over a lower layer security
protocol, such as IPSEC [7, 8, 9].

There has been some work to protect the internal
communications of network management and control
software, but it either has been inadequate, such as the
use of SNMP community strings for protecting SNMP
requests, is still being developed, such as SNMPv3, or is
still in the research stage, such as mechanisms to protect
routing protocols [10, 11, 12]. The use of encryption at
the network layer and below to protect communications
in non-classified networks until recently has been limited
to the banking and financial industries. Work within the
IEEE to standardize encryption for 802 based layer 2
communications has not seen significant implementation
and deployment. While implementations of IPSEC and
IPSEC-based [13] protocols are making significant
progress, prior implementations of standardizing
network layer encryption protocols [14, 15] were not
deployed widely, at least in the commercial market.

The greatest success in protecting communications
within the interior of a network uses application based
security. Kerberos [16], DCE [17], and security
mechanisms for the world wide web [18] have seen
significant deployment. Security mechanisms for
distributed object systems [19] utilize these and similar
technologies for access control and protected
communications.

So, the two best candidates for protecting resources
internal to a network are IPSEC or application based
security mechanisms. Yet, there are reasons why using
either of these is sometimes inappropriate. This follows
from certain characteristics that do not match the

requirements of some common deployment situations.
These requirements are as follows.

2.1 Performance

Both IPSEC and the common application based
security solutions use cryptography to protect
communications. While this provides significant
protection, there is a performance penalty to pay. The use
of cryptography for message integrity and authentication
does not severely degrade communication and processor
performance in most cases. However, its use for message
confidentiality, when implemented in software, can
significantly degrade CPU intensive application
performance.

The attendant loss of performance becomes more
serious as longer key lengths and stronger algorithms are
required to meet the continuing decrease in the ratio of
cost to computing performance. Thus, while DES was
once considered sufficient for protecting high asset value
unclassified data, this is no longer true. Most high asset
value applications, for example, those in the financial
sector, now require the use of triple-DES. However,
existing desktop systems and those projected for the next
few years have inadequate performance to support
communications using triple-DES in software over
common and emerging fabrics (e.g., 10 and 100 Mbps
ethernet). For example, Bart Preneel of the Catholic
University Leuven in Belgium reports that an optimized
triple-DES implementation running on a 90 Mhz
Pentium achieves 6.2 Mbps [20]. This result was
computed when no other computation was running on
the test system. Projecting, a 200 Mhz Pentium running
nothing but triple-DES software should achieve
approximately 13.8 Mbps.  Systems running applications
that use even a moderate percentage of CPU cycles (i.e.,
in excess of 30%) could not sustain a rate of 10 Mbps
without users noticing a slow down. Applications
requiring much higher bandwidth (e.g., those running
over 100 Mbps ethernet, such as medical imaging
applications) will not be able to use software based triple-
DES in the foreseeable future. Consequently, hardware
accelerators are probably necessary for systems running
these applications. Such hardware introduces cost and
legacy support issues that are discussed below.

Even for applications that access moderately valuable
assets, for which single DES may be appropriate,
confidentiality protection can be a problem. Preneel
reports that an optimized single DES implementation
can achieve 16.9 Mbps on a 90 Mhz Pentium [20].
Projecting, a 200 Mhz Pentium running only single DES
software should achieve approximately 37.5 Mbps. Thus,
the performance of single DES in software is acceptable
for communications at 10 Mbps only for desktop systems
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deployed in the past several years. Many legacy desktop
systems cannot support this rate. Furthermore, even the
best desktop systems available cannot support 100Mbps
communications with software based single DES.

The conclusion is cryptographic approaches for
confidentiality will be useful only for a subset of
applications, e.g., those valuable enough to justify the
acquisition of new high performance end systems or
hardware acceleration for existing systems, or those
applications with low bandwidth requirements. Since
some applications, such as medical imaging to the
practitioner’s desktop and a large number of CAD
applications, do not fall into these categories, a non-
cryptographic approach to protected communications is
justified in those situations.

2.2 Cost

Since cryptographic services may require hardware
acceleration or desktop upgrade in order to achieve
acceptable performance, its use introduces cost factors
that may be unacceptable in certain circumstances.
Generally, the acquisition of capital equipment is
budgeted several years in advance and may replace only
a portion of deployed computer systems. There is still a
large number of relatively old systems in use today in
many environments. Replacing all of these systems with
newer ones is generally infeasible. Even when this is
possible, replacement systems may not provide the
highest available performance. A similar situation exists
for hardware acceleration of cryptography.

An important consideration in regards to cost is the
computing capacity available to an adversary in relation
to the computing capacity available on an average
desktop. After new desktops have replaced old ones over
several years, the computing power available to an
adversary will have increased. So, when systems
considered state-of-the-art today are commonly available
on the desktop, they will not be state-of-the-art in regards
to their encryption support capabilities. Bandwidth
capacity will have increased; computing capacity
available to an adversary will be greater; and
applications will arise requiring higher bandwidths.

The conclusion is there will never be a point when
cryptographic solutions will be sufficient to address all
application security requirements. Desktop computing
capacity will always lag the cryptographic requirements
of some applications. Consequently, non-cryptographic
approaches to protecting network communications will
always be useful.

2.3 Policy Enforcement

There are numerous situations for which
communication between components in a distributed

system must conform to a centrally administered policy.
Examples include restrictions on the use of non-mission-
critical applications during normal business hours in a
financial institution, and restrictions on the information
that a particular individual or organization may
legitimately access, such as company financial or product
planning data. The enforcement of such policy may occur
proactively by preventing unauthorized communications,
or retroactively by monitoring communications in order
to detect policy violations.

When message traffic is confidentiality protected, the
enforcement or monitoring activity must take place while
the monitored data is in the clear. For application based
security services, this requires the policy enforcement
logic to reside between the application and the security
service libraries. Since commonly deployed application-
based security systems do not have such policy
enforcement capabilities, this functionality must be
retrofitted to the applications either by creating a "glue"
layer library implementing policy, or by retrofitting the
applications themselves with policy management
support. In either case, the expense is potentially high
due to engineering, manufacturing and redeployment
costs. Furthermore, those administering central policy
may not trust end systems to carry out policy
enforcement unless there are hardware guarantees that
such enforcement cannot be tampered with by the end
user. Currently, there is no commonly deployed hardware
with this capability.

There are more options for policy enforcement when
a network layer security protocol, such as IPSEC, is used.
If IPSEC is implemented in a network device, such as a
router, which is used as one end of a confidentiality
protected association, policy enforcement can be
implemented in the network by observing the traffic
either before it is encrypted or after it is decrypted. This
configuration requires other security technology to
implement the policy enforcement function.

If IPSEC is implemented at both ends of an
association within the end systems, policy enforcement
must occur in the end systems themselves. This may
require the use of a policy "shim" inserted into the end
system's protocol stack, a "glue" layer library located
between the application and the protocol stack interface,
or modified applications that are retrofitted with policy
management software. As with application based security
services, administrators may not find end system policy
enforcement acceptable without guarantees that are
difficult to achieve with existing end system hardware.

Thus, policy enforcement in a network protected by
cryptography may require other security functionality,
which examines cleartext data. This functionality would
enhance the services provided by cryptography.
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2.4 Legacy Support

Protecting communications with cryptographic
services requires the use of software or hardware capable
of using and providing cryptography. There are many
deployed applications that are not designed to use
cryptographic services nor could they be easily retrofitted
to do so. There also are fielded computer systems
running legacy operating systems or based on legacy
hardware that cannot economically be retrofitted with the
necessary cryptographic  features.

To address these situations, the designers of IPSEC
have included a tunneling mode, which provides
protection for legacy system communications between
tunneling endpoints. However, IPSEC tunneling only
protects data while it is in the protected tunnel. At either
end of the tunnel, the data is unprotected and susceptible
to intruder attack. Other security measures may be
necessary to protect this data as it moves in the clear over
unprotected sections of a network.

2.5 Legal Issues

The use of cryptographic services is complicated by
legal constraints. The world-wide promulgation of
cryptographic functionality is currently constrained by
export control restrictions and in some countries by
import and usage restrictions. This has impeded the
deployment of cryptographic solutions.

While there is evidence that certain countries are
relaxing restrictions on cryptographic technology, it is
unlikely that all legal restrictions will be removed in the
near future. Thus, other approaches to network and
communication security will remain valuable simply
because they are more easily deployed.

2.6 Summary

The use of application or network based
cryptographic services to protect distributed resources is
useful in many important situations. However, there are
other circumstances in which these approaches do not
meet other system goals. Performance requirements, cost
constraints, policy management considerations, legacy
systems and legal issues may either render cryptographic
solutions undesirable or limit their applicability, creating
the opportunity to utilize other security technology.

3. The Multilayer Firewall

3.1 Background

Using firewalls to protect networks from external
attack is a mature and widely deployed technique. The
term "firewall" identifies a number of different
equipment configurations. The most elaborate of these is
constructed from several systems [3, 4], such as interior

and exterior routers, a DMZ, and one or more bastion
hosts located within the DMZ. However, less
complicated configurations also qualify as firewalls, such
as a single packet filtering router.

Administrators rely on the physical security of
firewall equipment in order to prevent the movement of
unauthorized traffic through it. They also depend on the
integrity of message data, in particular source addresses
and for IP based firewalls, source ports, for correct
firewall operation. In situations where these assumptions
are too risky, the use of firewalls is unwise. However,
there are environments, such as certain corporate or
institutional networks, some classified networks, and
some carrier networks where these assumptions are
reasonable. In such cases, the use of firewalls may
provide an acceptable alternative to or enhancement of
cryptographic based approaches.

Normally, firewalls are placed at the borders of a
network in order to protect it against attack by external
intruders. The positioning of current generation firewalls
within a network to control internal traffic has the
disadvantage of significantly reducing overall
communications performance. Consequently, when
deployed in this manner, firewalls are generally placed
only at a very small number of points within the network
where the traffic density is low.

3.2 Packet Filtering Firewalls

A simple class of firewall utilizes packet filtering to
control the traffic allowed to pass between different
networks. Virtually all of these firewalls use packet
filtering routers or packet filtering engines that run in the
kernel of an operating system.

Packet filtering devices, when properly configured,
can prevent data from flowing through inappropriate
portions of a network. This provides a limited form of
confidentiality and integrity protection, since data is kept
out of the reach of unauthorized individuals who might
modify or view it. The strength of protection is not as
great as that provided by cryptography, but it can
increase the level of effort required by an intruder to
access information.

The general architecture of a packet filtering firewall
consists of the following components : 1) a user interface
for specifying packet filtering rules, 2) persistent storage
for retaining the current configuration of filtering rules,
3) a filter compiler that accepts a high-level description
of filter rules (policy statements) and produces low-level
commands or configuration data for the enforcement
engine, and 4) an enforcement engine that implements
the filtering mechanisms. In addition to these
components there may be other optional components,
such as audit trail functionality, which records
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anomalous events, or testing functionality, which allows
an administrator to test the filter rules with traffic
generated within the firewall.

Packet filtering firewalls require the retention of state
in order to handle certain protocols. For example, FTP
uses both a control and a data association. The control
association carries the information specifying which port
to use for data transmission. In order to allow the data
association traffic to pass, a packet filtering firewall must
snoop on the FTP control traffic, looking for the
appropriate command containing the data association
port. It then establishes a temporary filter rule, or its
equivalent, which allows the FTP data to pass.

3.3 Multilayer Firewall Architecture

Traditional firewalls normally protect a network
against external attack. An extension of this idea places
firewall functionality within a network to protect it
against internal attack. As mentioned above, this strategy
is presently limited, since systems used to implement
firewalls are generally slow. Placing them in the interior
of a network  dramatically degrades performance.

However, filtering is used for many purposes. Layer 2
devices, such as 802.x and ATM switches, filter traffic to
enhance network performance by containing broadcasts.
The implementation of filtering in these devices is highly
optimized, providing significantly better communications
performance than that available in routers.

It is possible to use layer 2 filtering to implement
firewall functionality in addition to broadcast
containment. This leads to the idea of a multilayer
firewall, i.e., a firewall that uses filtering functionality at
layer 3 and layer 2 to implement security policy.

A multilayer firewall (MLF) is constructed from the
following elements :
• An MLF management system, consisting of one or

more stations from which the MLF is controlled.
This system provides an appropriate user interface
for entering MLF security policy. Depending on its
implementation, MLF policy could be expressed as
a table of policy statements, as predicates specifying
enforcement conditions on firewall traffic, or in
some other way. The security policy language
should be designed for clear and concise
specification of desired network behavior. The
language should be human-oriented rather than
machine-oriented.

• A set of enforcement devices, which may be layer 3
routers, layer 2 switches or any other device that
supports packet filtering or application proxying.
An enforcement device is located within the interior
of the network and connected to other devices
through layer 2 links. Its filtering activity is

specified either by commands or by configuration
data.

• An MLF policy compiler, which accepts policy
expressed in the high-level language and produces
low-level data for the enforcement devices (see
below). The compiler should be able to transform
high-level policy statements into commands or
configuration data for a number of different devices.
To ensure extensibility, the compiler architecture
should allow device translators to be plugged in,
allowing the addition of new enforcement device
types to the MLF.

• Persistent storage, which stores both the high-level
policy and the low-level device data. The MLF
architecture allows this persistent storage to be
distributed. Such storage includes persistent storage
subsystems, such as directory services and
distributed database systems, as well as persistent
storage on suitably equipped enforcement devices.

• Enforcement data transport, which is used to move
the low-level device data from the MLF
management system to the enforcement devices.

• A description of network topology, which includes
information about the interconnection of nodes (i.e.,
network devices and end systems (hosts)) and
which specifies the devices capable of and trusted to
enforce MLF security policy. A more detailed
explanation of the network topology information
and how it is used by the MLF is given below.

3.4 Multilayer Firewall Operation

Traditional firewalls are normally configured by a
firewall administrator entering filtering rules for a
particular enforcement engine. Some firewalls [21] allow
the administrator to configure multiple engines from a
single user interface. The administrator specifies in each
rule the set of enforcement engines that the rule affects.

Since the MLF may potentially control a large
number of enforcement engines and since the filter sets
for these engines (to ensure the highest possible
efficiency) are normally different, relying on the
administrator to decide which high-level policy
statements affect which enforcement devices could lead
to misconfigurations. Therefore, the MLF determines
which devices are the target of a policy statement. The
administrator does not identify these devices.

Devices are selected in the following manner. The
high-level policy statements specify which hosts are
allowed to inter-communicate using a specified set of
application protocols. For example, the high-level
language of the prototype (described below) allows the
firewall administrator to collect hosts into host groups
and then specify policy statements using these or an
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individual host tag as identifiers. A statement consists of
a source host or host group, a destination host or host
group, a protocol (e.g., FTP, Telnet), an action (i.e.,
allow or disallow) and an enforcement point (source,
destination or both; this is explained below). For each
statement in the high-level policy specification, the MLF
: 1) determines the set of enforcement devices that must
implement the statement, 2) compiles the statement into
low-level commands or configuration data for each type
of device (there may be more than one device type
represented in the set), and 3) accumulates the low-level
data for later delivery to the device.

The MLF decides which devices are affected by a
particular statement by consulting the topology
information, represented as follows. Each enforcement
device is an "active" node. All hosts that do not enforce
policy are "passive" nodes. The physical topology of the
network is used to determine the passive nodes
"associated" with an active node. A passive node is
associated with an active node if traffic from the passive
node may reach the active node without passing through
another active node. Note that passive nodes may be
associated with more than one active node. Finally, all
active nodes are considered to be associated with
themselves (this is important only if the active node can
be the destination of network traffic, rather than always
acting as a transit point).

When the MLF processes a high-level policy
statement, it first determines whether there is a path
between any host in the source set and any host in the
destination set that does not pass through an active node.
If so, the statement is flagged as unenforceable, and the
administrator notified.

If the rule is enforceable, the MLF examines the
source and destination hosts or host groups and
determines a cut vertex set in the network topology graph
that separates the source from the destination. Only
active nodes may be members of the set. For each device
type represented in the cut vertex set, the MLF translates
the high-level policy statement into low-level data for
that type and stores it in a file for the appropriate
devices. When all statements are processed, the MLF
transports each file to its associated devices.

Using a cut-vertex set of active nodes allows the MLF
to operate in a heterogeneous environment. That is, only
the active nodes must be capable of communicating with
the management station and enforcing policy. Legacy
devices and those without MLF functionality require no
modifications to work in an MLF environment.

The best possible efficiency is obtained if the MLF
computes a minimum cut vertex set for each high-level
policy statement. However, computing cut vertex sets for
large graphs can be computationally intensive.

Consequently, an MLF may utilize heuristics to compute
a cut vertex set that is not guaranteed to be minimal, but
which is likely to be in many cases. For example, our
prototype utilizes the last field of the policy rule
(enforcement point) to quickly compute a cut vertex set
associated either with the source, the destination or the
union of these two sets (when "both" is specified) to
accommodate cases for which double enforcement is
desirable.

Distribution of the low-level device information is
achieved in one of two ways. If the device is not capable
of persistently storing its filtering data, the MLF
management station stores it in the persistent store, then
signals the device to update its enforcement data. The
device then retrieves the data from the persistent store.

If the device is capable of persistently storing its
filtering data, the MLF management station contacts it
and moves the data to it directly. The MLF could use
SNMP, a combination of Telnet and FTP (or TFTP),
when the device supports these protocols, or some other
configuration data transport mechanism. Use of these
protocols for management requires initial device filter
configuration data that permits traffic of this type to
reach it.

Some enforcement devices, such as remote access
concentrators, are able to establish filtering data based on
a user identity. For example, some support user
authentication and authorization through a server such as
RADIUS. As part of the authorization step, filters
associated with that user are loaded into the concentrator
and then used to enforce security policy for the user's
connection. For these devices, low-level enforcement
data may be retrieved without prompting by the MLF
management station.

3.5 MLF Partitioning

Many organizations are divided into separate
divisions, departments or business units that control their
own computing and networking assets. In addition, some
networks may be too large to manage as a single MLF.
Finally, some networks are naturally partitioned into
independent units based on classification level, physical
security, or other characteristics. To accommodate such
cases it is necessary to create MLF partitions that consist
of a subset of the nodes in a network and manage each
partition as a single MLF. In order for the hosts in these
MLFs to communicate with one another, an MLF must
support the specification of "external nodes," which
represent other MLFs. The identifiers for these external
nodes should be allowed to appear in high-level policy
statements wherever hosts or host groups appear.

MLF partitioning introduces several management
issues. First, connections between MLF partitions may
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only occur at active nodes, otherwise, unauthorized
traffic from one MLF partition could enter another.
Secondly, policies specified in both MLF partitions
controls the communications between them. Since each
MLF management station only displays its own policy,
an administrator cannot determine from either MLF
console how inter-MLF partition traffic is controlled
(unless some auxiliary protocol is defined for the
exchange of policy data between directly connected
MLFs). Finally, since MLF partitions can be
interconnected in a general graph, it may be difficult to
determine what actual policy is enforced within the
federated MLF partitioned network. This difficulty arises
from transitivity considerations that cannot be analyzed
from the data of a single MLF policy database.

3.6 MLF Applications

An MLF is useful in a number of different situations.
We present two examples.

A significant security problem for many corporations
is allowing business partners access to the corporation’s
internal network in order to share information vital to the
partnership. This must be done in a way that doesn’t give
the partner access to information unrelated to the
relationship [22]. Protecting communications between
the partners’ networks using protocols such as IPSEC
does not achieve this objective, since once connected to
an end system, an individual can use it to connect to
other systems in the network through protocols such as
telnet or rlogin.

One way to limit such access is to create an MLF
partition consisting of the systems that contain the data
to be shared. Policy can then be established within this
partition that allows telnet, rlogin and other remote
terminal session protocols to enter the partition, but
prevents their use from systems within the partition to
those outside it. Establishing this kind of directionality
for other protocols, such as http, ftp, nfs, and so forth,
can further tighten the protection provided.

Another situation in which an MLF is useful occurs
when a large organization formed from smaller
departments requires protection against an insider threat.
If the volume of traffic within departments is
significantly greater than that between them, host groups
comprised of departmental systems may be used to
specify inter-departmental security policy. Such policy
can limit the kind of traffic moving between
departments, thus, providing limited protection against
insider initiated intrusions. Other security functionality,
such as auditing and intrusion detection, would further
increase the network’s ability to thwart insider attacks.

4. A Prototype

To test the concepts described above, we designed
and implemented an MLF prototype. It has the ability to
manage, analyze, and distribute high level firewall
filtering policy in a network.

4.1 General Architecture

The MLF concept is implemented by using a network
traffic analyzer and monitoring tool called Traffix along
with Tartan, the MLF policy management tool. Tartan
consists of a graphical user interface to create and edit
policy and a policy engine that compiles the high level
MLF policy, generates configuration information for the
active nodes in the physical topology, and performs the
configuration on the active nodes in the network.

4.2 Theory of Operation

A network administrator, Bob, uses Traffix to divide
hosts on his network into logical groups. These groups
can be semantic in nature, such as hosts grouped by the
Marketing Department, the Engineering Department,
and so forth. Using Traffix as an initial front end to set
up the logical groups, the administrator can then invoke
Tartan from a button on the Traffix console. He then is
able to create and enforce MLF policy based on the
logical group topology he created with Traffix. Through
Tartan’s graphical user interface, the administrator can
add, delete, and change firewall policy between groups of
hosts. Tartan’s policy engine performs enforceability
analysis and then distributes the policy throughout the
network by reconfiguring the active nodes.

GUI
Network

Policy

Engine

Persistent Store

Tartan

Traffix

Figure 1. General Architecture of Prototype
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4.3 Physical Network Topology

An MLF not only needs information on logical
topology, it also needs information on the physical layout
of the network topology. Tartan views the network
hardware topology as a collection of active nodes and
passive interfaces. Active nodes are filter enforcing and
remotely configurable devices, such as routers. Passive
interfaces are network interfaces that are not on policy
enforcing devices, such as workstations.

Figure 2 shows a sample physical network layout.
The boxes labeled X and Z represent active nodes each
with two ports that are labeled 1 and 2, e.g., ethernet
interface cards.  The circles labeled A, B, C, D, E, F,
and G are workstations. The larger ellipses labeled Net1,
Net2, and Net3 represent actual local area networks.

A

B

C

D
E

Z

F G

X

Net1

Net2

Net31

2

1
2

Figure 2. Physical Network Topology

A specification of the physical topology of the
network that Tartan can work with should be provided
automatically by some network administration tool.
However, Traffix does not presently supply this
information. Finding and integrating a suitable tool was
beyond the realizable scope of the prototype. Therefore,
network topology is presently specified in a configuration
file by an administrator (see section 4.6.7 for further
discussion of this problem).

The topology file representing the above figure is as
follows:
Topology “BlackWatch Technology 13 June 1997”
   128.230.32.11 128.230.59.12
Active NetBuilderII  X1  “userid” “pw1234”
   Port  1  X1
       Passive  A
       Passive  B
       Passive  C
    Port  2  X2
       Passive  D
       Passive  E
Active NetBuilderII Z1 “userid” “pw1234”

   Port  1  Z1
       Passive  D
       Passive  E
   Port  2  Z2
       Passive  F
       Passive  G

The topology file contains the necessary information
for Tartan to determine the lower level policy directives
that must go to each active node within the physical
topology. The keywords are: Topology,
ManagementStation, Active, Port, and Passive. The
first line in the file labels the topology with some
identifying information. The second line labels the IP
address(es) of the management station(s). The
subsequent lines layout the physical topology.

The physical topology specification is structured
primarily by active node. Active node lines contain a type
identifier and authentication information for configuring
the active node. For the prototype, the authentication
information consists of a user name and password. Use of
a more secure authentication technique would be
preferable for an MLF implementation intended for
deployment.

Passive interfaces are considered to be “behind” a
particular active node’s port and are organized by port
under each active node. For instance, in the above
network, the passive interfaces, A, B, C are considered to
be behind X’s port 1 (represented by the symbol) because
they are directly connected to that port via an ethernet
cable. Likewise, passive interfaces D and E are
considered to be behind X’s port 2 and Z’s port 1.
Similarly, the passive interfaces F and G are considered
to be behind Z’s port 2.

NB: The topology file actually  must contain only IP
addresses to label the different active nodes and passive
interfaces. However, for purposes of explaining this
example in an understandable manner, please read the
labels A, B, C, D, E, F, G, X1, X2, Z1, Z2 as visual
replacements for unique IP addresses.

4.4 Creating an MLF Policy

The administrator Bob uses Traffix to group the hosts
in a semantic manner disregarding physical network
boundaries. For example, Bob organizes the hosts A
through G by department, such as Sales, Engineering,
and Management. Bob organizes the groups such that
hosts A and D belong to Management; hosts B, C, and E
belong to Sales; and hosts F and G belong to
Engineering.

Once Bob specifies the topology and groups the hosts,
he can use Tartan to create an MLF policy. An MLF
policy is an ordered list of policy statements. Policy
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statements are described in Tartan similarly to most
traditional firewall products. Traditional firewalls
describe policy between two hosts or networks by IP
addresses. Policy rules are described in a source to
destination directed manner. Tartan takes advantage of
the Traffix grouping mechanism to specify a higher level
filtering policy between source and destination host
groups.

A policy statement that is specified between two
entities contains three other attributes. It contains the
name of the protocol to be filtered, such as FTP, Telnet,
etc.; the policy, whether the traffic is allowed or
disallowed; and whether the filter rule is enforced at
active nodes near the source, near the destination, or near
both end points.

Source Dest Proto Policy Enforce
Sales.C Eng FTP Allow Both
Sales Eng FTP Disallow Source
Mgmt Sales SMTP Allow Both
Mgmt Eng SMTP Allow Both

The order of the rules in Tartan is important. Each
policy statement that is placed earlier in the list takes
precedence over subsequent ones. Therefore, more
general rules should be listed last, and the exceptions
should be placed first.

For example, assume there are two logical groups
Sales and Engineering, and a host, C from Sales. A more
general rule is one disallowing FTP traffic from Sales to
Engineering, whereas a more specific rule is allowing
FTP traffic from host C to Engineering. Ordering the
more general rule in front of the more specific rule
effectively renders the more specific rule ineffective.
Putting the rules in reverse order ensures that no FTP
traffic should flow from Sales to Engineering except
from host C (see section 4.6.9 for a discussion of
problems with this rule ordering approach).

Tartan displays the policy statements in a graphical
user interface using a vertically ordered list.  Bob can
insert, delete, and modify rules using the functions of the
Tartan graphical user interface.

Once Bob has finished modifying or creating rules,
he can run a check on policy enforceability. Due to a
network hardware topology, a rule that Bob introduces
might be unenforceable, such as a rule between two hosts
that are directly connected without any active node
between them. These checks help Bob define a
comprehensive, sound policy.

When Bob is satisfied with his creation he can then
ask Tartan to deploy the policy by the press of a button
on Tartan’s graphical user interface. Tartan’s policy

engine takes into account the physical topology and the
logical group topology and delivers  the necessary
administration commands to the various active nodes on
the network.

At the time of writing, the MLF prototype only
compiles low-level data for NetBuilder II routers.
However, the software architecture of the prototype is
designed it to accept “plug-ins” that translate the high-
level policy statements into low-level data for an
arbitrary device, such as high-performance layer 2
switches.

4.5 Algorithm for Determining Enforceability

The prototype uses the following algorithm to
determine the enforceability of policy statements.
1. For each rule in the policy:
1.1 Determine the set of source hosts and the set of

destination hosts according to the logical grouping
of hosts by Traffix

1.2 Create a set of all active node ports from the physical
topology that contain the IP address of the source
hosts.

1.3 Create a set of all active node ports from the physical
topology that contain the IP address of the
destination hosts

1.4 If the intersection of the two sets is non-empty, the
rule is unenforceable. Therefore, the policy is
unenforceable. Return with error.

2. If all rules have been processed without error, the
policy is enforceable. Return with success.

4.6 Unresolved Issues

The prototype illustrates the concept of a multilayer
firewall and demonstrates its feasibility. However, there
are a number of issues that it does not address.

4.6.1 Layer 2 or Layer 3 Address Masquerade
Security policy that is defined using source addresses

is susceptible to address masquerade attacks. Both
network layer (IP) and link layer (802.x) addresses are
easily spoofed. An intruder who wishes to defeat security
policy need only discover which source addresses are
allowed to send certain traffic and then masquerade as
one of those addresses. While not specific to an MLF,
layer 2 and layer 3 address masquerade lessens the
attractiveness of firewalling as a security policy
implementation strategy in environments susceptible to
this attack.

There are several ways to deal with this problem.
Some layer 2 devices, such as certain repeaters, provide a
learning phase that allows a device to learn all legal
MAC addresses. After the learning period, the arrival of
a frame using a source MAC address not in the learned
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set causes the repeater to partition the port, preventing its
traffic from being forwarded. This feature can be used to
limit the number of MAC addresses available to an
intruder for masquerade purposes.

Another approach to MAC address masquerade is to
use a MAC address authentication technique. One
approach is to secure source addresses by means of a
cryptographic protocol such as that defined in the IEEE
802.10 standard [23]. While this reintroduces
cryptography, the scope of cryptographic protection is
local, allowing an administrator to protect only those
parts of the network for which MAC address masquerade
is considered a viable threat. Furthermore, only integrity
protection is required, so the performance problems
alluded to in section 2 do not pertain.

Layer 3 source address masquerade is somewhat more
problematic than that for layer 2. While cryptographic
protocols such as IPSEC provide source address
authentication, it is an end-to-end service. An MLF
requires end-to-multipoint authentication in order that
the enforcement points are not misled by source address
masquerade. In addition, these multipoints are internal to
the network and are generally unknown to an end
system. We are not aware of existing layer 3 protocols
with this capability.

One possibility is to restrict all enforcement points to
the layer 2 domain of the sending end system (i.e., to that
part of the network fabric for which no layer 3 routing
devices intervene between an end system and layer 2
devices). A combination of MAC address authentication
and secure binding of MAC addresses to layer 3
addresses then provides the necessary service. Secure
binding of layer 3 addresses to MAC addresses is
problematic using protocols such as ARP, which have no
security provisions. However, other binding protocols,
such as NHRP, have fields, as yet undefined, that could
be used for secure address binding.

4.6.2 Interaction Between the Prototype and
DHCP

The current MLF prototype utilizes source and
destination addresses within policy statements. However,
protocols such as DHCP allocate IP addresses to end
systems dynamically. Consequently, using a fixed IP
address to identify such an end system is not viable.

There are a number of ways to solve this problem.
One is to use a different piece of identifying information
for these end systems. For example, the device's MAC
address (assuming most such systems are singly-homed)
could be used for this purpose. Since MAC addresses are
only valid within a broadcast domain and not across
routers, the enforcement analysis would become more

complicated, since all active devices enforcing a
particular rule would have to be in the end system's
domain.

Alternatively, if the end system is directly connected
to an appropriately equipped device, that device could
snoop DHCP packets, associate the allocated IP address
to the end system's MAC address and then securely
distribute this binding to the MLF management system.
The management system could then access the
appropriate policy statements (which would specify the
device's MAC address) and recompute the data for the
enforcement devices. The possible disadvantage of this
approach is that it might overload the MLF management
system if there are a large number of DHCP managed
devices or if those devices all tended to get DHCP
addresses at the same time (e.g., when employees arrived
in the morning).

A different approach would be to coordinate security
policy with DHCP allocated addresses. If end systems
were constrained to receive IP addresses in a particular
range and all end systems allocated addresses in that
range were considered to be equivalent from a security
policy viewpoint, then the MLF policy statements could
use host groups associated with that range of addresses in
its policy statements. This would result in some loss of
flexibility in managing security policy, but a DHCP
server that allowed flexibility in allocating addresses to
end systems might provide sufficient control to meet
most security objectives.

4.6.3 Handling Protocols Requiring State
Retention in Switches

Switches may not be designed to retain temporary
state, such as that needed to properly handle certain
application protocols. For example, ftp uses a data
association, one port of which is defined by a command
in the control association. Firewalls normally handle ftp
by snooping the control association and temporarily
establishing filtering data that passes data to/from that
port. If the firewall notices no traffic on the data
association for a configured interval of time, the enabling
filter data is removed. Switches may not be capable of
establishing such temporary filters.

There are several ways to deal with this problem. One
option is to filter on the ftp well-know port and redirect
the ftp traffic to a packet filtering router capable of
handling ftp. The disadvantage of this approach is
performance for ftp and other redirected protocols is
severely degraded, since their packets must now transit a
slow router, rather than be handled by a fast switch.

Another approach is to configure the switch with
policy statements that prevent ftp traffic and then direct
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users to utilize another bulk data transfer protocol, like
NFS or SMB, which does not separate control and data.
This approach has the disadvantage that some
applications may depend on ftp, and so preventing ftp
traffic  from transiting switches also prevents these
applications running through switches.

4.6.4 Security of the MLF Management Protocols
The protocols to manage existing layer 2 and 3

devices generally are not secure. Using telnet and ftp
with cleartext passwords has obvious problems. SNMPv1
is not secure and SNMPv3 is still being worked on. The
security of proprietary management protocols is hard to
ascertain.

This problem can be solved by computing a
cryptographic checksum on the data downloaded to the
device. However, this introduces the common problem of
how to manage the keys, including managing and
enforcing certificate signing policy. For small MLF
partitions, this may be tractable in practice, and may
provide a practical work around.

In the general MLF architecture, policy is stored in a
persistent store, such as that offered by a directory
service. The most common protocol for access to this
service is LDAP. Since the prototype only works with
routers that use telnet and ftp for configuration, we did
not investigate the security issues associated with using
LDAP for distributing security policy nor did we
investigate the potential security problems with using
SNMP set commands to notify a device that new policy is
available.

4.6.5 Optimization of Enforcement Data
Our prototype uses the most obvious techniques to

accumulate enforcement data for a device. Each
individual statement in the high-level policy specification
is translated independently of the others. However, there
may very well be optimizations that are possible by
processing rules together. For example, two policy
statements may have the same source and destination but
differ in the protocols specified. These two high-level
statements may be implemented by one enforcement rule.
Similarly, high-level policy statements specifying the
same protocol might combine into one device
enforcement rule. In general any commonality in high-
level policy statements might allow optimizations of the
low-level enforcement rules.

4.6.6 Interaction With Other Kinds of Filtering
We did not investigate how security filtering interacts

with other filtering objectives, such as filtering for
Quality of Service (QoS). A casual argument suggests

such interaction might be important. Security filtering in
an intermediate device would most likely introduce delay
in forwarding a packet or frame. This in turn might
introduce both delay and jitter into a stream of packets.
Thus, calculation of QoS guarantees should
accommodate delays introduced by security related
filtering.

4.6.7 Security of Traffix  Data
Traffix relies on SNMP to discover end systems. In

particular, it downloads data accumulated in the RMON2
MIB of probes located at various points in the network.
This is both an advantage and a disadvantage. It is an
advantage in that an administrator need not maintain an
ever changing database of end systems. It is a
disadvantage in the following ways.

First, unless probes are placed in strategic places, not
all end systems may be discovered. Appropriate
placement of the probes in the network is critical for the
correct operation of the MLF prototype. Secondly,
RMON2 data must be securely moved between the probe
and Traffix. This is a potential point of attack by an
intruder attempting to subvert MLF security policy.
Currently, SNMP is used to move RMON2 data, which
has well-known security vulnerabilities.

These problems would be solved if there was a secure
physical topology discovery protocol available to the
MLF. While there has been work within the IETF to
develop a physical topology discovery protocol [24], this
work seems to have stalled. Furthermore, it's not clear
the working group responsible for this work has the
development of a secure protocol as an objective.

One work around for this problem is to manage
physical topology information manually. To make this a
tractable alternative, large networks would have to be
divided into MLF partitions, each of moderate size.

4.6.8 Integrating MLF and Cryptographic Policy
Management

The MLF prototype could be generalized and used to
manage not only filtering policy, but also cryptographic
policy (e.g., what services to provide, what algorithms
and transforms to use). This would be a natural fit, since
cryptographic policy might use the prototype's filter
specification capability to advantage (i.e., specify
cryptographic policy based on application as well as
source and destination address). While the prototype
software architecture is adaptable, using it for the
specification of cryptographic policy was not a design
objective. Consequently, the feasibility of such
integration, both using our prototype as well as in
general, is untested.
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4.6.9 Alternate Policy Specification Approaches
The prototype uses the traditional approach to

firewall policy specification, viz., a table of rules with
precedence given to those that appear first. This
technique has well know problems [25]. We did not
experiment with other approaches that might eliminate
some of the problems with table driven specification.
This is an area for future study.

4.6.10 MLF Partitioning
The prototype does not support the specification of

external nodes (i.e., other MLF partitions).
Consequently, we do not know how this concept might
work in practice.

5. Performance

We present two aspects of MLF performance. The
first is how long it takes to compile and distribute MLF
policy. The second is the throughput degradation
imposed by security filtering in network devices.

We measured the performance of policy compilation
and distribution on the prototype by specifying 13 high-
level policy statements, which used 12 separate host
groups and 1 host as sources and destinations. In the test
network there were two enforcement devices,  each
NetBuilder II routers, the first with two interfaces and
the second with three. The compilation produced 168
filter commands for the first router and 288 filter
commands for the second for a total of 456 generated
rules.

Our measurements were made on a Pentium 120
based system with 72 Mbytes of memory, running Linux
SlackWare 3.2. The measured compilation and
distribution times averaged 2 minutes and 20 seconds
over 4 independent runs. This figure includes the time to
translate high-level policy statements into low-level filter
rules, logging on to each router, downloading the files to
the routers, restarting the packet filtering firewall on
each router (necessary to establish the new filter rules),
and logging off each router.

While we were disappointed in the performance of
policy compilation and distribution, several factors
suggest much better times are possible. Firstly, our
measurements were performed on first light prototype
code. No code optimizations were available for these
tests. Secondly, significantly more than 50% of the time
was spent downloading filter rules to the routers and
restarting their packet firewalls. There are ways in which
the time to complete this phase of the update process
could be reduced. Finally, there are several possible
optimizations that would greatly reduce the number of

filter rules generated by the prototype from a given set of
policy statements.

To provide a comparison of router and switch
filtering performance, we present performance data for
two network devices, a NetBuilder II router and a
CoreBuilder 2500 layer 2 Switch.

The current generation NetBuilder II router can route
approximately 85,000 packets per second when no
filtering is applied. The exact figure depends on a
number of factors, including the number of interfaces
supported and the bandwidth of its connections. A test of
worst case filtering performance degradation was
conducted, in which a set of ten filter rules were
installed, including ones for telnet, ftp and http. When
these filter rules were applied to eight interfaces, the
packet throughput dropped by 45%. This implies a
filtered aggregate throughput of 46,750 packets per
second when these filters are installed.

The CoreBuilder 2500 theoretically can switch
565,000 pkts per second. However, the most loaded
configuration is two 100 Mbit per second and sixteen 10
Mbit per second interfaces. With the smallest sized
packets possible (64 bytes), this translates to 148,000
packets per second (accommodating frame
synchronization and other overhead). Filtering is
implemented in hardware in the CoreBuilder 2500, so
filtering performance degradation depends on a number
of factors, including the probability that a particular filter
scores a “hit” (filters are applied serially). The worst case
filtering performance on a CoreBuilder 2500 is 75,000
packets per second.

The above data implies that in the worst case the
CoreBuilder 2500 switch can achieve approximately
160% better filtering performance than a NetBuilder II
router. Since a CoreBuilder 2500 switch is around 1/3
the cost of a similarly configured NetBuilder II, this
represents a filtering cost/performance gain of almost
500%.

6. Related Work

An MLF implements security policy by using network
devices, persistent storage and a management station to
control network resource usage. Security policy
management systems are implemented in other ways and
have been the subject of prior research.

Traditional firewalls are a major technology
supporting security policy management. Research into
their architecture and design is fairly advanced; so much
so that several comprehensive treatments exist [3, 4].
Firewall policy data specifies the characteristics of the
network traffic allowed to transit the firewall boundary.
Such data drives the firewall’s access control machinery
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[26], which tests attributes of the data to determine
whether to admit or drop the traffic.

It was recognized early that firewall configuration
data encoded security policy [25]. Experience with the
use of firewall configuration suggests specifying policy
data for firewall machines is prone to user error [27].
This is a problem that traditional firewalls share with our
prototype, which uses a tabular format for presenting
security policy statements.

Currently, administrators use simple policy
management languages to configure firewalls. Modern
firewalls allow an administrator to distribute policy data
to multiple firewall machines [21]. However, such
systems are generally intended to implement border
firewalls, since the policy statements distributed to each
firewall machine are a copy of those managed by the
administrator on the common firewall console. These
security policy management systems are not currently
designed to manage policy where the enforcement data is
automatically generated based on network topology,
which is the case for an MLF.

Guttman [28] describes a specification language
allowing administrators to test whether the composition
of filters along packet paths conforms to security policy.
Developing tools that analyze the global effects of local
filtering policies is an important area of future research.
Such tools would help administrators understand the
global effects of MLF partitioning, for example.

Other policy specification languages include those for
the management of distributed applications [29] and for
distributed trust management [30]. The former allows an
application manager to specify reaction rules for
distributed real-time applications. These rules are
compiled into enforcement code that is then distributed
to the application components. Such distribution allows
the components to react only to those conditions that
directly affect their behavior. This is a characteristic that
they share with an MLF.

A distributed trust management system, known as
PolicyMaker [30], supports the use of policy rules, called
assertions, to process queries, which specify access
requests. Assertions associate a sequence of public keys
with a predicate, the latter being used to determine
whether a particular access request is affected by the
policy represented by the assertion. PolicyMaker
presupposes that policy enforcement is a local matter.
Policies, even those representing global requirements, are
processed locally by each application that utilizes them.

An MLF differs from PolicyMaker in two ways. First,
policies do not express the association of public keys with
predicates. Instead, they express conditions that a
network administrator desires to establish within the
network. Secondly, policy enforcement in an MLF is not

a local matter. Rather, policies are defined and
administered by one or more central management
stations, which distribute policy enforcement information
to trusted network enforcement devices. This architecture
matches the operational environments in which network
management normally operates, i.e., centrally
administered control within and between administrative
domains.

Another area utilizing security policy is network
communications. When this service is based on
encrypted network traffic, an administrator specifies the
cryptographic services to use when two machines in a
network communicate [31]. Issues such as the
cryptographic algorithms to use, the required strength of
the keys and other keying material, the required or
desired type of service (e.g., data origin authentication,
integrity, confidentiality) and which key distribution
mechanism to use are examples of policy data relevant in
this problem space. The IP Security protocol [7, 8, 9, 32,
33, 34] is an example of secure network communication
technology that requires such policy management
services. An MLF focuses on maintaining behavioral
invariants in a network, rather than managing
cryptographic services. However, it might be used to
manage cryptographic services when these are an
integral part of network behavioral management. This is
an area of future investigation.

Prior research on policy routing [35] investigated
how networks can implement resource usage policies.
This motivated subsequent research that addressed the
certification of policy data driving the routing algorithms
[36]. Policy certification ensures that only authorized
individuals or organizations control the security
characteristics of a network. Such certification services
would be useful in a federated set of MLF partitions that
might be controlled by more than one administration.

7. Conclusions

The Multilayer Firewall is a new  security tool that
offers significant benefit to the practitioner. While it is
not a panacea that will solve all security problems, when
used in conjunction with other security technology, such
as cryptographically protected communications, access
control and event auditing, it can enhance the protection
afforded to networking and distributed system resources.
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