
Abstract

We present protocols that allow a user Alice, knowing only
her name and password, and not carrying a smart card, to
“log in to the network” from a “generic” workstation, i.e.,
one that has all the necessary software installed, but none of
the configuration information usually assumed to be known
a priori in a security scheme, such as Alice’s public and pri-
vate keys, her certificate, and the public keys of one or more
CAs. By “logging in”, we mean the workstation retrieves
this information on behalf of the user. This would be
straightforward if Alice had a cryptographically strong
password. We propose protocols that are secure even if
Alice’s password is guessable. We concentrate on the initial
retrieval of Alice’s private key from some server Bob on the
network. We discuss various protocols for doing this that
avoid off-line password guessing attacks by someone eaves-
dropping or impersonating Alice or Bob. We discuss audit-
able vs. unauditable on-line attacks, and present protocols
that allow Bob to be stateless, avoid denial-of-service
attacks, allow for salt, and are minimal in computation and
number of messages.

1. Introduction

This paper addresses a very specific but common problem.
If a group of users share a pool of workstations and want to
be able to walk up to any one of them and “log in”, there
must be a way for the workstation to retrieve the user’s
environment from some repository on the network. In the
timesharing world, this was easy because all of the user’s
state was held on the central system and the workstations
were all effectively identical. Reproducing this simplicity in
today’s environment involves a number of challenges: mak-
ing the workstations appear effectively identical by having
enough commonality in installed software to make the envi-
ronment at least familiar to the user; downloading the cus-
tom aspects of the user’s environment from the network;
finding the user’s environment on the network; and doing
all of this securely. This paper addresses only the last of
these problems.

Secure Password-Based Protocol for Downloading a Private Key

Radia Perlman Charlie Kaufman
Sun Microsystems Laboratories Iris Associates

2 Elizabeth Drive 5 Technology Park Drive
Chelmsford, MA 01824 Westford, MA 01886
radia.perlman@sun.com charlie_kaufman@iris.com

In particular, we assume that Alice comes to the worksta-
tion with only her user name and password (and possibly
the name of a server holding more information about her).
We assume that the workstation is installed with trustwor-
thy software and without trojan horses that might steal her
password or otherwise misbehave (a challenge not
addressed by this paper), but that the workstation has no
configuration information specific to Alice. We also assume
the network to which the workstation is connected is com-
pletely untrustworthy, and Alice’s password was chosen by
her and could probably be guessed if an attacker could try a
large number of values.

We assume that there is a server we’ll call Bob out on the
network somewhere with configuration information about
Alice including strong (unguessable) cryptographic creden-
tials. We look at protocols whereby the workstation know-
ing Alice’s password can download that configuration
information. We would like to attain the following security
properties:

• An eavesdropper on the conversation between Alice and
Bob can’t learn Alice’s password, Alice’s configuration
information, or be able to verify a guess of Alice’s pass-
word from the eavesdropped information.

• Someone we’ll call Trudy impersonating Alice to Bob
will not get any useful information from Bob unless she
successfully guesses Alice’s password, and Bob will
know if she makes a wrong guess and how many wrong
guesses she made.

• Someone we’ll call Ted impersonating Bob to Alice will
not get any useful information from Alice unless he suc-
cessfully guesses Alice’s password, and Alice will know
if he makes a wrong guess and how many wrong guesses
he made.

• Even if Ted can read Bob’s database and impersonate
Bob to Alice, he can’t learn Alice’s password or trick
Alice into accepting false configuration information.

• Someone who gets in the middle of a conversation
between Alice and Bob cannot accomplish any more than
Trudy and Ted.

• If Bob serves lots of users, someone who reads Bob’s

database can’t test a guessed password against multiple
user accounts with less computational effort than testing
it individually against each one.

There are some other security vulnerabilities that would be
nice to avoid, but given the constraints are unavoidable. In
particular:

• Someone who knows (or can guess) Alice’s password can
impersonate Alice to Bob and get Alice’s configuration
information, and can also impersonate Bob to Alice and
trick Alice into accepting false configuration information.

• Someone who can read Bob’s database can verify guesses
of Alice’s password in an unaudited fashion.

• Trudy can guess one password at a time, know whether
she got it right, and Bob can’t distinguish any one guess
from the case where Alice mistyped.

• In each protocol, one side or the other discovers whether
the other end is legitimate (i.e., agrees on the password)
first. That end can be impersonated, and if the imperson-
ator discovers the password guess they made is incorrect,
cut off the connection so that the other party can’t distin-
guish between an unsuccessful password guess and a net-
work disconnect.

If Alice’s password were cryptographically strong (i.e. we
were not concerned about the possibility of an attacker
doing a dictionary or exhaustive search attack), we could
post Alice’s security context in some public location
encrypted using her password and allow it to be world read-
able. If Alice chooses a really easy to guess password, like
her birthdate, then these protocols will not be secure
because they cannot withstand on-line guessing. We are
assuming moderately unguessable passwords. Some sys-
tems enforce policies such as password length. These poli-
cies continue to be a good idea, as annoying as they are to
users, even with these protocols.

It is useful for Alice’s security context, when decrypted
with her password, to have some sort of checksum so that
Alice can detect whether the information is correct. In some
of our protocols if she were to mistype her password the
only symptom would be that the decrypted “security con-
text” would be garbage. By storing Alice’s security context
in such a fashion, she is immune from attacks even from
someone who has compromised Bob, so long as her pass-
word is unguessable.

In section 2 (“Related Protocols”) we discuss existing pro-
tocols that provide similar functionality, compare them to
ours, and we review protocols that we need as a basis for
our protocols.

As we will discuss in section 3.6 (Getting the Rest of the
User’s Security Context), if Alice can securely retrieve her
public and private keys, it is straightforward for her to use
this to download the rest of her security context. For most

of this paper, we will talk only about protocols for down-
loading her private key. These protocols could be used,
however, to download any sort of security context, includ-
ing one using secret key based credentials.

2. Related Protocols

The protocol described in [LGSN89], a variant of which is
implemented as part of NetWare Version 4 [LI94] satisfies
some but not all of our security goals. Our protocol is based
directly on EKE [BM92] and SPEKE [Jab96], with modifi-
cations to fit the needs of this specific problem and to
improve performance.

2.1 NetWare Private Key Download Protocol

NetWare version 4 [LI94] has implemented a scheme for
downloading an encrypted private key from a directory
which is similar to a scheme published in [LGSN89]. We
will describe a simplified version of those protocols that
illustrates their strengths and weaknesses. We start with a
client machine that has the necessary software installed, but
no configured information for individual users, and a
human that knows her name and password. We’ll call the
combination of the human and workstation “Alice” and the
directory “Bob”. Bob starts out with a database of users,
and for each user it knows:

• user name

• X = h(pwd, salt); h is a cryptographic hash, “pwd” is the
user’s password

• salt; a user-specific value

• Z = user’s private key encrypted with her password

Alice Bob

“Alice”

salt, R (a random challenge),

compute X=h(pwd,salt) and Y=h(X,R)

{Y,R2}encrypted with Bob’s public key

verifies Y=h(X,R)

{Z XOR R2} encrypted with Y

msg1

msg2

msg3

msg4

choose random R2

Figure 1 Simplified NetWare 4 private key download
scheme

Bob’s Public Key

At this point Alice can do the following:

• use Y to decrypt the returned value,

• XOR the result with R2 to obtain Z,

• use her password to decrypt Z, yielding her private key.

The main disadvantage of this protocol relative to the
EKE/SPEKE family of protocols (see section 2.2), and the
protocols we will present in this paper, is that it requires
configuration of the workstation with Bob’s public key. It
isn’t secure to just have Bob send it to Alice, and we’d like
Alice to be able to log in from a completely generic work-
station with no previous knowledge of the user or any spe-
cific server public keys.

If Alice just accepts the public key presented by Bob, the
protocol is usable but less secure, because someone imper-
sonating Bob could send their own public key to Alice,
decrypt msg3, and then test any number of passwords by
checking whether Y=h(h(pwd,salt),R). This threat may be
acceptable in some situations.

In the protocol in Figure 1, an eavesdropper does not learn
enough information to verify a guess of a password.
Although Y is derived from Alice’s password using infor-
mation an eavesdropper can learn, and therefore an eaves-
dropper can guess a password and derive the resulting Y,
the only thing the eavesdropper can do with Y is trial
decryptions of the value transmitted in msg4 (Z XOR R2
encrypted with Y). But because R2 was randomly chosen
and never exposed in the clear, the eavesdropper can’t con-
firm or deny the guessed password because every value
tried will produce random looking bytes. It is vital to the
security of this protocol that when Z XOR R2 is
encrypted, there is no recognizable padding or redun-
dancy.

Since Bob sends no information based on Alice’s pass-
word until Alice has proven knowledge of it in the third
message, someone impersonating Alice must guess a sin-
gle password for each execution of the protocol and Bob
will detect failed attempts. All of these protocols assume
Bob does something to limit guessing attempts, like alert-
ing an administrator if there are large numbers of failures,
locking out an account after some number of failures, or
simply giving slow response time.

Someone impersonating Bob, say Ted, will learn no infor-
mation that can be used to verify a guess of Alice’s pass-
word because msg3 is encrypted under Bob’s public key.
(But as noted above, if Ted can trick Alice into using the
wrong public key for Bob, and trick Alice into talking to
Ted, then Ted will be able use what Alice sends in msg3 to
do off-line, unauditable password guessing.)

2.2 Review of EKE and SPEKE

Our protocols will use EKE or SPEKE, so we briefly
describe them here.

EKE[BM92] and SPEKE[Jab96] are protocols in which
Alice and Bob, who only share a weak, guessable secret (a
user’s password), can do mutual authentication and con-
vert that weak secret into a strong secret that can be used
for the remainder of the session without divulging infor-
mation that would enable an eavesdropper to verify
guesses of the weak secret.

[BM92] describes a family of protocols collectively
known as EKE. In the variant we’ll use, a weak secret is
used to encrypt elements of a Diffie-Hellman exchange
[DH76], winding up with the strong secret agreed upon by
the Diffie-Hellman exchange. In detail, Alice and Bob
share a weak secret W. Instead of transmitting gA mod p,
Alice transmits {gA mod p} encrypted with W. In some
variants of EKE, Bob transmits gB mod p unencrypted. In
others he encrypts it with W (and similarly with Alice).
The secret that Alice and Bob derive is gAB mod p.

These protocols are designed for mutual authentication,
and are described as 4-message protocols that agree on a
strong session key K and do mutual authentication.

There are a number of ways for EKE to fail if not imple-
mented carefully [Pat97]. What is particularly important is
that when the Diffie-Hellman public numbers are
encrypted, that someone can’t use that to narrow down the
password choices in an off-line attack. For instance, Dif-

Alice Bob

{C1, C2} encrypted with K

{C2} encrypted with K

msg1

msg2

msg3

msg4

choose random C2

Figure 2 EKE Protocol

both know W=h(pwd)

{gA mod p} encrypted with W

choose B, calculate
K=gAB mod p,
choose challenge C1

{gBmod p} encrypted with W,
{C1} encrypted with K

fie-Hellman public numbers are always < p, so any pass-
word an attacker tried that decrypted to a value > p could
be identified as wrong. Therefore, the quantity {gA mod p}
encrypted with W could be used to reject a large number
of candidate passwords, and the quantity {gB mod p}
encrypted with W could be used to reject even more.
Avoiding these attacks requires careful transformation of
the Diffie-Hellman public numbers before encryption.
Successful techniques are described in [Pat97] and
[BM92].

SPEKE [Jab96] is similar to EKE, but instead of encrypt-
ing the Diffie-Hellman public numbers using W, it uses a
secret generator derived as a function of W instead of a
fixed g. The generator is still a function of the user’s pass-
word, so we will call it W.

Either of these protocols could be enhanced to serve the
function of downloading Alice’s security context by
including Alice’s context encrypted under K in the last
message. The resulting protocols would meet all our secu-
rity goals except one. Anyone reading the server database
could compute h(pwd) and then check it for a match
against all user accounts. This could be avoided by “salt-
ing” the passwords, but this would add two more messages
to the protocol. By salting, we mean having a different
non-secret quantity associated with each user, having the
user retrieve the salt from Bob, and using a secret key
based on h(salt,pwd) instead of just h(pwd).

2.3 Augmented EKE, SPEKE, and Wu

The protocols described in [BM94], [Jab97], and [WU98]

are related but more complex than EKE and SPEKE. They
have the security advantage of not requiring storage at the
server of a quantity that, if stolen, can be used to imper-
sonate the user to that server. The quantity can be used for
off-line password guessing, but it cannot directly be used
to impersonate the user.

We will not use these protocols, because for our purposes
there is no security advantage. The only thing someone
gains by successfully impersonating Alice to Bob is the
ability to read Alice’s encrypted private key. Since some-
one who has read Bob’s database already has that, there is
no point in making it difficult for someone who has read
Bob’s database to impersonate Alice to Bob.

2.4 Choosing p and g

All of these protocols depend on Alice and Bob agreeing
on a large prime p, and in the EKE derived protocols a
generator g. We have assumed that workstations are not
configured with any per-user or per-organization informa-
tion, so how do we make this work? [BM92] suggests that
the workstation could read the values of p and g from Bob
and then evaluate their reasonableness. If someone imper-
sonating Bob could trick Alice into using bad values of p
and g, they could potentially get enough information to do
off-line guesses of Alice’s password. We believe this
approach is a bad idea. First, it is computationally very
expensive for the workstation to validate that p and g are
"good". Further, if anyone - say through enormous compu-
tational effort or mathematical cleverness or both - could
find a p and g over which they could efficiently compute
discrete logarithms, they could impersonate any Bob to
any workstation and gain the ability to guess passwords
unaudited.

We believe that a better approach is to specify p and g as
part of the protocol specification. Because this would be
an attractive target for brute force attack, p should be cho-
sen conservatively - at least 1024 bits and more likely
2048. If over time this value became weak, new values for
p and g could be phased in by having multiple values con-
figured in clients and servers, and by having the server be
able to reject a connection based on an obsolete p and sug-
gest new values that would be acceptable. The workstation
would only accept new values that have been configured
into the software.

3. Simple Password-Based Private Key
Download Protocols

In this section we describe several new protocols for
downloading the user’s private key. These are variants on
EKE and SPEKE trimmed down for better performance.
We will give a series of protocols to show the evolution of

Alice Bob

{C1, C2} encrypted with K

{C2} encrypted with K

msg1

msg2

msg3

msg4

choose random C2

Figure 3 SPEKE Protocol

both know W=h(pwd)

WA mod p

choose B, calculate
K=WAB mod p,
choose challenge C1

WB mod p, {C1} encrypted with K

the design, and to examine the security and performance
implications of each step in the evolution. The first proto-
col, in figure 4, is the most straightforward extension of
EKE, but then in subsequent protocols we add perfor-
mance enhancements, security against additional threats,
and finally shorten it to two messages.

3.1 Four messages, no salt

The first protocol we present is closest in spirit to the
EKE/SPEKE class of protocols. The workstation initially
knows nothing. Alice types her password, and then the
workstation can compute W=h(pwd). Bob has a database
and knows, for each user:

• user name

• W=h(pwd)

• Y=user’s private key encrypted with her password

The protocol using SPEKE looks as follows. As before,
Bob knows, for each user:

• user name

• W=h(pwd)

• Y=user’s private key encrypted with her password

Note that one modification we have made is that we do not
have Alice authenticate Bob. For our purposes (download
of user’s private key) it is unnecessary for Alice to authen-
ticate Bob. All she cares about is that she receives a quan-
tity that when decrypted with her password, yields her
private key. It is true that someone who has stolen her
password can trick her into using the wrong private key,
but given that her password is her only means of authenti-
cating Bob or her public key pair, this threat is unavoid-
able. So there is no security advantage to having Alice
authenticate Bob. Therefore we can skip the fourth mes-
sage of the EKE/SPEKE handshake and use the fourth
message to download Y, encrypted with a strong session
secret.

Another modification we’ve made is to dispense with
Bob’s challenge from the EKE and SPEKE protocols. It is
sufficient to have Alice prove knowledge of K by sending
h(K).

Note that in the protocols in this section, someone imper-
sonating Bob can do a single unaudited on-line password
guess. What that means is that if someone, say Ted, is
impersonating Bob and guesses a single password for the
user, he can verify his guess after msg3, by checking
whether Alice returns the expected h(K). At this point Ted
can stop responding and Alice cannot tell that she wasn’t
talking to the legitimate Bob. Ted has given no incorrect
responses; he’s just simply broken off communication, a
situation unfortunately sufficiently common in the world
of networks and servers that it might not raise suspicion.
But Alice probably would become suspicious (or would at
least give up on using the system) if it happened thousands
of times.

Alice, on the other hand, cannot test even a single incor-
rect password without having Bob know she did not know
the password, because in msg3 she will not have the cor-

Alice Bob

h(K)

{Y} encrypted with K

msg1

msg2

msg3

msg4

Figure 4 Basic 4-msg EKE-based

“Alice”, {g A mod p} encrypted with W

choose B, calculate
K=gAB mod p

{gBmod p} encrypted with W

Alice Bob

h(K)

{Y} encrypted with K

msg1

msg2

msg3

msg4

Figure 5 Basic 4-msg SPEKE-based

“Alice”, WA mod p

choose B, calculate
K=WAB mod p

WBmod p

rect response unless she chose the correct password. And
she cannot break off communication earlier because until
msg4 she has not obtained any useful information with
which to verify even a single password guess.

Note that these protocols do not have the ability to use salt,
because unless there is a message from Bob first to let
Alice know what the salt is, she can’t compute W (since
the idea of salt is to require W to be a function of salt as
well as the password). Therefore she can’t compute what
she needs to send in msg1 ({gA mod p} encrypted with W
for the EKE-based protocol in Figure 4 and WA mod p for
the SPEKE-based protocol in Figure 5).

3.2 Adding Salt and a Cookie, 6 msgs

It is straightforward to add salt with an extra 2 messages
prior to msg1 in which Alice requests, and Bob transmits,
the salt.

Another feature we’d like to add is denial-of-service pro-
tection. In the protocols in figures 4 and 5, any requester
can force Bob to perform an exponentiation. Since Bob is
a server that can get arbitrary numbers of requests, there is
a potential denial of service attack if anyone can force him
to do something CPU-intensive. A cookie is a random
number Bob sends and Alice returns, which proves that
she can receive at the address she is claiming to come
from. This is helpful against an attacker who sends lots of
requests with forged source addresses to avoid capture.

The resulting protocol is:

Obviously, to make it work for EKE, replace Wx mod p
with {gx mod p} encrypted with W.

3.3 Four messages, Saving Computation for
Bob, Stateless Bob

We now make several improvements. We note that there is
no security lost by having Bob always use the same B for a
particular user, and precompute and store {gB mod p}
encrypted with W for that user (in the case of EKE), or
WB mod p (in the case of SPEKE). And it has the signifi-
cant advantage of reducing computation for Bob.

Of course, it would be a disaster, in EKE, to use the same
B with different users, because then someone knowing W1
for user 1 can decrypt {gB mod p} encrypted with W1
(sent to user 1) with W1 to obtain gB mod p, and then test
passwords against the quantity {gB mod p} encrypted with
W2, (which will be transmitted on the wire when user 2
downloads his password).

If, in the case of EKE, we have Alice send gA mod p unen-
crypted, then Bob does not need to store W if he’s storing
{gB mod p} encrypted with W. Similarly in SPEKE, if we
store WBmod p we no longer need to store W.

Note that in EKE, if Alice sent instead {gA mod p}
encrypted with W, then Bob would need W in order to
decrypt what Alice sends so that he can raise it to B. In the
protocol in Figure 4, we had Alice send {gA mod p}
encrypted with W, but in fact she could have sent gA mod
p unencrypted. The general rule of thumb for these proto-
cols is the person who proves knowledge of the password
first does not need to encrypt the Diffie-Hellman value.

Now we note that since Bob is not storing W, but is rather
storing a quantity dependent on B, which is unique for
each user, we dispense with the need for salt! With what
we’re storing, someone that steals Bob’s database and
wants to check whether a particular password matches any
user’s account must do an exponentiation with each user’s
unique B in order to check that password for that user. So
the modification we made for saving computation for Bob
has the very nice side-effect of eliminating the need for
salt.

The next modification is to make Bob stateless. In the pro-
tocol in figure 6, Bob had to remember what cookie/chal-
lenge he sent in msg2 in order to verify msg3. He also had
to remember Alice’s name. We can easily add Alice’s
name to msg3 in each case. We can also make it possible
for Bob not to need to remember R.

The way we do that is to have R be a function of Alice’s IP
address and a secret known only to Bob, e.g., R=h(IP
address, Bob’s server secret). Bob can change the secret
fairly frequently (like every 5 minutes), and accept one of
two values as a cookie from IP address x: the one based on
Bob’s current secret and the one from Bob’s previous
secret. That way Bob can be stateless, i.e., act in request/

Alice Bob

h(K)

{Y} encrypted with K

msg3

msg4

msg5

msg6

Figure 6 Salt, cookie, SPEKE-based, 6 msgs

cookie, WA mod p

choose B, calculate
K=WAB mod p

WBmod p

“Alice”

salt, cookie

msg1

msg2

response mode even though the protocols are 4 messages.

In the EKE-based protocol, Bob needs to store, for each
user:

• user name

• Y=user’s private key encrypted with her password

• B (the Alice-specific random number chosen by Bob
when setting up Alice’s account)

• {gB mod p} encrypted with W

In the SPEKE-based protocol, Bob needs to store, for each
user:

• user name

• Y=user’s private key encrypted with her password

• B (the Alice-specific random number chosen by Bob
when setting up Alice’s account)

• WB mod p

3.4 Two Messages, No Salt, EKE-based

Now we shrink the protocol down to two messages!

In the EKE-based protocol, Bob needs to store:

• user name

• W=h(pwd)

• Y=user’s private key encrypted with her password

If we want to save computation for Bob, we can addition-
ally have him store:

• B

• {gBmod p} encrypted with W

In this protocol, Bob simply makes a single response to
Alice’s request. We’ve eliminated all of the authentication
from the EKE protocol in figure 2, but we don’t need it. As
before, Alice does not need to authenticate Bob. And in
this case (as opposed to our 4-message protocols in the
previous section), someone impersonating Bob does not
even get a single password guess.

However, Alice does get a single chance to verify a pass-
word guess in an unaudited way. If she guesses the wrong
password, she will have no information about K, and
therefore no information about Y. However, she does get
one piece of information on an incorrect guess: that the
guess she chose was indeed incorrect. Bob cannot tell if
someone requesting a private key download is legitimate
or not. But, we stress, this is only a singleon-line pass-
word guess. Although Bob cannot distinguish a legitimate
download from a password guess, he ought to get suspi-
cious if the same user requests thousands of password
downloads within a short time.

Another disadvantage of this two-message EKE-based
protocol in comparison to the protocol in figure 7 is that
we no longer solve the problem generally solved by salt,
which is to prevent a single guessed password from being

Alice Bob

R, gA mod p, “Alice”, h(K), where K=gAB mod p

{Y} encrypted with K

msg1

msg2

msg3

msg4

Figure 7 4-msgs, stateless Bob, precomputation,
EKE-based

“Alice”

{gBmod p} encrypted with W, R

R=h(IP address, Bob’s secret)

Verify R=h(IP address., Bob’s secret)
Bob now computes K, verifies h(K)

Alice Bob

“Alice” , R, WA mod p, h(K),

{Y} encrypted with K

msg1

msg2

msg3

msg4

Figure 8 4-msgs, stateless Bob, precomputation,
SPEKE-based

“Alice”

WB mod p, R

R=h(IP address, Bob’s secret)

Verify R and h(K) valid

 (where K=WAB mod p)

Alice Bob

msg1

msg2

Figure 9 Two msgs, EKE-based

{gA mod p} encrypted with W

K=gAB mod p

{gBmod p} encrypted with W,
{Y} encrypted with K

easily tested against many user accounts. Bob needs to
store W so that he can decrypt ({gA mod p} encrypted
with W) sent by Alice in order to raise it to B. In some
cases, it might be possible to use the user’s name as salt,
but this can be problematic if users’ names can change, or
if a user has aliases.

But by using SPEKE instead of EKE we can get the bene-
fit of salt, as we’ll see in the next section.

And one more disadvantage of the two-message protocol
is that we can no longer use a cookie. Any request will
force Bob to do an exponentiation.

No protocol can guard against an adversary guessing and
verifying a correct password, or testing an incorrect pass-
word. It would admittedly be better if each wrong guess
could be audited. But as we said, the form factor of a 2-
message protocol is so nice that in practice the very small
security downsides might well be worth the price.

3.5 Two Messages, SPEKE-based

In the SPEKE-based two-message protocol, Bob needs to
store:

• user name

• Y=user’s private key encrypted with her password

• B (the Alice-specific random number chosen by Bob
when setting up Alice’s account)

• WB mod p

In this protocol, we get the benefit of salt since we don’t
store W, and WB mod p is different for each user (since B
is unique for each user). We save computation for Bob,
since he does not have to choose B each time and raise W
to B. (He still has to compute K, of course). Although this
protocol, unlike the EKE-based protocol in figure 9, has
the advantage of salt, it has the same other disadvantages
of the EKE-based protocol:

• Alice gets a single unaudited on-line password guess.

• We cannot use a cookie.

3.6 Getting the Rest of the User’s Security
Context

If the workstation is to competently act on behalf of Alice,
it will need other information that makes up her security
context. This is likely to include her certificate, the public
keys of one or more CAs she trusts, and possibly some
encoding of a trust policy - asserting, for example, the
location of her mailbox and the certifiers trusted to authen-
ticate it.

Whatever form this information takes, it can be down-
loaded securely by having it stored signed and (if neces-
sary) encrypted with Alice’s key. If the information
changes from time to time, the user can sign and encrypt
successive versions with a timestamp the workstation can
display to prevent undetected reversions. Alternatively,
Alice could trust some administrator to manage her secu-
rity state, in which case her key would sign a statement of
trust in the administrator’s key, and other state would be
stored signed with the administrator’s key and encrypted
(if necessary) with Alice’s public key. In any event, any
form of state can be securely loaded by the workstation
and could not be forged by anyone without Alice’s pass-
word or private key.

4. Summary

We provide several protocols for downloading a user’s pri-
vate key and other security context such as a CA public
key from a directory. Deployed protocols such as NetWare
4 require foreknowledge (or insecure download) of the
directory’s public key. There are other protocols similar in
spirit to our protocols, but they were designed only for
mutual authentication and are unnecessarily strong in
some cases for our purposes, and therefore require more
messages or more computation.

We present protocols that require no preknowledge (such
as server public keys), with the following new advantages:

• denial of service resistance

• minimizing server computation

• allowing the server to be stateless even in a four-mes-
sage protocol

• salt

• two-message protocols with most of the benefits

5. Acknowledgements

We wish to thank Mary Ellen Zurko, Jonathan Trostle,
and four anonymous reviewers for their helpful comments
on this paper.

Alice Bob

msg1

msg2

Figure 10 Two msgs, SPEKE-based

WA mod p

K=WAB mod p

WB mod p, {Y} encrypted with K

6. Bibliography

1. [BM92] S. Bellovin and M. Merritt, “Encrypted Key
Exchange: Password-based protocols secure against
dictionary attacks”, Proceedings of the IEEE Sympo-
sium on Research in Security and Privacy, May 1992.

2. [BM94] S. Bellovin and M. Merritt, “Augmented
Encrypted Key Exchange: a Password-Based Protocol
Secure Against Dictionary Attacks and Password File
Compromise, ATT Labs Technical Report, 1994.

3. [DH76] W. Diffie and M. Hellman, “New Directions
in Cryptography”, IEEE Transactions on Information
Theory, November 1976.

4. [Jab96] D. Jablon, “Strong password-only authenti-
cated key exchange”, ACM Computer Communica-
tions Review, October 1996.

5. [Jab97] D. Jablon, “Extended Password Protocols
Immune to Dictionary Attack”, Proceedings of the
WETICE ‘97 Enterprise Security Workshop, June
1997.

6. [KPS95] C. Kaufman, R. Perlman, and M. Speciner,
“Network Security: Private Communication in a Pub-
lic World”, Prentice Hall, 1995.

7. [LGSN89] T. Lomas, L. Gong, J. Saltzer, and R.
Needham, “Reducing Risks from Poorly Chosen
Keys”. Proceedings of the 12th ACM Symposium on
Operating System Principles, December, 1989.

8. [LI94] R. Lee and J. Israel, “Understanding the Role
of Identification and Authentication in NetWare 4”,
Novell Application Notes, October 1994.

9. [Pat97] S. Patel, “Number Theoretic Attacks On
Secure Password Schemes”, Proceedings of the IEEE
Symposium on Security and Privacy, May 1997.

10. [SS88] G. Steiner and J. Schiller, “Kerberos: An
authentication service for open network systems”,
Proceedings of the USENIX Winter Conference, Feb-
ruary 1988.

11. [WU98] T. WU, “The Secure Remote Password Pro-
tocol”, ISOC NDSS Symposium, 1998.

