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Abstract—We propose privacy-enhancing technologies for med-
ical tests and personalized medicine methods, which utilize pa-
tients’ genomic data. Focusing specifically on a typical disease-
susceptibility test, we develop a new architecture (between the patient
and the medical unit) and propose a privacy-preserving algorithm
by utilizing homomorphic encryption and proxy re-encryption.
Assuming the whole genome sequencing is done by a certified
institution, we propose to store patients’ genomic data encrypted
by their public keys at a Storage and Processing Unit (SPU). The
proposed algorithm lets the SPU process the encrypted genomic
data for medical tests and personalized medicine methods while
preserving the privacy of patients’ genomic data. Furthermore, we
implement and show via a complexity analysis the practicality of
the proposed scheme.

I. INTRODUCTION

As a result of the rapid evolution in genomic research,
substantial progress is expected in terms of improved diag-
nosis and better preventive medicine. However, the impact on
privacy is unprecedented, because (i) genetic diseases can be
unveiled, (ii) the propensity to develop specific diseases (such
as Alzheimer’s) can be revealed, (iii) a volunteer accepting
to have his genomic code made public can leak substantial
information about his ethnic heritage and genomic data of
his relatives (possibly against their will), and (iv) complex
privacy issues can arise if DNA analysis is used for criminal
investigations and insurance purposes. Such issues could lead
to genetic discrimination. Even though the Genetic Information
Non-discrimination Act (GINA), which prohibits the use of
genomic information in health insurance and employment,
attempted to solve some of these problems in the US, these
types of laws are very difficult to enforce.

Due to the sensitivity of genomic data, research on the pri-
vacy of genomic data has considerably accelerated over the past
few years. In [1], Troncoso-Pastoriza et al. propose a protocol
for string searching, which is then extended by Blanton and
Aliasgari [2]. To compute the similarity of DNA sequences,
in [3], Jha et al. propose techniques for privately computing
the edit distance of two strings by using garbled circuits. In [4],
Bruekers et al. propose privacy-enhanced comparison of DNA
profiles for identity, paternity and ancestry tests using homo-
morphic encryption. In [5], Kantarcioglu et al. propose using
homomorphic encryption to perform scientific investigations
on integrated genomic data. In one of the recent works [6],
Baldi et al. make use of both medical and cryptographic tools
for privacy-preserving paternity tests, personalized medicine,
and genetic compatibility tests. Finally, instead of utilizing
public key encryption protocols, in [7], Canim et al. propose
securing the biomedical data using cryptographic hardware.

As a consequence of our extensive collaboration with ge-
neticists, clinicians, and biologists, we conclude that DNA
string comparison is insufficient in many medical tests (that
use genomic data) and would not be enough to pave the

way to personalized medicine. As it will become clearer in
the next sections, specific variants (i.e., nucleotides which
reside at particular positions in the genome and vary between
individuals) must be considered individually for each genetic
test. Thus, as opposed to the aforementioned private string
search and comparison techniques, which focus on privately
comparing the distance between the genomic sequences, we
use the individual variants of the users to conduct genetic
disease susceptibility tests and develop personalized medicine
methods. Therefore, in this work, our goal is to protect the
privacy of users’ genomic data while enabling medical units
to access the genomic data in order to conduct medical tests
or develop personalized medicine methods.1 In a medical test,
a medical center checks for different health risks (e.g., disease
susceptibilities) of a user by using specific parts of his genome.
Similarly, to provide personalized medicine, a pharmaceutical
company tests the compatibility of a user on a particular
medicine, or a pharmacist checks the compatibility of a given
medicine (e.g., over-the-counter drug) to a given user. In both
scenarios, in order to preserve his privacy, the user does not
want to reveal his complete genome to the medical center or to
the pharmaceutical company. To achieve this goal, we propose
to store the genomic data at a Storage and Processing Unit
(SPU) and conduct the computations on genomic data utilizing
homomorphic encryption and proxy re-encryption to preserve
the privacy of the genomic data.

II. PRIVACY- PRESERVING MEDICAL TESTS AND

PERSONALIZED MEDICINE METHODS

Most medical tests and personalized medicine methods (that
use genomic data) involve a patient and a medical unit. In
general, the medical unit is the family doctor, a physician, a
pharmacist, or a medical council. In this study, we consider
a malicious medical unit as the potential attacker. That is, a
medical unit can be a malicious institution trying to obtain
private information about a patient. Even if the medical unit
is non-malicious, it is extremely difficult for medical units
to protect themselves against the misdeeds of a hacker or
a disgruntled employee. Similarly, the genomic data is too
sensitive to be stored on users’ personal devices (mostly due
to security, availability, and storage issues), hence it is risky
to leave the users’ genomic data in their own hands. Thus, we
believe that a Storage and Processing Unit (SPU) should be
used to store and process the genomic data. We note that a
private company (e.g., cloud storage service), the government,
or a non-profit organization could play the role of the SPU. We
assume that the SPU is an honest organization, but it might be
curious (e.g., existence of a curious party at the SPU), hence
genomic data should be stored at the SPU in encrypted form.

1An extended version of this work is available in [8].



We also assume the SPU does not have access to the real
identities of the patients and data is stored at the SPU by using
pseudonyms; this way, the SPU cannot associate the conducted
genomic tests to the real identities of the patients.

For the simplicity of presentation, in the rest of this work,
we will focus on a particular medical test (namely, computing
genetic disease susceptibility). We note that similar techniques
would apply for other medical tests and personalized medicine
methods. In a typical disease-susceptibility test, a medical
center (MC) wants to check the susceptibility of a patient (P)
to a particular disease X (i.e., probability that the patient P
will develop disease X). It is shown that a genetic disease-
susceptibility test can be realized by analyzing particular Single
Nucleotide Polymorphisms (SNPs) of the patient via some
operations [9], [10]. A SNP is a position in the genome holding
a nucleotide (A, T, C or G), which varies between individuals.
Each SNP contributes to the susceptibility in a different amount
and the contribution amount of each SNP is determined by
previous studies on case and control groups.

In general, there are two alleles (nucleotides) observed at a
given SNP position: (i) The major allele is the most frequently
observed nucleotide, and (ii) the minor allele is the rare
nucleotide. Everyone inherits one allele of every SNP position
from each of his parents. If an individual receives the same
minor allele from both parents, he is said to have a homozygous
variant for that SNP position. If, however, he inherits a different
allele from each parent (one minor and one major), he has
a heterozygous variant. There are approximately 40 million
approved SNPs in the human population as of now (according
to the NCBI dbSNP [11]) and each patient carries on average
4 million SNPs (i.e., homozygous or heterozygous variants)
out of this 40 million. Moreover, this set of 4 million SNPs is
different for each patient. From now on, to avoid confusion,
for each patient, we refer to these 4 million variants as the real
SNPs and the remaining non-variants (approved SNPs that do
not exist for the considered patient) as the potential SNPs of
the patient; when we only say “SNPs”, we mean both the real
and potential SNPs. In the rest of this work, for simplicity of
the presentation, we do not consider the type of the variant at
a real SNP position (i.e., whether the variation is homozygous
or heterozygous for that real SNP); we only consider whether
the patient has a real SNP or not at a particular position.

A. Proposed Solution

We assume that the state of SNPi at the patient P is
represented as SNPP

i and SNPP
i = 1, if P has a real SNP (i.e.,

variant) at this position, and SNPP
i = 0, if P does not have a

variant at this position. We let ΥP be the set of real SNPs of the
patient P (at which SNPP

i = 1). We also let ΩP represent the
set of potential SNPs (at which SNPP

i = 0). As the positions of
the SNPs are stored in plaintext, if the SPU only stores the real
SNPs in ΥP , a curious party at the SPU can learn all real SNP
positions of the patient, and hence, much about his genomic
sequence. Therefore, the SPU stores the states of both real and
potential SNP positions (in {ΥP ∪ ΩP }) in order to preserve
the privacy of the patient. Below, we summarize the proposed
approach for the privacy protecting disease-susceptibility test.
This approach is illustrated in Fig. 1.
• Step 0: The Cryptographic keys (public and secret keys) of
each patient are generated and distributed to the patients during
the initialization period. Then, symmetric keys are established
between the parties, using which the communication between
the parties is protected from an eavesdropper. We note that the
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Fig. 1. Privacy-preserving protocol for disease-susceptibility test.

distribution, update and revocation of cryptographic keys are
handled by a trusted entity (similar to e-banking platforms).

• Step 1: The patient (P) provides his sample (e.g., his saliva)
to the Certified Institution (CI) for sequencing.

• Step 2: The whole genome sequencing is done by the CI
with the consent of the patient. Moreover, the CI encrypts
the states of the patient’s real and potential SNP positions (in
{ΥP ∪ΩP }) by using P’s public key. We use a modification of
the Paillier cryptosystem [12], [13] (for encryption) to support
the homomorphic operations (i.e., addition of two encrypted
messages and multiplication of an encrypted message with
a constant) at the SPU. The public key of the patient P is
represented as (n, g, h = gx), where the strong secret key is
the factorization of n = pq (p, q are safe primes), the weak
secret key is x ∈ [1, n2/2], and g of order (p − 1)(q − 1)/2.
We are aware that the number of discovered SNPs increases
with time. Thus, the patient’s complete DNA sequence is also
encrypted as a single vector file (via symmetric encryption
using the patient’s key) and stored at the SPU, thus when new
SNPs are discovered, these can be included in the pool of the
previously stored SNPs of the patient.

• Step 3: The CI sends the encrypted SNPs of P to the SPU
(so that the SPU cannot access to P’s SNPs).

• Step 4: The patient’s weak secret key x is randomly divided
into two shares: x(1) and x(2) (such that x = x(1) + x(2)).
x(1) is given to the SPU (at this step) and x(2) is given to
the MC (at the next step). Using the Paillier cryptosystem,
an encrypted message (under the patient’s public key) can
be partially decrypted by the SPU using x(1) (i.e., proxy re-
encryption), and then decrypted at the MC using x(2) to recover
the original message.

• Step 5: The MC wants to conduct a susceptibility test on P
to a particular disease X, and P provides the other part of his
secret key (x(2)) to the MC.

• Step 6: The MC provides genetic variant markers, along with
their contributions (to the disease susceptibility), to the SPU.

• Step 7: Depending on the access rights of the MC and
the virtue of the test, the SPU either (i) computes Pr(X),
the probability that the patient will develop the disease X
by checking the patient’s encrypted SNPs via homomorphic
operations (as discussed in Section II-B), or (ii) provides the
relevant SNPs to the MC (e.g., for complex diseases that cannot
be interpreted using homomorphic operations). These access



rights are defined either jointly by the MC and the patient or
by the medical authorities.

• Step 7: The SPU partially decrypts the end-result (or the
relevant SNPs) using a part of P’s secret key (x(1)) following
the proxy re-encryption protocol.

• Step 8: The SPU sends the partially decrypted end-result (or
the relevant SNPs) to the MC.

• Step 9: The MC decrypts the message received from the
SPU using the other part of P’s secret key (x(2)) and recovers
the end-result (or the relevant SNPs).

B. Computing Disease Susceptibility at the SPU

In the following, we discuss how to compute the predicted
disease susceptibility at the SPU by using homomorphic opera-
tions. There are different functions for computing the predicted
susceptibility (e.g., counting the number of unfavorable alle-
les [9] or multiplying likelihood ratios of the most important
SNPs for a particular disease [10]). We use the weighted
averaging function (which is an advanced version of [9])
which computes the predicted susceptibility by weighting the
contributions of SNPs by their contributions. We note that the
function proposed in [10] can also be utilized similarly.

Assume that the susceptibility to disease X is determined by
the set of SNPs Ω = {SNPm,SNPn}, which occur at particular
positions of the DNA sequence. The contributions of different
states of SNPP

i for i ∈ {m,n} to the susceptibility to disease X
are computed via previous studies and they are already known
by the MC. That is, pi0(X) ! Pr(X|SNPP

i = 0) and pi1(X) !
Pr(X|SNPP

i = 1) (i ∈ {m,n}) are determined and known by
the MC. Further, the contribution of SNPi to the susceptibility
to disease X is denoted by CX

i .
The SPU uses P’s encrypted SNPs (E(SNPP

m, gx) and
E(SNPP

n , gx)) for the computation of predicted susceptibility
of P to disease X. Similarly, the MC provides the following to
the SPU in plaintext: (i) the markers for disease X (SNPm and
SNPn), (ii) corresponding probabilities (pij(X), i ∈ {m,n} and

j ∈ {0, 1}), and (iii) the contributions of each SNP (CX
i ). Next,

the SPU encrypts j (j ∈ {0, 1}) using P’s public key to obtain
E(0, gx) and E(1, gx) for the homomorphic computations. The
SPU computes the predicted susceptibility of the patient P to
disease X by using weighted averaging. This can be computed
in plaintext as below:

S
X
P =

1

CX
m + CX

n

×

∑

i∈m,n

CX
i

{

pi0(X)
(0− 1)

[

SNPP
i − 1

]

+
pi1(X)
(1− 0)

[

SNPP
i − 0

]

}

.

(1)

The computation in (1) can easily be realized using the
encrypted SNPs of the patient (and utilizing the homomor-
phic properties of the Paillier cryptosystem) to compute the
encrypted disease susceptibility, E(SXP , gx). Then, the SPU
partially decrypts the end-result E(SXP , gx) using its share (x(1))

of P’s secret key (x) to obtain E(SXP , gx
(2)

) and sends it to

the MC. Finally, the MC decrypts E(SXP , gx
(2)

) using its share
(x(2)) of P’s secret key to recover the end-result SXP .

III. IMPLEMENTATION AND COMPLEXITY EVALUATION

We implemented the proposed solution, and assessed its
storage requirement and computational complexity on Intel
Core i7-2620M CPU with 2.70 GHz processor. We set the

size of the security parameter (n in Paillier cryptosystem)
to 1024 bits. We computed the disease susceptibility using
weighted averaging and real SNP profiles from [14]. We used
the Java programming language along with the open-source
Integrated Development Environment, NetBeans IDE 7.1.1.,
for the implementation of the Java code.

We observed that (i) Paillier encryption takes 30 ms. per
variant at the CI, (ii) proxy re-encryption takes 2 ms. at the
SPU, (iii) homomorphic operations takes 10 sec. at the SPU
(using 10 variants), and (iv) decryption of the end-result (or
relevant SNPs) takes 26 ms. at the MC. Moreover, storage
of the SNPs at the SPU needs 5 GB of storage per patient.
In summary, all these numbers show the practicality of our
privacy-preserving algorithm.

IV. CONCLUSION

In this paper, we have introduced a privacy-preserving
scheme for the utilization of genomic data in medical tests
and personalized medicine methods. We have proposed a new
model based on the existence of a Storage and Processing
Unit (SPU) between the patient and the medical unit. We have
shown that encrypted genomic data of the patients can be stored
at the SPU and processed (for medical tests and personalized
medicine methods) using homomorphic encryption and proxy
re-encryption. We also implemented the proposed scheme and
showed its efficiency and practicality. We are confident that our
proposed privacy-preserving scheme will encourage the use of
genomic data, by the individual and by the medical unit, and
accelerate the move of genomics into clinical practice.
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