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Abstract—Deauthentication is an important component of
any authentication system. The widespread use of computing
devices in daily life has underscored the need for zero-effort
deauthentication schemes. However, the quest for eliminating user
effort may lead to hidden security flaws in the authentication
schemes.

As a case in point, we investigate a prominent zero-effort
deauthentication scheme, called ZEBRA, which provides an inter-
esting and a useful solution to a difficult problem as demonstrated
in the original paper. We identify a subtle incorrect assumption
in its adversary model that leads to a fundamental design flaw.
We exploit this to break the scheme with a class of attacks
that are much easier for a human to perform in a realistic
adversary model, compared to the naı̈ve attacks studied in the
ZEBRA paper. For example, one of our main attacks, where the
human attacker has to opportunistically mimic only the victim’s
keyboard typing activity at a nearby terminal, is significantly
more successful compared to the naı̈ve attack that requires
mimicking keyboard and mouse activities as well as keyboard-
mouse movements. Further, by understanding the design flaws in
ZEBRA as cases of tainted input, we show that we can draw on
well-understood design principles to improve ZEBRA’s security.

I. INTRODUCTION

User authentication is critical to many on-line and off-
line services. Computing devices of all types and sizes,
ranging from mobile phones through personal computers to
remote servers rely on user authentication. Deauthentication
– promptly recognizing when to terminate a previously au-
thenticated user session – is an essential component of an
authentication system.

The pervasive use of computing in people’s daily lives
underscores the need to design effective, yet intuitive and easy-
to-use deauthentication mechanisms. However, this remains an
important unsolved problem in information security. A promis-
ing approach to improving usability of (de)authentication
mechanisms is to make them transparent to users by reducing,
if not eliminating, the cognitive effort required from users. Al-
though such zero-effort authentication schemes are compelling,

designing them correctly is difficult. The need to minimize
additional user interactions required by the scheme is a severe
constraint that can lead to design decisions which might affect
the security of the scheme.

One prominent approach for improving usability of se-
curity mechanisms involves comparing information observed
from two different sources. Such a bilateral approach has
been proposed as part of solutions for a variety of security
problems such as deauthentication of users [23], determining
if two or more devices are co-present in the same place [28],
establishing security associations among nearby devices (“pair-
ing”) [29], [9] and authorizing transactions between co-present
devices [8]. Bilateral authentication schemes are attractive
because they can avoid imposing any cognitive load on users
(thus making them “zero-effort”), or the need to store sensitive
or user-specific information on devices [23]. However, an
adversary capable of influencing one or both sources of infor-
mation being compared in a bilateral scheme may compromise
security.

In this paper, we illustrate the problem of subtle flaws in
the design of zero-effort bilateral schemes by examining an
interesting class of schemes represented by ZEBRA, a zero-
effort bilateral deauthentication scheme, proposed recently in
a premier security research venue [23]. ZEBRA is intended
for scenarios where users authenticate to “terminals” (such as
desktop computers). In such scenarios, users typically have to
either manually deauthenticate themselves by logging out or
locking the terminal, or the terminal can deauthenticate a user
automatically after a sufficiently long period of inactivity. The
former requires user effort while the latter sacrifices prompt-
ness. ZEBRA attempts to make the process of deauthentication
both prompt and transparent: once a user is authenticated to a
terminal (using say a password), it continuously, yet transpar-
ently re-authenticates the user so that prompt deauthentication
is possible without explicit user action. A user is required
to wear a bracelet equipped with sensors on his mouse-
holding hand. The bracelet is wirelessly connected to the
terminal, which compares the sequence of events it observes
(e.g., keyboard/mouse interactions) with the sequence of events
inferred using measurements from the bracelet sensors. The
logged-in user is deauthenticated when the two sequences no
longer match.

ZEBRA is particularly compelling because of its simplicity
of design. However, the simplicity hides a design assumption
that an adversary can exploit to defeat the scheme. We show
how a more realistic adversary can circumvent ZEBRA. Since
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no implementation of ZEBRA was available, we built an
end-to-end implementation and use it in our attack. We also
implemented changes needed to make ZEBRA work in real-
time.

Our primary contributions can be summarized as follows:

1) We highlight fundamental pitfalls in designing zero-
effort bilateral security schemes by studying ZEBRA,
a notable prior scheme. We identify a hidden design
choice in ZEBRA that allows us to develop an
effective attack strategy: a human attacker observing
a victim at a nearby terminal and opportunistically
mimicking only a subset of the victim’s activities
(e.g., keyboard events) at the authentication terminal
(Section III).

2) We build a end-to-end implementation1 of ZEBRA
(Section IV), and demonstrate via experiments in
realistic adversarial settings that ZEBRA as de-
signed can be defeated by our opportunistic attacker
with a (statistically) significantly higher probability
compared to a naı̈ve attacker, also considered in [23]
(one who attempts to mimic all, keyboard and mouse,
activities) (Section V).

3) We cast ZEBRA’s design flaw as a case of tainted
input, and thus draw from well-understood principles
of secure system design that may help improve the
security of ZEBRA (Section VI).

II. BACKGROUND

Since we use ZEBRA [23] as our exemplary bilateral zero-
effort deauthentication scheme, we now describe it in more
detail. It is intended for multi-terminal environments where
users frequently move between terminals. Mare et al. [23]
present a hospital environment as their motivating scenario.
Hospital staff members often use shared terminals. However,
a user must not, intentionally or unintentionally, access hospital
systems from terminals where other users have logged in.
Users may leave terminals without logging out, but may still
remain in the vicinity. Proximity-based zero-effort deauthenti-
cation schemes such as ZIA [12] or BlueProximity [5] cannot
be used because these methods are not accurate enough for
short distances. Although the motivating scenario is an en-
vironment with shared terminals, zero-effort deauthentication
schemes like ZEBRA are broadly applicable to any scenario
where users may leave their terminals unattended.

Adversary Model: ZEBRA[23] considers two types of ad-
versaries: “innocent” and “malicious”. An innocent adversary
is a legitimate user who starts using an unattended terminal
inadvertently without realizing that another user (“victim”) is
logged into that terminal. In contrast, a malicious adversary
deliberately uses an unattended terminal of the victim with
the intent of performing some action impersonating the victim.
A malicious adversary may observe the behavior and actions
of the victim (such as imitating the victim’s hand movements
made while interacting with another terminal). The goal of
ZEBRA is to quickly detect if a previously authenticated

1Unlike [23] which only described the implementation of individual com-
ponents and off-line classification.

session on a terminal is being used by anyone other than the
user who originally authenticated, and promptly deauthenticate
the session. Naturally, decisions made by ZEBRA should min-
imize false positives (incorrectly recognizing an adversary as
the original authenticated user, thereby failing to deauthenticate
him as well as false negatives (incorrectly concluding that
current user is not the original user, thereby deauthenticating
him.

System Architecture: Figure 1 depicts the normal (benign)
operation of ZEBRA. It correlates a user’s activities on a
terminal with measurements of user activity relayed from a
wrist-worn device (we call it a bracelet for simplicity, but it can
be a general-purpose smartwatch as in our implementation and
analysis). The goal is to continuously verify that the logged
in user is the one using the terminal and to quickly deau-
thenticate any unintended users. ZEBRA assumes terminals
with keyboard/mouse and a personal bracelet for each user
of the system. The bracelet has accelerometer and gyroscope
sensors to record wrist movements. Terminals and bracelets
securely communicate using “paired” wireless channels like
Bluetooth. In addition, a terminal knows the identity of the
bracelet associated with each authorized user. Users initially
authenticate themselves to terminals using some mechanism
external to ZEBRA (such as using a username/password). Once
a user has been authenticated, the terminal connects to that
user’s bracelet and starts receiving sensor measurements from
it.

The basic principle of operation is to compare the sequence
of user activity seen at the terminal with that inferred from
data sent by the bracelet. ZEBRA’s system architecture is
shown in Figure 2. An Interaction Extractor on the termi-
nal identifies the actual interaction sequence based on input
events observed by the terminal peripherals. It defines three
different types of such interactions: typing, scrolling, and hand
movements between the mouse and keyboard (referred to as
“MKKM”)2. Interaction Extractor records the timestamps of
each event in the actual interaction sequence. A Segmenter on
the terminal receives measurement data sent by the bracelet
and segments this data according to the timestamps it receives
from Interaction Extractor. Segmenter ignores all measure-
ments that fall outside these time slots. From the segments,
a Feature Extractor extracts salient features and feeds them
to an Interaction Classifier that has been trained to identify
the type of interaction from bracelet measurement data. The
classifier outputs a predicted interaction sequence. Finally,
an Authenticator compares the two interaction sequences and
determines whether the current user at the terminal is the
“same” as, or “different” from, the originally authenticated
user.

Authenticator can be tuned by a number of parameters. It
compares sequences of length w (window size) at a time. In
each window, if the fraction of matching interactions exceeds a
threshold m (matching threshold), it records 1 for that window;
otherwise it records 0. If the record is 0 for g (grace period)
successive windows, the authenticator outputs “different” caus-
ing ZEBRA to deauthenticate the session. Successive windows

2ZEBRA neither cares about which key was pressed nor about what direc-
tion the mouse was scrolled. It actually cares about whether the interaction is
typing, scrolling or movement between mouse and keyboard.
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Fig. 1: Normal operation of ZEBRA

may overlap, as determined by f (overlap fraction), with 0
signifying no overlap.

Segmenter ignores readings from the bracelet when In-
teraction Extractor detects no activity on the terminal. The
choice was motivated in [23] by privacy considerations: the
user’s activities are not monitored when nobody is using the
terminal. At first glance, it is a natural and reasonable design
decision: if there is no terminal activity, there is reason to
deauthenticate the session (thus reducing the chances of false
negative decisions). However, as we shall see, an adversary
can exploit this subtle aspect of the design.

Validation: Mare et al. [23] validated usability of their deau-
thentication scheme by calculating false negative rates for
normal usage scenarios with different parameter settings. They
validated the security by considering three separate scenarios.
The first two scenarios model the “innocent adversary”: the
logged in user (victim) is either walking or writing nearby
while the attacker accesses the victim’s terminal. The last
scenario models the “malicious” adversary: the victim uses
another terminal, while the attacker uses the victim’s original
terminal. The activity conducted by both victims and attackers
is filling forms. These scenarios were chosen as representative
of multi-user environments such as hospitals, where physicians
enter form-type data about their patients and routinely forget
to log out of their terminals. It is reasonable to assume there
are multiple terminals that users access and use. Similar usage
scenarios are plausible in other contexts as well, such as
in factory floors or control rooms. In [23], the malicious
adversary is required to mimic all mouse-hand movements of
the victim. Ordinary non-expert users act as the attackers in
their analysis. Because Mare et al. [23] “realize that a real
adversary can be motivated and skilled enough to mimic user
very well, compared to our adversaries”, they tried to make
the scenario advantageous to the attacker by (a) providing
the attacker with a clear view of the victim’s screen and (b)
have the victim give verbal cues to indicate what the victim
was doing during the experiments (e.g., answering question
2 in the form). They concluded that their system was able to
deauthenticate such attackers in reasonable time, while keeping
false negative rates low.

III. OUR ATTACK

There are a number of attributes that make ZEBRA at-
tractive. In particular, rather than trying to recognize the user,
ZEBRA’s bilateral approach simply compares two sequences

that characterize user interaction. Consequently, its decisions
neither limit how a user interacts with the terminal nor require
storing any information about the user or his style of interac-
tion. Such simplicity makes ZEBRA robust but also vulnerable.
In this section, we revisit the security analysis in [23], point
out a design flaw, and explain how it can be used to attack
ZEBRA.

A. Revisiting ZEBRA Security Analysis

Recall from Section II that Segmenter ignores all measure-
ment data from the bracelet during periods when Interaction
Extractor does not record any activity on the terminal involv-
ing the three types of interactions recognized by ZEBRA.
However, the attacked terminal is under the control of the
adversary and thus she can effectively choose which parts
of the bracelet measurement data will be used by ZEBRA to
re-authenticate the user. Mimicking all interactions is not the
best attack strategy. A smart adversary can selectively choose
only a subset of the victim’s interactions to mimic since it can
ensure that the rest of the victim’s interactions will be ignored
by Authenticator. Furthermore, to validate security, we need
to use a realistic adversary model which allows attackers to
be skilled and experienced in mimicking how people interact
with terminals. It is unreasonable to use inexperienced test
participants to model the adversary. Thus, the role of the
attacker in this paper was played by two members of our
research group that were knowledgeable of the ZEBRA system
and experienced at mimicking attacks.

B. Attack Scenarios and Strategies

In our attack scenarios, we model a malicious adversary
against ZEBRA as discussed in Section II. We assume that
the adversary A accesses the attacked terminal AT when the
victim V steps away from it without logging out. We also
assume that V is using another computing device (the “victim
device”, VD) elsewhere (e.g., a nearby terminal). Figure 3
illustrates the attack setting.

Strategy: The goal of A is to remain logged in on AT for
as long as possible, while interacting with the terminal. To
this end, A needs to consistently produce a sufficiently large
fraction of interactions that will match V’s interactions on
VD. Since AT is under the control of A, it can choose when
AT ’s Interaction Extractor triggers Authenticator to compare
the predicted and actual interaction sequences. If A adopts an
opportunistic strategy, it can selectively choose only a subset
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Fig. 2: ZEBRA system architecture

of V’s interactions to mimic so as to maximize the fraction of
matching interactions. We conjecture that such an opportunistic
adversary will be more successful than the naı̈ve adversary that
was considered in [23].

First, we consider a keyboard-only attack where A mimics
only the typing interactions while ignoring all others. Typing
sequences are typically longer and less prone to delays in
mimicking. The opportunistic strategy is for A to start typing
only after V starts typing and attempt to stop as soon as V
stops. A sophisticated keyboard-only attacker may estimate
the expected length of V’s typing session and attempt to stop
before V does. If A makes just a few key presses each time V
begins typing, he can be confident that the actual interaction
sequence he produces will match the predicted interaction
sequence. These keyboard-only attacks are powerful because in
all modern personal computer operating systems a wide range
of actions can be performed using only the keyboard.

Second, we consider an all-activity attack, where A mimics
all types of interactions (typing, scrolling and MKKM) but
opportunistically chooses a subset of the set of interactions. As
before, the A’s selection criterion is the likelihood of correctly
mimicking V . In particular, A will use the following strategy:

• Once A successfully mimics a keyboard to mouse
interaction, he is free to carry out any interaction
involving the mouse (scroll, drag, move) at will be-
cause the bracelet measurements for all interactions
involving the mouse are likely to be similar.

• If A fails to quickly mimic a keyboard to mouse
(or vice versa) interaction, he does nothing until the
next opportunity for an MKKM interaction arises
(foregoing all interactions until after the MKKM is
completed).

ZEBRA concatenates continual typing events into up-to 1
second long interactions: as such the typing speed of A is
not particularly relevant. Instead, A may divert more of his
attention to observing V .

Observation Channels: By default, and similar to [23], we
consider an adversary A who has a clear view of V’s interac-
tions (Figure 3). This models two cases: where A has direct
visual access to V and where A has access to a video aid such

as a surveillance camera aimed at VD. During our attacks that
use visual information of the victim’s behavior, victim’s new
device VD was placed next to the victim terminal AT . We
also consider the case where A has no visual access to but
can still hear sounds resulting from V’s activities. Again, this
models two cases: where both V andA are in the same physical
space separated by a visual barrier (e.g., adjacent cubicles) and
where A has planted an audio aid (e.g., a small hidden bug
or a microphone) close to VD.

Scenarios: The combination of attack strategy and type of
observation channel leads to several different attack scenarios.
We consider four of the most significant ones:

• In naı̈ve all-activity attack, A is able to both see and
hear V . A attempts to mimic all interactions of V .
This is the attack scenario proposed and studied in
[23].

• In opportunistic keyboard-only attack, A is able to
both see and hear V . A selectively mimics only a
subset of V’s typing interactions.

• In opportunistic all-activity attack, A is able to both
see and hear V . A selectively mimics a subset of all
types of interactions of V following the guidelines
mentioned above.

• In audio-only opportunistic keyboard-only attack,A
is able to hear, but not see, V’s interactions. A listens
for keyboard activity and attempts to mimic a subset
of V’s typing interactions.

While one can imagine other attack combinations, we
consider these four to be representative of different choices
available to A. For example, we leave out an audio-only all-
activity attack because it is unlikely to succeed. Although our
experiments are “unaided” (i.e., no audio or video recording),
the results generalize to aided scenarios, if data transmission
between the aid and the attacker does not introduce excessive
delays.

IV. ZEBRA END-TO-END SYSTEM

Mare et al [23] describe a framework for ZEBRA and
implemented some individual pieces. However, this was not
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a complete system. Therefore, we needed to build an end-
to-end system from scratch to evaluate our conjecture about
opportunistic attacks. Our goal was to make this system as
close to the one in [23] as possible. We now describe our
system and how we evaluated its performance.

A. Design and Implementation

Software and Hardware: We followed the ZEBRA system
architecture as described in Figure 2. Our system consists of
two applications: the bracelet runs an Android Wear appli-
cation and the terminal runs a Java application. Interaction
Classifier is implemented in Matlab. Communicator modules
in both applications orchestrate communication over Bluetooth
to synchronize clocks between them and to transfer bracelet
measurements to the terminal. The rest of the terminal software
consists of the “ZEBRA Engine” (shaded rectangle) with the
functionality described in Section II. The bracelet and terminal
synchronize their clocks during connection setup. For our
experiments, we used a widely available smartwatch (4GB LG
G Watch R with a 1.2 GHz CPU and 512MB RAM) with
accelerometer/gyroscope as the bracelet and standard PCs as
terminals.

Parameter Choices: Mare et al [23] do not fully describe
the parameters used in their implementation of ZEBRA com-
ponents. Wherever available, we used the exact parameters
provided in [23] [22]. For the rest, we strived to choose
reasonable values. A full list of parameters and rationales for
choosing their values appears in Appendix A.

Classifier: We use the Random Forest [7] classifier. Again,
as [23] did not include all details on how their classifier was
trained and tuned, we made parameter choices that gave the
best results. Our forest consisted of 100 weak-learners. Each
split in a tree considered sqrt(n) features, where n = 24
was the total number of features, and the trees were allowed
to fully grow. In addition, classes were weighted to account
for any imbalances in the training dataset (described below
in Section IV-B). We adopt the same set of features used in
[23], and extract them for both accelerometer and gyroscope
segments. A full list appears in Appendix ??.

Differences: Despite our efforts to keep our system similar to
that in [23], there are some differences. First, we wanted to use
commercially widely available general-purpose smartwatches
as bracelets. They tend to be less well-equipped compared to
the high-end Shimmer Research bracelet used in [23]. Our
smartwatch has a maximum sampling rate of around 200 Hz,
whereas the Shimmer bracelet had a sampling frequency of
500 Hz. We discuss the implications of this difference in
Section VII.

In addition, [23] mentions a rate of 21 interactions in a 6s
period (3.5 interactions per second). However, in our measure-
ments, users filling standard web forms averaged around 1.5
interactions per second. Their typing interactions were slightly
less than 1s long on average and MKKM interactions typically
spanned 1-1.5s. With our chosen parameters we could produce
a rate of 3.5 interactions per second only in sessions involving
hectic activity – switching extremely rapidly between a few
key presses and mouse scrolls. Such a high rate could not be
sustained in realistic PC usage.

B. Data Collection

In our study, we recruited 20 participants to serve as users
(victims) of the system. They were mostly students recruited
by word of mouth (ages 20–35, 15 males; 5 females, all right-
handed). Participation was voluntary, based on explicit consent.
The study included both dexterous typists and less-experienced
ones. Initially, we told the participants that the purpose of the
study was to collect information on how they typically use a
PC. At the end of the study, we explained the actual nature of
the experiment. The members of our research groups played
the role of the adversary A, compared to the untrained users
in [23]. No feedback was given to A whether a given attack
attempt was successful or not.

Experiments were conducted in a realistic office setting
(with several other people working at other nearby desks).
During a session, a participant did four 10-minute tasks filling
a web form, in a similar setting as in [23]. From each task, two
sets of user data were collected simultaneously: accelerometer
and gyroscope measurements from the user’s bracelet and the
actual interaction sequence extracted by Interaction Extractor
on the terminal. An attacker A assigned to a participant V
conducted each of the four types of attack scenarios from III-B
in turn. In the first three scenarios, A had direct visual access
to V . In the fourth scenario, we placed a narrow shoulder-
high partition between V and A so that A can hear but not
see V . The 20 sessions thus resulted in a total of 80 samples,
with each sample consisting of three traces: bracelet data of
the user, actual interaction sequence of the user, and the actual
interaction sequence of the attacker. All traces within a sample
were synchronized. No other information (e.g., the content of
what the participant typed in) was recorded. Participants were
told what data was collected.

The data collection and the study followed IRB procedures
at our institutions. The data we collected has very little
personal information. It is conceivable that the interaction
sequences or bracelet data could potentially be used to link
a participant in our study to similar data from the same partic-
ipant elsewhere. For this reason, we cannot make our datasets
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public, but will make them available to other researchers for
research use.

C. Performance Evaluation

Usability: To evaluate usability, we follow the same ap-
proach as in [23] to compute the false negative rate (FNR) as
the fraction of windows in which Authenticator comparing the
actual and predicted interaction sequences from the same user
incorrectly outputs “different user.” We employ the leave-one-
user-out cross-validation approach: for each session, we train
a random forest classifier using the 76 samples of bracelet
data from all the other 19 sessions. We then use the four
samples from the current session to test the classifier. We
thus train 20 different classifiers, and report results aggregating
classification of 80 samples in all.

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Window size (w)

A
v
e
ra

g
e
 F

N
R

 

 

50%

55%

60%

65%

70%

(a) Average FNR vs. window size (w) for different threshold (m)
values. Fraction of windows that are incorrectly classified as mis-
matching.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Windows (w)

F
ra

c
ti
o
n
 o

f 
lo

g
g
e
d
 i
n
 u

s
e
rs

 

 

g=1

g=2

(b) Fraction of users remaining logged in after (n) authentication
windows (with w = 20,m = 60%), for different grace periods (g).

Fig. 4: Performance for legitimate users

Figure 4a shows how different window size (w) and
matching threshold (m) values affect average FNR. As can be
seen, FNR is very low for our system. The original ZEBRA
paper [23] reports FNRs in the range of 0-16% whereas in our
system the FNRs are 0-6%, and below 1% for window sizes
above 10.

We also estimated the length of time (in terms of the
number of windows) for which a legitimate user remained
logged in. For this, we fix w = 20 and m = 60% as in

[23]. On average, a window was 13 seconds long. The low
FNRs result in no legitimate users getting logged out in any
of the 10 minute samples. Figure 4b depicts this by plotting
the fraction of users still logged in after a given number
of authentication windows. The situation is the same when
allowing one additional failed authentication window before
logging a user out (g = 2), or when directly logging the user
out after the first failed window (g = 1). This also seems in
line with the results reported in [23], where one legitimate user
was logged out when using a stricter grace period (g = 1).

Table I presents the confusion matrix for the classification
performance of our Interaction Classifier. It combines data for
all 80 (20 x 4) classifications. It shows that our system is very
good at recognizing events accurately. For example, for the
typing events, we obtain a precision of 96.9% (15753/16252)
and a recall of 96.5% (15753/16332).

TABLE I: Confusion matrix for 80 legitimate user samples.

A
ct

ua
l

Predicted

Typing Scrolling MKKM

Typing 15753 354 225

Scrolling 271 2506 2

MKKM 228 71 15378

Detection of Innocent Adversaries: To estimate the security
against an innocent adversary (a different user) who inad-
vertently starts using an unattended terminal where another
user has logged in, we compute the true negative rate (TNR)
for “mismatching” sequences: where the actual interaction
sequence of one sample is compared against the predicted
interaction sequence of a different sample. With such mis-
matched sequences, the TNR is the fraction of windows in
which the “wrong” user is correctly classified as “different
user.” Recall that data within a sample (and thus the interaction
sequences extracted from it) are synchronized. When mis-
matching samples to compute TNR, we synchronized traces by
aligning the starting points of the sequences being compared.

Figure 5a shows how different w and m values impact
the average TNR (over 20 x 4 classifications) of our system
with mismatched traces as input. Especially for thresholds
of 60-70%, a majority of the authentication windows are
identified correctly as non-matching. Again, using w = 20 and
m = 60%, Figure 5b shows the fraction of “wrong” users who
remain logged in (i.e., incorrectly not deauthenticated) after
interacting with the terminal for a given number of windows.

When the legitimate user is also interacting with a terminal,
it can be expected that a non-zero fraction of actual interactions
by the “wrong user” will accidentally match the predicted
interactions by the legitimate user. As such ZEBRA Authen-
ticator will accept (output 1) for a fraction of authentication
windows. However, as can be seen from the fraction of logged
in users in Figure 5b, a majority of users will quickly get
logged out as any such accidental matches are not sufficient to
keep the user logged in for an extended period of time. Using
a strict grace period (g = 1), 78% of wrong users are logged
out after the first authentication window and all but one after
5 windows. For g = 2, 80% of wrong users are logged out
after 5 windows, and all by window 10.
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(b) Fraction of users remaining logged in after (n) authentication
windows (with w = 20,m = 60%), for different grace periods (g).

Fig. 5: Performance for “wrong” (mismatched) users. Simu-
lated accidental usage of the terminal.

To further evaluate the resilience of our system, we in-
vestigated the impact on FNR if the predicted and actual
interaction sequences are desynchronized. We shifted the ac-
tual interaction sequence in each sample forward in time to
simulate the time delay incurred, for example, when an attacker
mimics his victim. Delays of 200 ms increase the Negative
Rates (NR) from the 0-6% (presented in Figure 4a) to 1-
20%, resulting in 5-10% of legitimate users getting logged
out. Further increasing the delay to 500 ms increases the NR
to 25-70% causing a majority of users to be logged out within
2-4 authentication windows. Thus, despite its low FNRs for
legitimate users, our system is robust because it is sensitive to
delays introduced in mimicking user interactions.

Summary: We therefore conclude that our end-to-end system
is functionally comparable to that of [23]. Legitimate users
remain logged-in at a very high rate, whereas the majority
of wrong users are quickly logged out. Our system achieves
lower FNR for legitimate users compared to [23], which is
good for usability but may also be caused if the system is
too permissive. However, our experiments with mismatched
and desynchronized traces show marked increases in FNR
suggesting that our system is not overly permissive.

V. MALICIOUS ADVERSARIES

Having shown that our end-to-end system is resilient
against innocent adversaries, we now consider its security
against malicious adversaries who attempt to intentionally
mimic a victim’s interactions. We consider the four types of
attack scenarios from Section III-B: naı̈ve and opportunistic
all-activity attacks, and two variants of opportunistic keyboard-
only attacks.

In all four cases, we use data from the 20 user sessions.
As before, we use the leave-one-user-out approach: for a given
session, we train Interaction Classifier using the bracelet traces
from the 76 samples from the remaining 19 sessions. For each
type of attack, we then apply the classifier for the correspond-
ing trace in the current sample. Thus, the results for each attack
scenario is the aggregated result of 20 classifications.

Naı̈ve all-activity: Figure 6a presents the average False Pos-
itive Rate (FPR) for threshold values (m) between 50% and
70%, and for window sizes (w) in the 5-30 range. The FPR
represents the fraction of authentication windows in which
the attacker is mistaken for the victim, i.e., a large enough
fraction of interactions are evaluated as matching. The FPR
values range from 50-80% with a lenient threshold of 50%,
and from 15-35% with a strict threshold of 70%. For example,
with m = 70% and w = 20, less than one fifth of the attackers’
authentication windows are correct.

We choose the same threshold and window size as pre-
viously described (m = 60% and w = 20), and determine
the fraction of logged in users as a function of the number
of authentication windows. This represents how long the
attackers successfully remain logged in. Figure 6b depicts this
fraction for g = 1, 2 . The FPR of 43% from Figure 6a
translates to all users eventually being logged out. With a
strict grace period (g = 1) all attackers are logged out by
the seventh authentication window, whereas with g = 2 one
attacker remains logged in until window 16 (all others fail
at window 10 at the latest). The victim in this one case had
very slow interactions, which made them easier to mimic. The
corresponding number of windows in the ZEBRA paper [23]
were 2 and 4.

The naı̈ve all-activity attacker is comparable to the attacker
modeled in [23]. However, the performance of our system
against such an attacker (as summarized in Figures 6a and 6b)
is more lenient than the corresponding figures reported in [23].
Nevertheless, we can use the results for the naı̈ve all-activity
attacker as a baseline to compare against more sophisticated
or smart attacker strategies we study next.

Opportunistic keyboard-only: We now consider an attacker
who opportunistically mimics only a subset of the typing inter-
actions. Figure 7a presents average FPR for different threshold
values and window sizes. The FPRs are now noticeably higher.
A threshold of m = 60% and a window size of w = 20 now
produces an FPR of 70%. Even with a stricter threshold of
70%, in around half of the windows, attacker interactions are
incorrectly evaluated as matching the victim’s interactions. In
summary, windows are misclassified as correct ones roughly
20 percent points more often with an opportunistic keyboard-
only attacker, compared to a naı̈ve all-activity attacker.
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(b) Fraction of attackers remaining logged in after (n) authentication
windows, for different grace periods (g).

Fig. 6: Results for naı̈ve all-activity attackers. Naı̈ve all-
activity attackers try to replicate all mouse-hand movements.

These high FPRs translate to almost half of the attackers
remaining successfully logged in for the whole duration of
the experiment. Figure 7b depicts the fraction of logged
in attackers as a function of the number of authentication
windows, using g = 1, 2. Figure 8 shows the same information
in terms of minutes. In terms of remaining successfully logged
in, the advantage of an opportunistic keyboard-only attacker
(Figure 7b) over the naı̈ve all-activity attacker (Figure 6b)
is statistically significant (Wilcoxon signed-rank test, z =
−2.928 and p = 0.003 � 0.05) with medium effect size
(r = −0.46). In other words, keyboard-only attackers remain
logged in statistically longer than all-activity attackers. Using
g = 1 results in 40% of the attackers remaining logged in
throughout the experiment. A grace period of g = 2 increases
this to 45%.

Given that an opportunistic keyboard-only attacker can
do significantly better than the naı̈ve all-activity attacker, we
conclude that the attack scenario used in [23] to demonstrate
the security of ZEBRA is not the most favorable setting for the
adversary. Also, in our experiments the opportunistic attackers
reproduced around 60% of the victims’ typing interactions,
reaching typing speeds of 20-40 words/minute. Even at this
high typing rate, 40-45% of attackers were able to successfully
evade detection throughout the experiment. A more conser-
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(b) Fraction of attackers remaining logged in after (n) authentication
windows for different grace periods (g).

Fig. 7: Results for opportunistic keyboard-only attackers.
Opportunistic keyboard-only attackers choose to replicate only
a part of the keyboard movements of the victim.
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Fig. 8: Opportunistic keyboard-only attacker: Fraction of
attackers remaining logged in after (t) minutes (with w =
20,m = 60%), for different grace periods (g).

vative strategy would naturally increase the attacker success
rates closer to 100%. To clarify, the number of interactions
generated per unit of time is not bound to the typing speed:
ZEBRA concatenates consecutive typing events into a single
typing interaction of up to 1s in length. Victims who type
slowly may give the attacker more time to mimic. For a
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(b) Fraction of attackers remaining logged in after (n) authentication
windows for different grace periods (g).

Fig. 9: Results for opportunistic all-activity attackers. Op-
portunistic all-activity attackers replicate easy mouse-hand
movements of the victim.

malicious attacker, even a short period is enough to cause
damage to the system. The attacker can, for example, mount a
USB drive and execute a script from the drive in mere seconds.

Other Attacks: Having demonstrated that opportunistic
keyboard-only attacks are effective, we now consider two
variations. First we ask whether the opportunistic approach can
be extended successfully to mimicking all types of activities
rather than just typing. Figures 9a and 9b summarize the per-
formance of the opportunistic all-activity attack. Compared
to Figure 7a, average FPR values in Figure 9a are somewhat
worse for the attacker. This results in opportunistic all-activity
attackers being logged out at a higher rate compared to
opportunistic keyboard-only attackers (although this is not
statistically significant, with z = −1.082, r = −0.17 and
p = 0.279 > 0.05). This is not surprising since mimicking
all types of interactions is likely to be harder than mimick-
ing typing interactions only. Nevertheless, opportunistic all-
activity attackers are somewhat more successful than naı̈ve
all-activity attackers (but again not statistically significant, with
z = −1.514, r = 0.24, p = 0.130 > 0.05). For example, with
g = 1, all naı̈ve all-activity attackers are logged out after 7
windows, while 25% of the opportunistic all-activity attackers
succeed in remaining logged in.
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(b) percentage of attackers remaining logged in after (n) authentica-
tion windows for different grace periods (g).

Fig. 10: Results for audio-only opportunistic keyboard-only
attackers. Audio-only opportunistic keyboard-only attackers
eavesdrop on the victim and type only when they hear the
victim typing.

Next we consider the question whether the inability of the
attacker to see the victim hampers his ability to circumvent
ZEBRA. Figures 10a and 10b summarize the performance
of an audio-only opportunistic keyboard-only attacker. This
attack is in line with prior attacks based on keyboard acoustic
emanations [3], [31]. Prior attacks aimed at recognizing the
keystrokes based on their sounds, while our attack attempts
to recognize typing/mouse activities based on their sounds.
One key difference is that our attack is manual, whereas prior
attacks were automated (in fact, it seems that prior attacks can
not be performed manually since a human attacker may not
be able to distinguish between sounds of different keys). As
such, our attack may be viewed as a new form of acoustic
emanations attack targeted at the ZEBRA system.

Again, we see that such an attack is less successful than
an opportunistic keyboard-only attacker who is able to see his
victim. However, it is still more successful than a naı̈ve all-
activity attack. Again, with g = 1, 15% of the audio-only
opportunistic keyboard-only remain logged in after 6 windows.

Thus, we conclude that an attacker adopting an opportunis-
tic approach can do better in circumventing ZEBRA than by
naı̈vely mimicking all interactions. This holds even when the
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attacker is hampered by not having visual access to the victim.
An opportunistic keyboard-only attacker performs significantly
better than a naı̈ve all-activity attacker.

VI. STRENGTHENING ZEBRA

Opportunistic attacks against ZEBRA succeed because of
the fundamental flaw in its design: it allows the adversary
to control both interaction sequences Authenticator receives
as input. First, the adversary has full control over the actual
interaction sequence as he can choose the type and order of
his terminal interactions. Second, he can indirectly influence
the predicted interaction sequence as his terminal inputs cause
Interaction Extractor to choose the times at which the victim’s
bracelet data is segmented and fed to the Interaction Classifier
to generate the predicted interaction sequence.

We can cast this as a general problem of tainted input:
accepting data which can be incorrect or outright malicious,
and performing security-critical actions based on it. This is
a common issue in any application or on-line service ac-
cepting input from potential adversaries. There are typically
three counter-measures: (1) augmenting with trusted input,
(2) marking untrusted input as tainted and performing taint
tracking, or (3) sanitizing untrusted input before using it. As
the sole purpose of the interaction sequences is authentication,
taint tracking is not applicable in our case. Thus, we consider
the other two potential solutions: using trusted input and input
sanitization.

Augmenting with Trusted Input: Instead of allowing the
terminal input to fully determine when Authenticator compares
the two interaction sequences, a fundamental fix is to base this
determination additionally on bracelet data which is not under
the control of the attacker. This would require inferring the
predicted interaction sequence continuously from the bracelet
data even when the terminal observes no actual interaction.
If the predicted interaction sequence suggests that the user
is interacting with a terminal, but no corresponding actual
interaction is observed, Authenticator should output “Different
User”. This presupposes that the Interaction Classifier has very
high precision (which we discuss below). Requesting data from
the bracelet continually, rather than on demand, might lead to
unwanted deauthentication if the event is not recognized.

Augmenting ZEBRA with Bluetooth proximity measure-
ments means that we have another way of assurring ourselves
that the user is nearby. We noticed that typical bluetooth signal
strengths are within -5dB for users immediately close by, e.g.
working at the terminal. Similarly, users walking nearby the
terminal tend to have signals strengths within -15dB. Based on
this, a three-level proximity calculation could be developed,
classifying the proximity of the user as immediate, near or far
based on the Bluetooth signal strength. Users that are perceived
as being near or far could have progressively increased authen-
tication thresholds, e.g. increasing the threshold from 70% to
80% in case of near distance and further to 90% in case of far
distance. This would make mimicking attacks more difficult,
because the attacker needs to be very close to the victim in
order to have a lenient threshold.

In a centralized (multi-terminal) environment, it may be
possible to use successful login events as an input for trigger-
ing deauthentication: a central system could recognize when

a user logs into a terminal and automatically deauthenticate
him) from any other terminal where he has an active logged-
in session.

Sanitizing Untrusted Input: Input sanitization can take the
form of whitelisting (accepting specific well-formed inputs
only) or blacklisting (rejecting a set of known malicious
input patterns). Authenticator has two inputs that need to be
sanitized: the actual interaction sequence and the predicted
interaction sequence.

For example, one could attempt to prevent our opportunistic
keyboard-only attacker by adopting a whitelisting approach of
only accepting actual interaction sequences which contain mul-
tiple types of interactions, such as requiring periodic MKKM
interactions interspersed with typing. However, since many
legitimate user sessions can involve typing-only sequences, this
remedy will violate the zero-effort requirement.

ZEBRA could also use blacklisting where certain types
of input data can immediately trigger deauthentication. For
example, if an input stream can reliably indicate the user
standing up and walking away from the terminal, it can trigger
deauthentication. Augmenting the bracelet data we currently
use (accelerometer and gyroscope) with additional information,
like heart-rate data available on many current smartwatches,
can be used for this purpose. However, these fixes can seem
privacy-invasive for some users.

Further Instances of Tainted Input: We identify additional
types of input interactions that an adversary can use to defeat
ZEBRA. As the bracelet is assumed to be worn on the mouse-
controlling (e.g., right) hand, ZEBRA records an MKKM
interaction after mouse activity only if it observes a keypress
event on that side of the keyboard. This is done to reduce false
negatives arising from a user who types with the keyboard-only
hand without removing his mouse-controlling hand from the
mouse. Again, such a design decision introduces a vulnera-
bility: for example, in the case of a right handed victim, the
attacker can type using only the left and middle parts of the
keyboard (approximately 60% of the keys) while the victim
continues to use the mouse. Having previously recorded an
interaction involving the mouse, ZEBRA will leave out all such
subsequent typing from the segments it considers for com-
parison. This could be mitigated by blacklisting long typing
sequences involving keys in the middle and non-dominant parts
of the keyboard as such sequences are not typical in normal
workstation usage.

Another such vulnerability is when A interacts by only
moving and clicking the mouse. No event gets reported for
these activities and consequently an adversary can potentially
do much harm, for example by copy-pasting words appearing
in the screen. Mare et al. [23] report that they did not consider
mouse movement and click events as interactions because
“they did not contribute to ZEBRA’s performance.” However,
including them would seem the most feasible defense. As we
can see in our examples, pre-mature optimization motivated by
privacy (such as not collecting data under certain scenarios)
may introduce security vulnerabilities.

Making the System Work in Real-time: It is well-known that
on-line systems always bring new information of the usability,
compared to off-line analysis. When we experimented with
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our end-to-end implementation in real-time, we noticed that
the original 3-class classifier (typing, scrolling and MKKM)
systematically identified bracelet measurements during walk-
ing and standing (“upright”) as typing interactions. Similarly,
measurements while the bracelet was simply lying on the table
(“idle”) were classified as scrolling interactions. The similarity
between the hand movements in these pairs of events leads to
similar magnitude-based features. Based on these observations,
we extended the original classifier to account for the new types
of “interactions”: idle and upright. The new classes were added
as a post-processing step: a one hundred random tree ensemble
was learned first (random forest), each tree contributing by
voting between one of the three original classes. These votes
were fed to a C4.5 decision tree, which learned decision
thresholds for the five classes. We noticed that the performance
of the resulting real-time system improved a great deal. We
observed an overall improvement in both the accuracy and the
ability to generalize to new users.

Improving Machine Learning: Mare et al. [23] make use
of accelerometers and gyroscopes that report measurements
in three dimensions but use only magnitude values calculated
from a single dimension. ZEBRA, and other similar techniques
in general, can be extended to use measurements from all three
dimensions. The gravity component in individual axes can be
eliminated with a low-pass filter [2]. The added information
from statistical measures in any individual direction can help
in the discrimination of the classes, increasing the accuracy
of the classifier in normal usage. With a better classifier we
can raise the threshold (m) of authenticating a user interaction,
lowering the FPR, while increasing the FNR. An acceptable
FNR level can then be found as a compromise with receiver
operating characteristic (ROC) curves, which shows the trade-
off between TPR and FPR.

The Scrolling events were more difficult to identify com-
pared to others in our experiments (Table I). So improving
the accuracy of these predictions is of interest. Further feature
engineering can increase the classification ability. Feature
selection algorithms can select robust features that generalize
the decision rules well. Feature selection can also help in
increasing the battery life of the bracelet, since less information
needs to be transmitted over Bluetooth from the bracelet to the
computer for classification.

VII. DISCUSSION

Despite our attempts to reproduce the implementation
described in [23], differences remain. Although our imple-
mentation achieves lower FNR for legitimate users, it incurs
somewhat longer delays in logging out naı̈ve attackers. We
were unable to reproduce the high rate of user interactions
reported in [23]. Despite these differences, the main result of
our work holds because it is comparative: we demonstrated
that in our system, attackers adopting opportunistic strate-
gies can significantly outperform a naı̈ve all-activity attacker.
Such a comparative result will hold in any implementation
of ZEBRA, including [23], despite any differences between
implementations.

Impact of Data Set: One contributor in performance dif-
ferences could be a methodological difference we discovered
with the original paper. The authors note that one user’s “wrist

movement during keyboard and mouse interaction were very
different compared to the other subjects”, and one of the test
users is logged out almost immediately. It is likely that a
large fraction of this user’s authentication windows are thus
incorrectly classified, amounting to 1/20, i.e. 5 percent points
difference in FPR between their experiments and ours.

One potential explanation is that in [23] only one of the
users was left-handed, which may result in differences for this
one user. The leave-one-user-out classifier training may also
exaggerate this as it results in the classifier being trained with
data from only right-handed users, but tested with data from
the left-handed user. However, without access to the original
test data, this cannot be verified.

Impact of Sampling Rate: A notable difference lies in the
sampling rate of the bracelet. We chose to use commercial off-
the-shelf smartwatches as bracelets because they are general-
purpose devices readily available for a much larger audience
and thus a realistic choice for deployment. In such devices, the
underlying sensor hardware limits the maximum sampling rate,
typically 100-200 Hz on newer devices. Our LG smartwatch
supported a sampling rate of 200 Hz. This is less than the
500Hz special-purpose Shimmer bracelet used in [23].

The choice of sampling rate has an impact on power
consumption [6]. On Android, the sampling rate can be set to
lower levels to save energy at the cost of reduced accuracy. The
features we collect are mostly statistical measures calculated
from the distribution of magnitude values measured during the
event and should be quite stable as long as there are enough
data points to calculate the values from.

To evaluate the effect of sampling rates, we collected
a small dataset from normal computer usage with 200 Hz
sampling rate. We downsampled it to 100 Hz, 50 Hz and 25 Hz
data sets by passing every second, fourth or eight measurement
signal to Segmenter. The datasets were generated using the
same data: the number of features and the number of events
are the same at all frequencies, but the number of measurement
signals used to calculate the features were different. We
noticed that some features (e.g. skewness) could frequently
not be calculated for short events at low frequencies because
Segmenter could not pass enough measurements signal values
to Feature Extractor. Sample skewness needs at least three
values to be calculated. As a rule of thumb, the frequency
of the bracelet needs to be at least fmin = smin/dmin to
catch enough measurements for feature calculation, when smin

(3) is the minimum amount of signal measurements needed
to calculate all features and dmin (25 ms) is the minimum
duration of a classifiable event. With our end-to-end system
parameter settings this would be fmin = 120 Hz. For devices
operating at lower sampling rates, the minimum acceptable
duration of interactions should be increased accordingly.

Typically lower sampling rates increase the noise in fea-
tures, which in turn changes class boundaries. We expect minor
classes to get misclassified as major classes more frequently.
In the worst scenario, everything gets classified as the major
class (typically this would be typing in our scenarios). Lower
sampling rates would increase the FPR in this way. This is not
the case in 200 Hz, as can be seen in Table I (Section IV-C).
We experimented on our real-time system with one such lower
rate (20 Hz), at which the traces contain very little information
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for each interaction causing ZEBRA to become insensitive to
synchronization delays as long as 1s. At higher rates above 120
Hz there was no noticeable difference. Therefore, we conclude
that while ZEBRA is unreliable at very low sampling rates, its
performance was found to be steady at or above 120 Hz.

VIII. RELATED WORK

User authentication is commonly based on three different
factors: something you know, something you have, and some-
thing you are. Many traditional authentication methods rely on
the first two. Passwords still remain very popular, and they are
often complemented with some sort of physical tokens, such
as RSA SecurID [14]. The downside is the need to deploy and
carry these tokens.

A large body of research has considered biometric authenti-
cation. Examples include the use of fingerprint [11], hand [21],
iris [10], facial [4] or blood vessel information [30]. Biometric
authentication is attractive because they reduce the user burden
by removing the need to memorize secrets or having to carry
external tokens. However, these schemes can still be vulnerable
to spoofing, and introduce new issues such as the problem
of revocation and raise privacy concerns. Also, traditional
biometric authentication is not transparent to the user.

The desire to minimize the user burden of authentication
has led to a quest for transparent and continuous authen-
tication schemes that can be “zero-effort.” One approach
uses proximity-based authentication where the presence of
a personal device is used to authenticate the user. Such
schemes can be based on RFID, NFC, Bluetooth or even
WiFi signal strength. The appeal is the possibility to use
existing devices seamlessly, but unfortunately the drawbacks
include limited accuracy and vulnerability to spoofing and
replay attacks [18] [19] [15].

Behavioral biometrics consider behavior intrinsic to spe-
cific individuals. A common example is gait, identified from
video or acceleration information. Gafurov et al. [16] perform
authentication based on a user’s gait, which is characterized
by recorded accelerations from a hip-worn device. The same
author also considers [17] spoofing attacks against gait-based
authentication. A subset of these behavioral biometrics are
keystroke and typing based authentication schemes. In an early
work, Joyce et al. [20] and Monrose et al. [25] [24] identify
users based on their typing rhythm. They consider the inter-
key latencies and are able to effectively authenticate users.
More recently, Ahmed et al. consider mouse dynamics for
authentication [1]. [13] distinguishes users based on how
they input touch patterns into a smartphone. However, Tey
et al. [27] show how through training, attackers can learn to
defeat keystroke biometrics based authentication.

Combining multiple types of transparent authentication
schemes, such as the proposal by Riva et al. [26], can improve
the overall performance. But the design of such systems is
complex and remains an open research problem.

IX. CONCLUSIONS

ZEBRA is an interesting and useful approach as a zero-
effort deauthentication system. We identified a subtle design

flaw in this approach, which is (1) easier for the human
operators to perform and (2) more robust, compared to the
naı̈ve attacks studied by the authors of the ZEBRA scheme
[23]. We demonstrated that a malicious adversary who adopts
an opportunistic strategy can defeat ZEBRA. This is at odds
with the positive results reported in [23] but is explained
by their attackers using a naı̈ve strategy of trying to mimic
all interactions of a victim. Our attack is done in a typical
usage scenario. While physical mitigations, such as visual
barriers, might make our specific attack less successful, the
underlying vulnerability still stands. Although susceptible to
opportunistic adversaries, ZEBRA still performs well against
accidental misuse by innocent adversaries, which is possibly
the most likely threat in scenarios that ZEBRA was originally
designed for. However, systems are often used in contexts
that the designers did not originally envisage. Therefore, we
believe that recognizing the limits of the original design of
ZEBRA against malicious adversaries is the first step towards
strengthening its resistance so that it can be used in scenarios
where malicious adversaries pose a significant threat. The
approaches we identified in Section VI can help secure ZEBRA
without losing its desirable properties. We are developing these
approaches further in our current work. More generally, we
showed that subtle design assumptions based on premature
usability and privacy considerations can adversely impact
security of a system. We also highlight the importance of
ensuring that adversary models used in analyzing the security
of systems are realistic and do not underestimate attacker
capabilities.
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TABLE III: Features used in this paper.

Feature Description

Mean mean value of signal
Median median value of signal
Variance variance of signal
Standard Deviation standard deviation of signal
MAD median absolute deviation
IQR inter-quartile range
Power power of signal
Energy energy of signal
Peak-to-peak peak-to-peak amplitude
Autocorrelation similarity of signal
Kurtosis peakedness of signal
Skewness asymmetry of signal

APPENDIX

The parameters we use in our end-to-end system are listed
in Table II.

TABLE II: Parameters and their values used in this paper.

Parameter Value Rationale

Min. durationa 25 ms [22]
Max. durationb 1 s [23]
Idle thresholdb 1 s [22]
Window size (w) 5-30 [23]
Match threshold (m) 50-70% [23]
Overlap fraction (f ) 0 Estimatedc

Grace period (g) 1-2 [23]
aFor scrolling, also a minimum of 5 recorded events.

bFor MKKM, a max. duration and idle threshold of 5s.[22]
cEstimate based on reported [23] times & authentication windows needed

for logging out users.

We consider the same features as in [23], listed in Table
III. These are extracted from segments of sensor readings and
used to classify interactions.
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