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Abstract—Following the genomic revolution and the conse-
quent deluge of DNA data, a lot of research has been carried
out to better understand and protect genomic privacy. However,
genomics is only the tip of the iceberg of a broader epigenomic
breakthrough currently going on. In order to shed light on
privacy issues stemming from epigenomic data, we study how
personal microRNA expression profiles can be tracked over time.
By relying on principal component analysis and graph matching,
we show that, despite the variability of gene expression, it is
possible to track one or multiple expression profile(s) at different
points in time. Specifically, we show that blood miRNA profiles of
healthy athletes collected at a one-week interval can be matched
together with a success rate of 90%. We also find out that
blood expression profiles are much easier to link over time than
plasma profiles that yield a success rate around twice smaller. Our
results for plasma microRNA expression profiles are confirmed
by another dataset of patients with lung cancer collected over a
time period of more than 18 months. This second dataset also
shows that a greater time shift between two miRNA expression’s
databases slightly decreases the attack’s success.

I. INTRODUCTION

Since the first sequencing of the full human genome in
2001, tens of thousands of genomes and over a million of
genotypes have been sequenced. The knowledge of our genetic
background enables to better predict, and thus anticipate,
the risk of developing several diseases, including cancers
or cardiovascular diseases. However, the genome is by far
not the only element influencing our phenotype (i.e., traits,
diseases, . . . ). Environmental factors (e.g., lifestyle) also play
a crucial role in the development of most common diseases.
Epigenomics, which is the study of the key functional elements
that regulate gene expression in a cell [11], aims at bridging the
gap between the genome and our phenotypic characteristics.
Gene expression profiling is a logical complementary step to
genome sequencing: the DNA sequence tells us what the cell
could possibly do, while the expression profile tells us what it

is actually doing at a given point in time. Using a computer
analogy, if the genome is the hardware, then the epigenome is
the software [2].

Privacy is one of the most important issues stemming from
the genomic revolution [1], [7]. Indeed, genomic data contains
very sensitive information about individuals’ predisposition to
certain severe diseases, about kinship, and about ethnicity,
which can lead to various sorts of discrimination. Furthermore,
genomic data is very stable in time and correlated between
family members [5]. A long line of research has already been
published about privacy concerns and protection mechanisms
related to the genome (surveyed in [3], [8]). With the better un-
derstanding for epigenomics, it becomes clear that epigenomic
data also contains a vast amount of very sensitive information,
which has been largely overlooked. For example, major severe
diseases (such as cancers, diabetes, or Alzheimer’s [4], [6],
[10], [12]) are already identified to be affected by epigenetic
changes and a recent study stated that epigenomic alterations
could even affect sexual orientation [9]. Furthermore, the
epigenome can tell us more about whether someone is carrying
a disease at a given point in time compared to the genome that
only informs about the risk of getting certain diseases.1

At first sight, it could appear that the high variability of the
epigenome over time (especially expression levels) is enough
to make an individual’s epigenomic profile unlinkable over
time, thus naturally enhancing epigenomic privacy. This work,
however, shows the contrary: individuals are still identifiable
and linkable over time periods of several months through
their microRNA expression levels. MicroRNA (abbreviated
miRNA) plays a crucial role in regulating the transcriptional
activity. Initially discovered in the early 2000s, these small
RNA molecules of only about 20 nucleotides are biochemically
stable and regulate the majority of human genes. Moreover,
miRNA has been shown to influence Alzheimer’s and Parkin-
son’s disease [10], but almost all cancers as well. A summary
of the relation between miRNA and human pathologies is
provided in the Human miRNA Disease Database.2

1The only exception to this rule are Mendelian disorders, such as cystic
fibrosis, which are largely determined by our genes.

2http://www.cuilab.cn/hmdd
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II. THREAT MODEL AND ATTACKS

We consider a passive adversary who can get access to
miRNA expression levels of one or multiple individuals and
wants to match them with other miRNA expression levels at
some point in time. This epigenomic information could be
collected online (publicly shared by the research community,
like in the Gene Expression Omnibus), or be leaked through
a major security breach, e.g., of a hospital server. We study
two different tracking attacks. The identification attack aims to
pinpoint a specific miRNA expression profile among n miRNA
expression profiles, by observing the targeted profile at another
point in time. The matching attack refers to the case where the
attacker has access to two databases (in most cases of similar
size and greater than one) of miRNA profiles at different time
instances and wants to match their elements together.

We rely on principal component analysis (PCA) with
whitening to pre-process the more than 1000 miRNA real-
valued expression levels. We then make use of the Euclidean
distance between the miRNA expression vectors projected on
the first c principal components. In the identification attack, the
adversary simply selects the profile i∗ with minimum distance
to the targeted profile. In the matching attack, the adversary
should find the best assignment between the two databases of
expression profiles, which is the one that minimizes the sum
of the distance between every matched pair.

This problem boils down to finding an optimal matching
on a weighted bipartite graph where each vertex represents a
miRNA profile, and where the weight on each edge represents
the Euclidean distance between any pair of miRNA profiles. In
order to find the optimal assignement efficiently, we make use
of the blossom algorithm that finds the minimum/maximum
weight assignment in O(n3).

III. EXPERIMENTAL RESULTS

We evaluate the success of our tracking attacks by using
three datasets: (i) the blood miRNA expression levels of 29
athletes at two time points separated by one week, (ii) the
plasma miRNA expression levels of the same 29 athletes
separated by one week, and (iii) the plasma miRNA expression
levels of 26 lung-cancer patients over more than 18 months and
eight time points.

a) Identification Attack: First, we compare the success
rate in identifying the correct profile over all possible PCA
dimensions with the athletes’ dataset: We reach a success
rate of 76% for the blood miRNAs with 22 and 23 PCA
dimensions, and 28% for the plasma samples with 17, 18, 19,
and 31 PCA dimensions. In order to validate our findings, we
also evaluate the success rate for the plasma-based miRNAs
of lung-cancer patients, and get similar results. Over all
possible time shifts, we achieve a maximum success rate of
42% with 25 and 39 PCA dimensions, and an average success
rate of 22% with 22 dimensions. Finally, we also analyze the
effect of time shifts on the attack’s success. We notice a slight
decrease in the best success rate for increasing time shifts,
with highest success rates achieved almost always between
consecutive time points.

b) Matching Attack: As for the identification attack, we
first compare the success rate in matching profiles over all
PCA dimensions for the athletes’ dataset: We obtain a succes
rate of 90% for the blood with 39 and 40 dimensions, and
48% with 34 dimensions for the plasma samples. We notice
that the success rate is higher for the matching than for the
identification attack. This is explained by the fact that, by
forcing each profile at the first time point to be matched
to one and only one profile of the second time point, the
(perfect) matching attack rules out the cases where multiple
samples of the first time point are matched to the same sample
of the second time point. We validate our findings with the
third dataset, of lung-cancer patients. Regardless of the time
shift, we reach a maximum success rate of 55% with 39
PCA dimensions, and an average success of 30% with 34
dimensions. We finally explore the effect of time distance
between expression levels on the success rate. We do not notice
a significant trend until 12-month time shift. A slight decrease
in success for 15 and 18 months can nevertheless be observed.

IV. CONCLUSION

In this work, we have presented and studied two new track-
ing attacks against miRNA expression profiles, considering
time shifts from one week to 18 months. We have observed
a slight decrease in success when time distance increases,
especially for shifts greater than one year. We have also found
that blood miRNAs are much more linkable than plasma
miRNAs. Finally, we have shown that matching attacks are
more successful than identification attacks. This work shows
the extent of the threat against miRNA expression data, and
paves the way for further research on epigenomic privacy.
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