
ObliviStore: High Performance Oblivious Distributed Cloud Data Store
Extended Abstract

Emil Stefanov (UC Berkeley) Elaine Shi (UMD)

1 Introduction
It is well established that access patterns to encrypted data

can leak a considerable amount of sensitive information [13].
Oblivious RAM (or ORAM for short) [5–11, 14, 18–20, 26,
28], originally proposed by Goldreich and Ostrovsky [8], is
a cryptographic construction that allows a client to access
encrypted data residing on an untrusted storage server, while
completely hiding the access patterns to storage.

Particularly, the sequence of physical addresses accessed
is independent of the actual data that the user is accessing. To
achieve this, existing ORAM constructions [5–11,14,18–20,
26,28] continuously re-encrypt and and reshuffle data blocks
on the storage server, to cryptographically conceal the logical
access pattern.

Aside from storage outsourcing applications, ORAM (in
combination with trusted hardware in the cloud) has also
been proposed to protect user privacy in a broad range of
online services such as behavioral advertising, location and
map services, web search, and so on [4, 15].

While the idea of relying on trusted hardware and obliv-
ious RAM to enable access privacy in cloud services is
promising, for such an approach to become practical, a key
challenge is the practical efficiency of ORAM. ORAM was
initially proposed and studied mostly as a theoretic con-
cept. However, several recent works demonstrated the po-
tential of making ORAM practical in real-world scenar-
ios [15, 25, 28, 29].

1.1 Our Contributions
We design and build ObliviStore, an efficient ORAM-

based cloud data store, securing data and access patterns
against adversaries in the malicious model. To the best of
our knowledge, ObliviStore is the fastest ORAM implemen-
tation that has ever been built.

Our evaluation suggests that in a single client/server set-
ting with 7 rotational hard disk drives (HDDs), ObliviStore
is an order of magnitude faster than the concurrent and in-
dependent work PrivateFS by Williams et. al. [29] – with
parameters chosen to best replicate their experimental setup.

We evaluate the performance of ObliviStore with both ro-
tational hard drives (HDDs) and solid-state drives (SSDs).
With 11 trusted nodes (each with a modern CPU), we achieve
a throughput of 31.5MB/s with a block size of 4KB.
Asynchronizing ORAM operations. We propose novel
techniques for making the SSS ORAM [25] asynchronous
and parallel. We chose the SSS ORAM since it is one of
the most bandwidth efficient ORAM constructions known
to date. Due to ORAM’s stringent security requirements,
asynchronizing ORAM operations poses unique challenges.

We must prevent information leakage not only through ac-
cess patterns as in traditional synchronous ORAM, but also
through the timing and out-of-order processing of I/O events.
To address this issue, we are the first to formally define
the notion of oblivious scheduling. We prove that our con-
struction satisfies the oblivious scheduling requirement. Par-
ticularly, our ORAM scheduler relies on carefully placed
semaphores. To satisfy the oblivious scheduling require-
ment, operations on semaphores (e.g., incrementing, decre-
menting) must depend only on information observable by an
adversary who is not aware of the data request sequence.
Distributed ORAM. Typical cloud service providers have
a distributed storage backend. We show how to adapt our
ORAM construction for a distributed setting.

Note that naive methods of partitioning and distributing
an ORAM may violate security. For example, as pointed
out in [25], even if each block is assigned to a random par-
tition when written, accessing the same block twice in a
row (read after write) can leak sensitive information. Our
distributed ORAM construction applies the SSS partitioning
framework [25] twice to achieve secure partitioning of an
ORAM across multiple servers.

We also propose a novel algorithm for securely scaling
up a distributed ORAM at run-time, as naive techniques can
easily break security. Our techniques allow additions of
new processors and storage to an existing distributed ORAM
without causing service interruption.

2 Experimental Results
2.1 Results with Rotational Hard Disk Drives

We ran experiments with a single ORAM node with an
i7-930 2.8 Ghz CPU and 7 rotational WD1001FALS 1TB
7200 RPM HDDs with 12 ms random I/O latency [1]. To
be comparable to PrivateFS, our experiments are performed
over a network link simulated to have 50ms latency. We also
choose the same block size, i.e., 4KB, as PrivateFS.
Throughput and response time. Figure 2 shows the
throughput of our ORAM against the ORAM capacity. For
a 1TB ORAM, our throughput is about 364KB/s. Figure 3
plots the response time for data requests with various ORAM
capacities. For a 1TB ORAM, our response time is about
196ms. We stress that throughput and response time are mea-
sured under maximum load – therefore, they account for both
the online data retrieval and the offline shuffling overhead.

In both Figures 2 and 3, we also marked data points
for PrivateFS and PD-ORAM for comparison. For a 1 TB
ORAM, ObliviStore has about 18 times higher throughput
than PrivateFS. Note that we set up this experiment and pa-

1



Scheme
Experimental setup Results

block size ORAM capacity processors private RAM consumed response time throughput

Secure co-processors (IBM 4768), distributed setting
Lorch et. al. [15] 10 KB 320 TB 10,000* 300 GB 360 ms 28 KB/s

7 HDDs, 50ms network latency to storage, 12ms disk seek latency, single modern processor (client-side)

PrivateFS‡ [2, 29] 4 KB 100MB 1 < 2 GB † >1s† 110 KB/s†

(peak performance [2])
PD-ORAM‡ [29] 10 KB 13 GB 1 < 2 GB† >1s 15 KB/s

ObliviStore 4 KB 0.46 GB 191 ms 757 KB/s
PrivateFS‡ [2, 29] 4 KB 1 TB 1 < 2 GB† >1s 20 KB/s†

ObliviStore 4 KB 2.3 GB 196 ms 364 KB/s

Distributed setting, 20 SSDs, 11 modern processors (1 oblivious load balancer + 10 ORAM nodes, each node with 2SSDs)
ObliviStore 4 KB 3 TB 11 36 GB 66 ms 31.5 MB/s
ObliviStore 16 KB 3 TB 11 33 GB 276 ms 43.4 MB/s

Figure 1: Comparison with concurrent work.
Throughput means average total throughput measured after warming up the ORAM with O(N) accesses, unless otherwise indicated.
†: These numbers obtained through personal communication [2] with the authors of PrivateFS [29]. PrivateFS reports the amount of private
memory provisioned (instead of consumed) to be 2GB.
‡: Based on personal communication with the authors, the PrivateFS paper has two sets of experiments: PD-ORAM experiments and
PrivateFS experiments. Based on our understanding: i) PD-ORAM seems to be an older version of PrivateFS; and ii) the experimental
methodology for these two sets of experiments are different.
*: Based on a combination of experimentation and theoretic projection. Due to the constrained computational power of IBM 4768 secure
co-processors, unlike PrivateFS and ObliviStore, the ORAM implementation by Lorch et. al. [15] is mainly constrained by the computational
power and memory available on these off-the-shelf secure co-processors.

Figure 2: ObliviStore throughput with 7
HDDs. Experiment is performed on a single
ORAM node with the following parameters:
50ms network latency between the ORAM
node and the storage, 12ms average disk seek
latency, and 4KB block size.

Figure 3: ObliviStore response time with
7HDDs. Experiment is performed on a single
ORAM node with the following parameters:
50ms network latency between the ORAM
node and the storage, 12ms average disk seek
latency, and 4KB block size.

Figure 4: Effect of network latency on
throughput with 7HDDs. Experiment is
performed on a single ORAM node with 7
HDDs, 12ms average disk seek latency, and
4KB block size.

Figure 5: Effect of network latency on re-
sponse time. Experiment is performed on a
single ORAM node with 7 HDDs (12ms av-
erage seek latency), and again with 2 SSDs.
Block size = 4KB. The ideal line represents
the roundtrip network latency.

Figure 6: Scalability of ObliviStore in a
distributed setting. 1 oblivious load bal-
ancer, 2 SDDs attached to each ORAM node.
Throughput is the aggregate ORAM through-
put at the load balancer which distributes the
load across all ORAM nodes.

Figure 7: Average number of seeks
of ObliviStore per ORAM operation.
Includes all I/O to storage (reads and
writes/shuffles). Experiment is performed on
a single ORAM node with 4KB block size.

2



rameters to best replicate the exact setup used in the Pri-
vateFS and PD-ORAM experiments [29].
Small number of seeks. Our optimizations for reducing
disks seeks help greatly in achieving (relatively) high per-
formance. Figure 7 plots the average number of seeks per
ORAM operation. For 1TB to 10TB ORAMs, ObliviStore
does under 10 seeks per ORAM operation on average.
Effect of network latency. In Figures 4 and 5, we measure
the throughput and latency of a 1 TB ObliviStore ORAM un-
der different network latencies. The results suggest that for
rotational hard drives, the throughput of ObliviStore is al-
most unaffected until about 1 second of network latency. To
obtain higher throughput beyond 1s network latency, we can
increase the level of parallelism in our implementation, i.e.,
allowing more concurrent I/Os – but this will lead to higher
response time due to increased queuing and I/O contention.

The response time of ObliviStore (single node with 7
HDDS) is consistently 140ms to 200ms plus the round-trip
network latency. The additional 140ms to 200ms is due to
disk seeks, request queuing, and I/O contention.
2.2 Summary of Results with Solid State Drives

The throughput of ObliviStore with 2x1TB SSDs of stor-
age is about 6-8 times faster than with 7 HDD. For a typical
50ms network link, the response time with SSD storage is
about half of that with HDDs. Due to space limitations, we
could not include detailed SSD experiment results in this ab-
stract except for the distributed setting results in Section 2.3.

2.3 Distributed Setting
We measure the scalability of ObliviStore in a distributed

setting. We consider a deployment scenario with a dis-
tributed TCB in the cloud. We assume that the TCB is estab-
lished through techniques such as Trusted Computing, and
that the TCB is running on a modern processor. How to im-
plement code attestation to establish such a distributed TCB
has been addressed in orthogonal work [16,17,21,22], and is
not a focus of this evaluation.

For the distributed SSD experiments, each ORAM node
was a hi1.4xlarge Amazon EC instance with 2x1TB SSDs
of storage directly attached, and the load balancer ran on a
cc1.4xlarge instance. Although our instances have 60GB of
provisioned RAM, our implementation used far less (under
3 GB per ORAM node, and under 3.5 GB for the load bal-
ancer). The load balancer and the ORAM nodes communi-
cate through EC2’s internal network (under 5ms RTT).

Figure 6 suggests that the throughput of ObliviStore
scales up linearly with the number of ORAM nodes, as long
as we do not saturate the network. The total bandwidth over-
head between the oblivious load balancer and all ORAM
nodes is 2X, and we never saturated the network in all our
experiments. For example, with 10 ORAM nodes and 4KB
block size, the ORAM throughput is about 31.5 MB/s, and
the total bandwidth between the load balancer and all ORAM
nodes is about 63 MB/s. We also measured that the response

time in the distributed setting is about 60ms for 4KB blocks
and is mostly unaffected by the number of nodes.

The throughput of ObliviStore using HDD storage (also
tested on Amazon EC2) similarly scales linearly with the
number of nodes (please refer to the full paper).
References
[1] http://www.storagereview.com/php/benchmark/

suite_v4.php?typeID=10&testbedID=4&osID=

6&raidconfigID=1&numDrives=1&devID_0=

368&devCnt=1.
[2] Personal communication with radu sion and peter williams., Nov.

2012.
[3] D. Asonov and J.-C. Freytag. Almost optimal private information re-

trieval. In PET, 2003.
[4] M. Backes, A. Kate, M. Maffe, and K. Pecina. Obliviad: Provably

secure and practical online behavioral advertising. In S & P, 2012.
[5] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivi-

ous storage: Making oblivious RAM practical. Manuscript,
http://dspace.mit.edu/bitstream/handle/1721.1/

62006/MIT-CSAIL-TR-2011-018.pdf, 2011.
[6] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivi-

ous RAM without random oracles. In TCC, 2011.
[7] O. Goldreich. Towards a theory of software protection and simulation

by oblivious RAMs. In STOC, 1987.
[8] O. Goldreich and R. Ostrovsky. Software protection and simulation

on oblivious RAMs. J. ACM, 1996.
[9] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of

outsourced data via oblivious RAM simulation. In ICALP, 2011.
[10] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.

Oblivious RAM simulation with efficient worst-case access overhead.
In ACM Cloud Computing Security Workshop (CCSW), 2011.

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamas-
sia. Privacy-preserving group data access via stateless oblivious RAM
simulation. In SODA, 2012.

[12] A. Iliev and S. W. Smith. Protecting client privacy with trusted com-
puting at the server. IEEE Security and Privacy, 3(2):20–28, Mar.
2005.

[13] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In Net-
work and Distributed System Security Symposium (NDSS), 2012.

[14] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-
based oblivious RAM and a new balancing scheme. In SODA, 2012.

[15] J. R. Lorch, J. W. Mickens, B. Parno, M. Raykova, and J. Schiffman.
Toward practical private access to data centers via parallel ORAM.
IACR Cryptology ePrint Archive, 2012:133, 2012.

[16] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig. Trustvisor: Efficient TCB reduction and attestation. In S &
P, 2010.

[17] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Eu-
roSys, 2008.

[18] R. Ostrovsky. Efficient computation on oblivious RAMs. In ACM
Symposium on Theory of Computing (STOC), 1990.

[19] R. Ostrovsky and V. Shoup. Private information storage (extended
abstract). In STOC, pages 294–303, 1997.

[20] B. Pinkas and T. Reinman. Oblivious RAM revisited. In CRYPTO,
2010.

[21] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-
plementation of a TCG-based integrity measurement architecture. In
USENIX Security Symposium, 2004.

[22] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed
data: a new abstraction for building trusted cloud services. In Usenix
Security, 2012.

[23] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with
O((logN)

3
) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[24] S. W. Smith and D. Safford. Practical server privacy with secure co-
processors. IBM Syst. J., 40(3):683–695, Mar. 2001.

[25] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM.
In NDSS, 2012.

[26] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.
[27] P. Williams and R. Sion. Round-optimal access privacy on outsourced

storage. In CCS, 2012.
[28] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud:

practical access pattern privacy and correctness on untrusted storage.
In CCS, 2008.

[29] P. Williams, R. Sion, and A. Tomescu. Privatefs: A parallel oblivious
file system. In CCS, 2012.

3


