

Using Classification to Protect the Integrity of Spectrum Measurements in White Space Networks

Omid Fatemieh, Ali Farhadi, Ranveer Chandra*, Carl A. Gunter

University of Illinois at Urbana-Champaign *Microsoft Research

Network and Distributed System Security Symposium (NDSS) Feb 17, 2011

Opportunistic Spectrum Access

- Spectrum crunch
 - Increased demand
 - Limited supply
 - Inefficiencies of fixed and long term spectrum assignment (*licenses*)
- Emerging solution: opportunistic access to unused portions of licensed bands

Opportunistic Spectrum Access

- Spectrum crunch
 - Increased demand
 - Limited supply
 - Inefficiencies of fixed and long term spectrum assignment (*licenses*)
- Emerging solution: opportunistic access to WHITE SPACES

Primary Transmitter Primary Receiver Secondary Transmitter/Receiver (Cognitive Radio)

 Cognitive Radio: A radio that interacts with the environment and changes its transmitter parameters accordingly

White Space Networks

- Allowed by FCC in Nov 2008 (and Sep 2010)
 - TV White Spaces: unused TV channels 2-51 (54 MHz-698MHz)
 - Much spectrum freed up in transition to Digital Television (DTV) in 2009
 - Excellent penetration and range properties
- Applications
 - Super Wi-Fi
 - Campus-wide Internet (*e.g.* Microsoft)
 - Rural broadband
 (*e.g.* Claudville, VA)
 - Advanced Meter
 Infrastructure (AMI)
 [FatemiehCG ISRCS '10]

How to Identify Unused Spectrum?

- Spectrum Sensing Energy Detection
 - Requires sensing-capable devices -> cognitive radios
 - Signal is variable due to terrain, shadowing and fading
 - Sensing is challenging at low thresholds

- Central aggregation of spectrum measurement data
 - Base station (e.g. IEEE 802.22)
 - Spectrum availability database (required by the FCC)

Problem: Detecting Malicious Misreporting Attacks

- Malicious misreporting attacks
 - Exploitation: falsely declare a frequency occupied
 - Vandalism: falsely declare a frequency free
- Why challenging to detect?
 - Spatial variations of primary signal due to signal attenuation
 - Natural differences due to shadow-fading, etc.
 - Temporal variations of primary
 - Compromised nodes may collude and employ smart strategies to hide under legitimate variations

Compromised Secondary – Vandalism Compromised Secondary – Exploitation X

X

Setting and Attacker Model

- Network of cognitive radios (nodes) in large area
- Node *i* periodically reports measurement *p_i* to aggregation center to build a spectrum availability map
- End-to-end secure channel between nodes and aggregation center
- Geo-location for nodes
- Problem: How to protect against malicious attackers that may perform exploitation or vandalism
 1. Uncoordinated
 - 2. Coordinated
 - 3. Omniscient

p_i higher than threshold

p_i lower than threshold

Limitations of Existing Work

- [ChenPB INFOCOM '08] [KaligineediKB ICC '08] [MinSH ICNP '09]
 - Consider detection in a small area with a common ground truth
 - Attackers constitute a small fraction of nodes (*e.g.* up to 1/3 [MinSH 09])
 - Not designed to detect areas dominated by attackers
 - Attackers use unsophisticated misreporting strategies
- [FatemiehCG DySPAN '10]
 - Arbitrary assumptions about models and parameters of signal propagation
 - Rely on outlier detection threshold parameters that
 - Depend on propagation models and parameters

or

• Must be manually tuned

1867

Solution Idea and Overview

- let data speak for itself
- Use natural signal propagation patterns to train a (machine learning) classifier
- Subsequently use classifier to detect unnatural propagation patterns -> attacker-dominated cells

Classification Background

- Widely used in spam detection, fraud detection, etc.
- Identifying patients with high risk of heart attack
 - Represent each patient as an *example = < label , features >*
 - Goal: predict label for examples with known features (test examples) using examples with known features and labels (training examples)
 blood pressure cholesterol level body mass index
 - Approach: building a classifier using training examples
- How to build classifiers? Winnow, Decision Trees, Naïve Bayes, Support Vector Machines (SVM), etc.
- Important factors: data representation, feature selection, choice of classifier

Attacker-Dominated Cell Detection

- The local neighborhood of any cell A: N_A
- Neighborhood (feature) representation of A
 - <+/-, -97.5, -98, -94, -90, -89, -91, -96, -93, -99>

- How to get training examples?
 - Negative (normal): A one-time process using war-driving or a trusted set of sensors
 - Positive (attacker-dominated): Randomized approach to inject *uncoordinated*, *coordinated*, and *omniscient* attacks
- To build a unified classifier for each region, we use SVM with quadratic kernels

$$\begin{split} \min \frac{1}{2} \| \overrightarrow{W} \|^2 + \gamma \sum_{i=1}^{N} \xi_i \\ \text{subject to } y_i(\overrightarrow{W} \cdot \Phi(\overrightarrow{x}) + W_0) \geq 1 - \xi_i \quad \forall i \end{split}$$

Evaluation

Flat East-Central Illinois

Hilly Southwest Pennsylvania (Stress

- TV transmitter data from FCC
- Terrain data from NASA
- House density data from US Census Bureau
- Ground truth: predicted signal propagation using empirical Longley-Rice model

1867

Pennsylvania (Stress Test) Results

- 20km by 20km area
- Data from 37 transmitters within 150km
- Train classifier using data from 29
- Test classifier on data from 8
- Represent unaccounted uncertainties by Gaussian variations with mean 0 and std dev (σ) up to 6 (dB-spread) only to test data
- Worst-case results (σ=6)
 - Attacker detection rate
 - Uncoordinated: 97%
 - Coordinated: 95%
 - Omniscient: 94%
 - False positive rate: 7%

Conclusions and Future Work

- Motivated and formulated exploitation and vandalism attacks
- Showed how to build a classification-based defense using locationtagged signal propagation data
- Showed the effectiveness of approach against uncoordinated, coordinated, and omniscient attacks
- Future work
 - Additional features used for classification, *e.g. elevation, building density/height*
 - Building a crowdsourced nationwide spectrum availability map using *participatory* sensing data
 - Use a small subset of attestation-capable nodes as trust foundation [submitted to SECON '11]

Thanks

Illinois Results

- Train a unified classifier with WEIU-TV (PBS) and KTVI (Fox)
- Test on the following four

	WAOE		WCIA		WICS		WQAD-TV	
	D.A. (%)	F.P. (%)	D.A.	F.P.	D.A.	F.P.	D.A.	F.P.
P > -65	100	0	99.8	0	100	0	-	-
$-65 \ge P > -85$	100	0	100	0	99.7	0	100	0
$-85 \ge P > -105$	100	0	100	0	99.9	0	100	0
$-105 \ge P > -114$	99.1	.9	-	-	99.7	1.6	99.6	.8
$-114 \ge P$	97.3	3.2	-	-	97	2.4	95.1	7.6
Overall	99.3	.8	99.9	0	99.7	.5	99.3	1.3

Pennsylvania (Stress Test) Results

- 20km by 20km area
- Data from 37 transmitters within 150km
- Train classifier using data from 29
- Test classifier on data from 8

Represent unaccounted uncertainties by adding Gaussian variations with mean 0 and std. dev (σ) up to 6 (dBspread) only to test data

False Positive Rates	Standard Deviation of Added Variations in Test Data							
	σ=0	σ=2	σ=4	σ=6				
P > - 65	0	0	0	0				
-65 ≥ P > -85	0	0	0	0				
-85 ≥ P > -105	.5	.5	.8	1.5				
-105 ≥ P > -114	6.8	8.3	12	17				
-114 ≥ P	9	9.8	15	21				
Overall	2.9	3.4	5.2	7.3				

۲

Related Work – White Space Networks

• Limitations of existing work

- Consider detection in a small region with a common ground truth
- Attackers constitute a small fraction of nodes (*e.g.* up to 1/3 [MinSH 09])
- Not able to detect regions dominated by attackers
- Attackers use unsophisticated misreporting strategies
- [ChenPB INFOCOM '08]
 - Weighted likelihood ratio test using similarity to final outcome as reputation
 - Uses 0/1 results: low overhead but Ignores measurement details
 - Bases the decisions on accurate knowledge of P_{FA} and P_{MD}
- [KaligineediKB ICC '08]
 - Assign (low) trust factors based on (an arbitrary) outlier detection
 - Use trust factors as weights in the averaging
- [MinSH ICNP '09]
 - Shadow-fading correlation filters to exclude abnormal reports

Related Work – Sensor Networks (1)

- Major differences with sensor networks
 - More capable nodes
 - Long communication ranges
- Differences enable:
 - Centralized solutions with global view
 - Attestation, primary emulation, etc.

Related Work – Sensor Networks (2)

- Resilient data aggregation
 - [Wagner 04] Statistical analysis techniques for various aggregators
 - (+) Could be used to analyze our grid-based scheme
 - (-) Limited to small regions
 - [HurLHY 05] A trust-based framework in a grid: each sensor builds trust values for neighbors and reports them to the local aggregator
 - (sim) Similar to our grid-based scheme
 - (diff) No global view for a centralized aggregator
 - (-) Cannot identify compromised *regions*
 - (-) Does not consider statistical propagation / uncertainties
 - [ZhangDL 06] Identifies readings not statistically consistent with the distribution of readings in a cluster
 - (-) Local: only works for a small region
 - (+) Considers statistical distribution for readings
 - (-) Assumes data comes from distribution in the *time* domain

Related Work – Sensor Networks (3)

- Reputation/trust frameworks
 - [GaneriwalBS 04 & 08] A general reputation-based trust framework, where each sensor maintains a local reputation and trust for its neighbors
 - (diff) Local and P2P: reputation based on the quality of each interaction/report
 - (diff) Very general framework, focused on local decision making at each sensor
- Insider attacker detection
 - [LiuCC 07] Each node builds a distribution of the observed measurements around it and flags deviating neighbors as insider attackers
 - (diff) Local and P2P: voting among neighboring sensors to detect insiders
 - (-) Does not work in areas with more than 25% attackers
- Event region detection
 - [Krishnamachari 04] Fault tolerant event region detection
 - (diff) Only considers faulty nodes (not malicious); uniformly spread
 - (-) Node itself participates in detection

A Small Subset of Trusted Nodes

- Previous solutions
 - Used reported sensor measurements for inferring (dis)trust
- Remote attestation: A technique to provide certified information about software, firmware, or configuration to a remote party
 - Detect compromise
 - Establish trust

- Root of trust for remote attestation
 - Trusted hardware: TPM on PCs or MTM on mobile devices
 - Software on chip [LeMay, Gunter ESORICS '09]
- Why a subset?