
Privacy-Preserving Shortest Path Computation

David J. Wu, Joe Zimmerman, Jérémy Planul, John C. Mitchell
Stanford University

{dwu4, jzim, mitchell}@cs.stanford.edu, jeremy.planul@ens-lyon.org

Abstract—Navigation is one of the most popular cloud comput-
ing services. But in virtually all cloud-based navigation systems,
the client must reveal her location and destination to the cloud
service provider in order to learn the fastest route. In this
work, we present a cryptographic protocol for navigation on
city streets that provides privacy for both the client’s location
and the service provider’s routing data. Our key ingredient is
a novel method for compressing the next-hop routing matrices
in networks such as city street maps. Applying our compression
method to the map of Los Angeles, for example, we achieve over
tenfold reduction in the representation size. In conjunction with
other cryptographic techniques, this compressed representation
results in an efficient protocol suitable for fully-private real-time
navigation on city streets. We demonstrate the practicality of our
protocol by benchmarking it on real street map data for major
cities such as San Francisco and Washington, D.C.

I. INTRODUCTION

Location privacy is a major concern among smartphone
users, and there have been numerous controversies due to com-
panies tracking users’ locations [1], [17]. Among the various
applications that require location information, navigation is one
of the most popular. For example, companies such as Google,
Apple, and Waze have built traffic-aware navigation apps to
provide users with the most up-to-date routing information.
But to use these services, users must reveal their location and
destination to the cloud service provider. In doing so, they
may also reveal other sensitive information about their personal
lives, such as their health condition, their social and political
affiliations, and more.

One way to provide location privacy is for the user to
download the entire map from the cloud service provider
and then compute the best route locally on her own mobile
device. Unfortunately, since service providers invest significant
resources to maintain up-to-date routing information, they are
not incentivized to publish their entire routing database in real-
time. Even in the case of a paid premium service, in which the
service provider does not derive compensation from learning
the user’s location data, it is not obvious how to achieve fully-
private navigation. The user does not trust the cloud provider
with her location data, and the cloud provider does not trust the
user with its up-to-date routing information, so neither party
has all of the data to perform the computation. While general-

purpose cryptographic tools such as multiparty computation
solve this problem in theory (see Section VII), these protocols
are prohibitively expensive in practice for applications such as
real-time navigation.

Our results. In this work, we present an efficient cryptographic
protocol for fully-private navigation: the user keeps private her
location and destination, and the service provider keeps private
its proprietary routing information (except for the routing
information associated with the specific path requested by the
user and a few generic parameters pertaining to the network).
We give a complete implementation of our protocol and bench-
mark its performance on real street map data (Section V-C).
Since our protocol is real-time (the user continues receiving
directions throughout the route), we benchmark the perfor-
mance “per hop”, where each hop roughly corresponds to an
intersection between streets.1 For cities such as San Francisco
and Washington, D.C., each hop in our protocol requires about
1.5 seconds and less than 100 KB of bandwidth. In addition,
before the protocol begins, we execute a preprocessing step
that requires bandwidth in the tens of megabytes. Since this
preprocessing step can be performed at any time, in practice
it would likely be run via a fast Wi-Fi connection, before the
mobile user needs the real-time navigation service, and thus
the additional cost is very modest. To our knowledge, ours is
the first fully-private navigation protocol efficient enough to
be feasible in practice.

Our technical contributions. In our work, we model street-
map networks as graphs, in which the nodes correspond to
street intersections, and edges correspond to streets. In our
model, we assume that the network topology is public (i.e., in
the case of navigation on city streets, the layout of the streets
is publicly known). However, only the service provider knows
the up-to-date traffic conditions, and thus the shortest path
information. In this case, the server’s “routing information”
consists of the weights (that is, travel times) on the edges in
the network.

By modeling street-maps as graphs, we can easily construct
a straw-man private navigation protocol based on symmetric
private information retrieval (SPIR) [24], [36], [48]. Given a
graph G with n nodes, the server first constructs a database
with n2 records, each indexed by a source-destination pair
(s, t). The record indexed (s, t) contains the shortest path from
s to t. To learn the shortest path from s to t, the client engages
in SPIR with the server for the record indexed (s, t). Security
of SPIR implies that the client just learns the shortest path
and the server learns nothing. While this method satisfies the
basic security requirements, its complexity scales quadratically

1In a few cases, hops in our construction occur mid-street or in instances such
as traffic circles. These are rare enough that even in large cities such as Los
Angeles, the total number of hops along any route is less than 200.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23052

in the number of nodes in the graph. Due to the computational
cost of SPIR, this solution quickly becomes infeasible in the
size of the graph.

Instead, we propose a novel method to compress the
routing information in street-map networks. Specifically, given
a graph G with n nodes, we define the next-hop routing matrix
M ∈ Zn×n for G to be the matrix where each entry Mst

gives the index of the first node on the shortest path from
node s to node t. To apply our compression method, we first
preprocess the graph (Section III) such that each entry in
the next-hop routing matrix M can be specified by two bits:
Mst = (M

(NE)
st , M

(NW)
st) where M (NE),M (NW) ∈ {−1, 1}n×n.

We then compress M (NE) by computing a sign-preserving
decomposition: two matrices A(NE), B(NE) ∈ Zn×d where
d� n such that M (NE) = sign(A(NE) ·(B(NE))T). We apply the
same procedure to compress the other component M (NW). The
resulting compression is lossless, so there is no loss in accuracy
in the shortest paths after applying our transformation. When
applied to the road network for the city of Los Angeles, we
obtain over 10x reduction in the size of the representation. Our
compression method is highly parallelizable and by running
our computation on GPUs, we can compress next-hop matrices
with close to 50 million elements (for a 7000-node network)
in under ten minutes.

Moreover, our compression method enables an efficient
protocol for a fully-private shortest path computation. In our
protocol, the rounds of interaction correspond to the nodes
in the shortest path. On each iteration of the protocol, the
client learns the next hop on the shortest path to its requested
destination. Abstractly, if the client is currently at a node s
and navigating to a destination t, then after one round of the
protocol execution, the client should learn the next hop given
by Mst = (M

(NE)
st , M

(NW)
st). Each round of our protocol thus

reduces to a two-party computation of the components M (NE)
st

and M (NW)
st . Given our compressed representation of the next-

hop routing matrices, computing M (NE)
st reduces to computing

the sign of the inner product between the sth row of A(NE)

and the tth row of B(NE), and similarly for M (NW). In our
construction, we give an efficient method for inner product
evaluation based on affine encodings, and use Yao’s garbled
circuits [63], [5] to evaluate the sign function. An important
component of our protocol design is a novel way of efficiently
combining affine encodings and garbled circuits. Together,
these methods enable us to construct an efficient, fully-private
navigation protocol.

Other approaches. An alternative method for private nav-
igation is to use generic tools for two-party computation
such as Yao’s garbled circuits [63], [5] and Oblivious RAM
(ORAM) [27], [58]. While these approaches are versatile, they
are often prohibitively expensive for city-scale networks (in
the case of Yao circuits), or do not provide strong security
guarantees against malicious clients (in the case of ORAM).
For instance, the garbled-circuit approach by Carter et al. [15],
[14] requires several minutes of computation to answer a
single shortest path query in a road network with just 100
nodes. Another generic approach combining garbled circuits
and ORAM [41] requires communication on the order of
GB and run-times ranging from tens of minutes to several
hours for a single query on a network with 1024 nodes. Thus,

current state-of-the-art tools for general two-party computation
do not give a viable solution for private navigation in city-scale
networks. We survey other related methods in Section VII.

II. PRELIMINARIES AND THREAT MODEL

We begin with some notation. For a positive integer n, let
[n] denote the set of integers {1, . . . , n}. For two `-bit strings
x, y ∈ {0, 1}`, we write x ⊕ y to denote their bitwise XOR.
For a prime p, we write Fp to denote the finite field with p
elements, and F∗p to denote its multiplicative group. Let D be
a probability distribution. We write x← D to denote that x is
drawn from D. Similarly, for a finite set S we write x R←− S to
denote that x is drawn uniformly at random from S. A function
f(λ) is negligible in a security parameter λ if f = o(1/λc)
for all c ∈ N.

For two distribution ensembles {D1}λ , {D2}λ, we write
{D1}λ

c
≈ {D2}λ to denote that {D1}λ and {D2}λ are compu-

tationally indistinguishable (i.e., no probabilistic polynomial-
time algorithm can distinguish them, except with probability
negligible in λ). We write {D1}λ ≡ {D2}λ to denote that
{D1}λ and {D2}λ are identically distributed for all λ. For
a predicate P(x), we write 1{P(x)} to denote the indicator
function for P(x), i.e., 1{P(x)} = 1 if and only if P(x) is
true, and otherwise, 1{P(x)} = 0. If G is a directed graph,
we write (u, v) to denote the edge from node u to node v.

A function F : K × X → Y with key-space K, domain
X , and range Y is a PRF [25] if no efficient adversary can
distinguish outputs of the PRF (with key k

R←− K, evaluated
on inputs chosen adaptively by the adversary) from the corre-
sponding outputs of a truly random function from X → Y .

Threat model. We give a high-level survey of our desired
security properties, and defer the details to Section IV-B.
We operate in the two-party setting where both parties know
the network topology as well as a few generic parameters
about the underlying graph structure (described concretely in
Section IV-B), but only the server knows the weights (the
routing information). The client holds a source-destination pair.
At the end of the protocol execution, the client learns the
shortest path between its requested source and destination,
while the server learns nothing. The first property we require
is privacy for the client’s location. Because of the sensitivity of
location information, we require privacy to hold even against
malicious servers, that is, servers whose behavior can deviate
from the protocol specification.

The second requirement is privacy for the server’s routing
information, which may contain proprietary or confidential
information. The strongest notion we can impose is that at the
end of the protocol execution, the client does not learn anything
more about the graph other than the shortest path between its
requested source and destination and some generic parameters
associated with the underlying network. While this property is
not difficult to achieve if the client is semi-honest (that is, the
client adheres to the protocol specification), in practice there
is little reason to assume that the client will behave this way.
Thus, we aim to achieve security against malicious clients. In
our setting, we will show that a malicious client learns only
the shortest path from its requested source to its requested
destination, except for failure events that occur with probability

2

at most ≈ 2−30. For comparison, 2−30 is the probability that
an adversary running in time ≈ 250 is able to guess an 80-bit
secret key.2

To summarize, we desire a protocol that provides privacy
against a malicious server and security against a malicious
client. We note that our protocol does not protect against the
case of a server corrupting the map data; in practice, we
assume that the map provider is trying to provide a useful
service, and thus is not incentivized to provide misleading or
false navigation information.

III. GRAPH PROCESSING

As described in Section I, we model street-map networks as
directed graphs, where nodes correspond to intersections, and
edges correspond to streets. To enable an efficient protocol
for fully-private shortest path computation, we first develop
an efficient method for preprocessing and compressing the
routing information in the network. In this section, we first
describe our preprocessing procedure, which consists of two
steps: introducing dummy nodes to constrain the out-degree
of the graph, and assigning a cardinal direction to each edge.
Then, we describe our method for compressing the routing
information in the graph; here, we exploit the geometric
structure of the graph.

Bounding the out-degree. Let G be the directed graph rep-
resenting the road network. We assume that the nodes in G
have low out-degree. In a road network (see Figure 1 for an
example), the nodes correspond to street intersections, and thus
typically have at most four outgoing edges, one in each cardi-
nal direction. In the first step of our preprocessing procedure,
we take a weighted, directed graph G and transform it into a
weighted, directed graph G′ where each node has maximum
out-degree 4. Specifically, we start by setting G′ = G. Then, as
long as there is a node u ∈ G′ with neighbors v1, . . . , v` and
` > 4, we do the following. First, we add a new node u′ to
G′. For i ≥ 4, we add the edge (u′, vi) to G′ and remove the
edge (u, vi) from G′. We also add a zero-weight edge from u
to u′ in G′. By construction, this transformation preserves the
shortest-path between nodes in G and constrains the out-degree
of all nodes in G′ to 4.

Orienting the edges. In a road network, we can associate each
node by an (x, y) pair in the coordinate plane (for example, the
node’s latitude and longitude). Consider a coordinate system
aligned with the cardinal directions: the x-axis corresponds to
the east-west axis and the y-axis corresponds to the north-south
axis. Then, for each node u in the graph G, we associate each of
its neighbors vi (0 ≤ i < 4) with a direction diri ∈ {N, E, S,W}
(for north, east, south, west, respectively) relative to u. For a
concrete example, refer to the visualization of the preprocessed
graph in Figure 1. Here, the center node (labeled “src”) has
three neighbors, each of which is associated with a cardinal
direction: north, west, or south in this case. We define the
orientation of an edge to be the direction associated with the
edge.

2Even in the case of these low-probability failure events, one can show that
a malicious client only learns a bounded-length path emanating from its
requested source, though it may not be a shortest path to any particular
destination.

To determine the orientation of the edges in G, we proceed
as follows. For each node u ∈ G, we associate a unique
direction diri ∈ {N, E, S,W} with each neighbor vi of u. In
assigning the four cardinal directions to each node’s neighbors,
we would like to approximate the true geographical locations
of the nodes. In our setting, we formulate this assignment
as a bipartite matching problem for each node u, with u’s
neighbors (at most 4) forming one partition of the graph, and
the four cardinal directions {N, E, S,W} forming the other. We
define the cost of a matching between a neighbor vi of u and
a direction dirj to be the angle formed by the vector from u to
vi and the unit vector aligned in the direction dirj . In assigning
directions to neighbors, we desire a matching that minimizes
the costs of the matched neighbors. Such a matching can be
computed efficiently using the Hungarian method [35]. In this
way, we associate a cardinal direction with each edge in G.

Compressing shortest paths. Next, we describe a method for
compressing the next-hop routing matrix for a road network.
Let G be a directed graph with n nodes and maximum out-
degree 4. Using the method described above, we associate
a direction dir ∈ {N, E, S,W} with each edge in G. Since
there are four possible values for dir, we can encode the
direction using exactly two bits bNE and bNW, where bNE = 0
if and only if dir ∈ {N, E}, and bNW = 0 if and only if
dir ∈ {N,W}. Intuitively, bNE encodes the direction with respect
to the northwest-southeast axis while bNW encodes the direction
with respect to the northeast-southwest axis. Thus, for each
node u ∈ G, we associate a unique two-bit index (bNE, bNW)
with each of its outgoing edges. For notational convenience,
we define a function IndexToDirection that maps an index
(bNE, bNW) to the corresponding direction dir ∈ {N, E, S,W}.
For example, IndexToDirection(0, 0) = N.

We next compute the shortest path pst between all source-
destination pairs (s, t) in G. In our implementation, we run
Dijkstra’s algorithm [19] on each node in G, but the precise
choice of shortest-path algorithm does not matter for our
compression procedure, as its cost is dominated by the other
steps. After computing all-pairs shortest paths in G, we define
the next-hop routing matrices M (NE), M (NW) ∈ {0, 1}n×n for
G, where (M

(NE)
st , M

(NW)
st) encodes the direction of the first

edge in the shortest path pst.

Just as the geometry of road networks enables us to
orient the edges, the geometry also suggests a method for
compressing the next-hop routing matrices. Take for example
the road network in Figure 1. From the visualization, we
observe that when the destination t lies to the north of the
source s, the first hop on the shortest path is usually to take
the edge directed north. In our framework, this means that
both M (NE)

st and M (NW)
st are more likely to be 0 rather than 1.

Thus, by orienting the edges in the graph consistently, we
find that the resulting routing matrices M (NE) and M (NW) have
potentially compressible structure.

To compress a matrix M ∈ {0, 1}n×n, we first rescale
the elements in M to be in {−1, 1}. Our goal is to find two
matrices A,B ∈ Zn×d such that sign(ABT) = M with d <

3

Fig. 1: Subsection of map of Washington, D.C. from OpenStreetMap [49] (left) and visualization of the routing network after preprocessing
(right). The visualization on the right shows the first hop of the shortest path from the source node (denoted by the circle) to all other nodes
in the graph (denoted by a polygon). In this example, the source node has three neighbors: to the north, west, and south (as indicated in the
diagram). If the first hop in the shortest path from the source to a node is to move north, then the node is represented by a green triangle. If the
first hop is to move west, then the node is represented by a blue diamond, and if the first hop is to move south, then the node is represented
by an orange pentagon.

n.3 We can formulate the problem of computing A and B as
an optimization problem with objective function J(A,B):

J(A,B) =

n∑
j=1

n∑
k=1

`
((
ABT

)
jk
, Mjk

)
, (1)

where `(x, t) is a loss function. A simple loss function is
the 0-1 loss function `(x, t) = 1{sign(x) 6= t}, which
assigns a uniform loss of 1 whenever the sign of the pre-
dicted value x does not match the target value t. However,
from an optimization perspective, the 0-1 loss is not a good
loss function since it is non-convex and neither continuous
nor differentiable. Practitioners have instead used continuous
convex approximations to the 0-1 loss, such as the SVM hinge
loss `hinge(x, t) = max(0, 1 − tx) [54] and its quadratically
smoothed variant, the modified Huber hinge loss [64]:

`huber(x, t) =

{
max(0, 1− tx)2 tx ≥ −1
−4 · tx otherwise.

(2)

In our setting, we use the modified Huber hinge loss `huber.
While `huber is convex in the input x, it is not convex in
the optimization parameters A,B (due to the matrix product),
and so the objective function J(A,B) is not convex in A,B.
Thus, standard optimization algorithms like LBFGS [11] are
not guaranteed to find the global optimum. The hope is that
even a local optimum will correspond to a low-rank, sign-
preserving decomposition of the matrix M , and indeed, we
confirm this empirically.

When we perform the optimization using LBFGS, the
matrices A,B are real-valued. To obtain matrices over the
integers, we scale the entries in A,B by a constant factor
and round. The scaling factor is empirically chosen so as to
preserve the relation sign(ABT) = M . We describe this in
greater detail in Section V-C.

3This is not the same as computing a low-rank approximation of M . Our goal
is to find low-rank matrices whose product preserves the signs of the entries
of M . In practice, the matrix M is full-rank, and not well-approximated by
a low-rank product.

IV. PRIVATE NAVIGATION PROTOCOL

In this section, we describe our protocol for privately
computing shortest paths. First, we describe the cryptographic
building blocks we employ in our construction.

Private information retrieval. A computational private infor-
mation retrieval (PIR) [12], [18], [36], [16], [23], [39], [50]
protocol is a two-party protocol between a sender who holds a
database D = {r1, . . . , rn} and a receiver who holds an index
i ∈ [n]. At the conclusion of the PIR protocol, the receiver
learns ri while the sender learns nothing. A PIR protocol
only ensures privacy for the receiver’s index (and not for the
remaining records in the sender’s database).

Oblivious transfer. Similar to PIR, an 1-out-of-n oblivious
transfer (OT) protocol [46], [47], [48], [53] is a two-party
protocol that allows the receiver to privately retrieve a record ri
from the sender who holds a database {r1, . . . , rn}. In contrast
with PIR, an OT protocol also provides privacy for the sender:
the receiver only learns its requested record ri, and nothing
else about the other records. Closely related is the notion of
symmetric PIR (SPIR) [36], [24], [48], which is functionally
equivalent to OT.

Garbled circuits. Yao’s garbled circuits [63], [38], [5] were
initially developed for secure two-party computation. The core
of Yao’s construction is an efficient transformation that takes a
Boolean circuit C : {0, 1}n → {0, 1}m and produces a garbled
circuit C̃ along with n pairs of encodings

{
k0i , k

1
i

}
i∈[n]. Then,

for any input x ∈ {0, 1}n, the combination of the garbled
circuit C̃ and the encodings Sx = {kxi

i }i∈[n] (where xi denotes
the ith bit of x) enable one to compute C(x), and yet reveal
nothing else about x.

A. Protocol Design Overview

We first give an intuitive overview of our fully-private navi-
gation protocol. As described in Section III, we first preprocess
the network G to have maximum out-degree d = 4 and then
associate a cardinal direction with each of the edges in G. As in

4

Section III, let (M (NE),M (NW)) be the precomputed next-hop
routing matrices for G, and let (A(NE), B(NE)), (A(NW), B(NW))
be the compressed representation of M (NE),M (NW), respec-
tively.

Our private shortest paths protocol is an iterative protocol
that reveals the shortest path from a source s to a destination
t one hop at a time. When the client engages in the protocol
with input (s, t), it learns which neighbor v of s is the next
node on the shortest path from s to t. Then, on the next
round of the protocol, the client issues a query (v, t) to learn
the next node in the path, and so on, until it arrives at the
destination node t. With this iterative approach, each round
of our protocol can be viewed as a two-party computation of
the entry (M

(NE)
st ,M

(NW)
st) from the next-hop routing matrices.

We give the full description of our private navigation protocol
in Figure 3, and sketch out the important principles here. To
simplify the presentation, we first present the core building
blocks that suffice for semi-honest security. We then describe
additional consistency checks that we introduce to obtain secu-
rity against a malicious client and privacy against a malicious
server.

1) Semi-honest Secure Construction: Abstractly, we can
view each round of our protocol as computing the following
two-party functionality twice (once for M (NE) and once for
M (NW)). The server has two matrices A,B ∈ Zn×d, which we
will refer to as the source and destination matrices, respec-
tively, and the client has two indices s, t ∈ [n]. At the end
of the protocol, the client should learn sign(〈As, Bt〉), where
As and Bt are the sth and tth rows of A and B, respectively.
The client should learn nothing else about A and B, while
the server should not learn anything. Our protocol can thus be
decomposed into two components:

1) Evaluation of the inner product 〈As, Bt〉 between the
source vector As and the destination vector Bt.

2) Determining the sign of 〈As, Bt〉.

In the following, we will work over a finite field Fp large
enough to contain the entries in A,B. In particular, we view
A,B as n× d matrices over Fp.

Evaluating the inner product. The first step in our protocol
is evaluating the inner product between the source vector As
and the destination vector Bt. Directly revealing the value of
〈As, Bt〉 to the client, however, leaks information about the
entries in the compressed routing matrices A,B. To protect
against this leakage, we instead reveal a blinded version of the
inner product. Specifically, on each round of the protocol, the
server chooses blinding factors α R←− F∗p and β R←− Fp. We then
construct the protocol such that at the end of the first step,
the client learns the blinded value α〈As, Bt〉 + β instead of
〈As, Bt〉.

One candidate approach for computing the blinded inner
product is to use a garbled circuit. However, while Yao’s
garbled circuits suffice for private evaluation of any two-
party functionality, when the underlying operations are more
naturally expressed as addition and multiplication over Fp, it
is more convenient to express the functionality in terms of an
arithmetic circuit. In an arithmetic circuit (over Fp), the “gates”
correspond to field operations (addition and multiplication),
and the values on the wires correspond to field elements.

In recent work, Applebaum et al. [2] construct the analog of
Yao’s garbling procedure for arithmetic circuits. In particular,
evaluating a function of the form f(x, y) = 〈x, y〉+

∑
i∈[d] zi,

where x, y ∈ Fdp and each zi ∈ Fp is a constant can be
done efficiently using the affinization gadgets from [2, §5].
Specifically, for each xi, yi, we define the following affine
encoding functions Laffine

xi
(xi), L

affine
yi (yi):

Laffine
xi

(xi) =
(
xi − r(1)i , xir

(2)
i + zi + r

(3)
i

)
Laffine
yi (yi) =

(
yi − r(2)i , yir

(1)
i − r

(1)
i r

(2)
i − r

(3)
i

)
, (3)

where r(1)i , r
(2)
i , r

(3)
i are chosen uniformly from Fp. We will

also write Laffine
xi

(xi; ri), L
affine
yi (yi; ri) to denote affine encod-

ings of xi and yi using randomness ri ∈ F3
p. Given Laffine

xi
(xi)

and Laffine
yi (yi) for all i ∈ [n], evaluating f(x, y) corresponds

to evaluating the expression∑
i∈[n]

[
Laffine
xi

(xi)
]
1
·
[
Laffine
yi (yi)

]
1
+
[
Laffine
xi

(xi)
]
2
+
[
Laffine
yi (yi)

]
2
,

(4)
where we write [·]i to denote the ith component of a tuple. For
notational convenience, we also define Laffine

x (x) and Laffine
y (y)

as

Laffine
x (x) =

(
Laffine
x1

(x1), . . . , L
affine
xd

(xd)
)

Laffine
y (y) =

(
Laffine
y1 (y1), . . . , L

affine
yd

(yd)
)
. (5)

Similarly, we write Laffine
x (x; r), Laffine

y (y; r) to denote the affine
encoding of vectors x, y ∈ Fdp using randomness r ∈ F3d

p .
The affine encodings Laffine

x (x), Laffine
y (y) provides statistical

privacy for the input vectors x, y [2, Lemma 5.1].

Next, we describe how these affine encodings can be used
to compute the blinded inner product in the first step of the
protocol. At the beginning of each round, the server chooses
blinding factors α R←− F∗p and β

R←− Fp. Then, it constructs
the affine encoding functions Laffine

x , Laffine
y for the function

fα,β(x, y) = 〈αx, y〉+β according to Eq. (3). Next, the server
prepares two encoding databases Dsrc and Ddst where the sth
record in Dsrc consists of the affine encodings Laffine

x (As) of
each source vector, and the tth record in Ddst consists of
Laffine
y (Bt) of each destination vector. To evaluate the blinded

inner product, the client performs two SPIR queries: one for
the sth record in Dsrc to obtain the encodings of As and one
for the tth record in Ddst to obtain the encodings of Bt.4
The client then evaluates the arithmetic circuit using Eq. (4)
to obtain z = fα,β(As, Bt). To a malicious client, without
knowledge of α or β, the value fα,β(As, Bt) appears uniform
over Fp and independent of As, Bt.

Determining the sign. To complete the description, it remains
to describe a way for the client to learn the sign of the inner
product 〈As, Bt〉. The client has the value z = α〈As, Bt〉+ β
from the output of the arithmetic circuit while the server knows
the blinding factors α, β. Since computing the sign function is
equivalent to performing a comparison, arithmetic circuits are
unsuitable for the task. Instead, we construct a separate Yao
circuit to unblind the inner product and compare it against zero.
More specifically, let g(x, γ, δ) = 1{[γx + δ]p > 0}, where

4The databases Dsrc and Ddst are each databases over n records (as opposed
to n2 in the straw-man protocol from Section I).

5

[·]p denotes reduction modulo p, with output in the interval
(−p/2, p/2). Then,

g(z, α−1,−α−1β) = sign(As, Bt).

To conclude the protocol, the server garbles a Boolean circuit
Cunblind for the unblinding function g to obtain a garbled
circuit C̃unblind along with a set of encodings Lunblind. It sends
the garbled circuit to the client, along with encodings of the
unblinding coefficients γ = α−1, δ = α−1β to the client.
The client engages in 1-out-of-2 OTs to obtain the input
encodings of z, and evaluates the garbled circuit C̃unblind to
learn sign(〈As, Bt〉).

2) Enforcing Consistency for Stronger Security: As de-
scribed, the protocol reveals just a single edge in the shortest
path. Repeated iteration of the protocol allows the client to
learn the full shortest path. Moreover, since the server’s view of
the protocol execution consists only of its view in the PIR and
OT protocols, privacy of these underlying primitives ensures
privacy of the client’s location, even against a malicious
server.5

Security for the server only holds if the client follows the
protocol and makes consistent queries on each round. However,
a malicious client can request the shortest path for a different
source and/or destination on each round, thereby allowing it
to learn edges along arbitrary shortest paths of its choosing.
To protect against a malicious client, we bind the client to
making consistent queries across consecutive rounds of the
protocol. We say that a sequence of source-destination queries
(s1, t1), . . . , (s`, t`) is consistent if for all i ∈ [`], t1 = ti, and
si+1 = vi where vi is the first node on the shortest path from
si to ti.

Consistency for the destinations. To bind the client to a
single destination, we do the following. At the beginning of
the protocol, for each row i ∈ [n] in Ddst, the server chooses
a symmetric encryption key kdst,i. Then, on each round of
the protocol, it encrypts the ith record in Ddst with the key
kdst,i. Next, at the beginning of the protocol, the client OTs
for the key kdst,t corresponding to its destination t. Since this
step is performed only once at the beginning of the protocol,
the only record in Ddst that the client can decrypt is the one
corresponding to its original destination. Because each record
in Ddst is encrypted under a different key, the client can use
a PIR protocol instead of an SPIR protocol when requesting
the record from Ddst.

Consistency for the sources. Maintaining consistency be-
tween the source queries is more challenging because the
source changes each round. We use the fact that the prepro-
cessed graph has out-degree at most four. Thus, on each round,
there are at most four possible sources that can appear in a
consistent query in the next round.

Our construction uses a semantically-secure symmetric
encryption scheme (Enc,Dec) with key-space {0, 1}`, and
a PRF F with domain {N, E, S,W} and range {0, 1}`. On
each round of the protocol, the server generates a new set
of source keys ksrc,1, . . . , ksrc,n ∈ {0, 1}` for encrypting the

5While a malicious server can send the client malformed circuits or induce
selective failure attacks, the server does not receive any output during the
protocol execution nor does the client abort the protocol when malformed
input is received. Thus, we achieve privacy against a malicious server.

records in Dsrc in the next round of the protocol. The server
also chooses four PRF keys k0NE, k

1
NE, k

0
NW, k

1
NW, which are used

to derive directional keys kN, kE, kS, kW. Next, for each node
v ∈ [n] in Dsrc, let vdir be the neighbor of v in direction
dir ∈ {N, E, S,W} (if there is one). The server augments the
vth record in Dsrc with an encryption of the source key ksrc,vdir
under the directional key kdir.

When the client requests record v from Dsrc, it also obtains
encryptions of the keys of the neighbors of v for the next round
of the protocol. By ensuring the client only learns one of the
directional keys, it will only be able to learn the encryption key
for a single source node on the next round of the protocol. We
achieve this by including the PRF keys k0NE, k

1
NE, k

0
NW, k

1
NW used

to derive the directional keys as input to the garbled circuit.
Then, in addition to outputting the direction, the garbled circuit
also outputs the subset of PRF keys needed to derive exactly
one of the directional keys kN, kE, kS, kW. This ensures that the
client has at most one source key in the next round of the
protocol.

Consistency within a round. In addition to ensuring con-
sistency between consecutive rounds of the protocol, we also
require that the client’s input to the garbled circuit is con-
sistent with the output it obtained from evaluating the affine
encodings. To enforce this, we use the fact that the entries
of the routing matrices A,B are bounded: there exists τ
such that 〈As, Bt〉 ∈ [−2τ , 2τ] for all s, t ∈ V . Then, in
our construction, we choose the size of the finite field Fp
to be much larger than the size of the interval [−2τ , 2τ].
Recall that the arithmetic circuit computes a blinded inner
product z ← α〈As, Bt〉 + β where α, β are uniform in F∗p
and Fp, respectively. To unblind the inner product, the server
constructs a garbled circuit that first evaluates the function
gγ,δ(z) = γz + δ with γ = α−1 and δ = −α−1β. By
construction, γ is uniform over F∗p and δ is uniform over
Fp. Thus, using the fact that

{
gγ,δ(z) | γ ∈ F∗p, δ ∈ Fp

}
is a

pairwise independent family of functions, we conclude that
the probability that gγ,δ(z′) ∈ [−2τ , 2τ] is precisely 2τ+1/p
for all z′ ∈ Fp. By choosing p � 2τ+1, we can ensure that
the adversary cannot successfully cheat except with very small
probability.

Lastly, we remark that when the client issues a query (s, t)
where s = t, the protocol should not reveal the key for any
other node in the graph. To address this, we also introduce
an equality test into the garbled circuit such that on input
s = t, the output is ⊥. We give a complete specification
of the neighbor-computation function that incorporates these
additional consistency checks in Figure 2.

B. Security Model

In this section, we formally specify our security model. To
define and argue the security of our protocol, we compare
the protocol execution in the real-world (where the parties
interact according to the specification given in Figure 3) to
an execution in an ideal world where the parties have access
to a trusted party that computes the shortest path. Following
the conventions in [13], we view the protocol execution as
occurring in the presence of an adversaryA and coordinated by
an environment E = {E}λ (modeled as a family of polynomial
size circuits parameterized by a security parameter λ). The

6

Fix a security parameter λ and a statistical security parameter µ. Let G = (V,E) be a weighted directed graph with n vertices,
such that the out-degree of every vertex is at most 4. The client’s input to the protocol consists of two nodes, s, t ∈ V , representing
the source and destination of the shortest path the client is requesting. The server’s inputs are the compressed routing matrices
A(NE), B(NE), A(NW), B(NW) ∈ Zn×d (as defined in Section III).

We assume the following quantities are public and known to both the client and the server: the structure of the graph G (but
not the edge weights); the number of columns d in the compressed routing matrices; a bound on the bit-length τ of the values in the
products A(NE) · (B(NE))T and A(NW) · (B(NW))T ; and the total number of rounds R.

In the following description, let (Enc,Dec) be a CPA-secure symmetric encryption scheme with key space {0, 1}`, and let
F : {0, 1}ρ × {N, E, S,W} → {0, 1}` be a PRF (where `, ρ = poly(λ)). Fix a prime-order finite field Fp such that p > 2τ+µ+1.

Setup:
1) For each i ∈ [n], the server chooses independent symmetric encryption keys k(1)src,i, kdst,i

R←− {0, 1}`.
2) The client and the server engage in two 1-out-of-n OT protocols with the client playing the role of the receiver:
• The client requests the sth record from the server’s database (k

(1)
src,1, . . . , k

(1)
src,n), receiving a value k̂(1)src .

• The client requests the tth record from the server’s database (kdst,1, . . . , kdst,n), receiving a value k̂dst.
For each round r = 1, . . . , R of the protocol:

1) The server chooses blinding factors αNE, αNW
R←− F∗

p and βNE, βNW
R←− Fp. Next, let γNE = α−1

NE and δNE = −α−1
NE βNE ∈ Fp. Define

γNW and δNW analogously.
2) Let fNE, fNW : Fdp × Fdp → Fp where fNE(x, y) = 〈αNEx, y〉 + βNE and fNW(x, y) = 〈αNWx, y〉 + βNW. The server then does the

following:
• Apply the affine encoding algorithm (Eq. 3) to fNE to obtain encoding functions Laffine

NE,x, L
affine
NW,y , for the inputs x and y, respectively.

• Apply the affine encoding algorithm to fNW to obtain encoding functions Laffine
NW,x, L

affine
NW,y .

3) Let Cunblind be a Boolean circuit for computing the neighbor-computation function in Figure 2. The server runs Yao’s garbling
algorithm on Cunblind to obtain a garbled circuit C̃unblind along with encoding functions Lunblind

x , for each of the inputs x to the
neighbor-computation function in Figure 2.

4) The server chooses symmetric encryption keys k(r+1)
src,1 , . . . , k

(r+1)
src,n

R←− {0, 1}`. These are used to encrypt the contents of the source
database on the next round of the protocol.

5) The server chooses four PRF keys k0NE, k
1
NE, k

0
NW, k

1
NW

R←− {0, 1}ρ, two for each axis. Then, the server defines the encryption keys for
each direction as follows:

kN = F (k0NE, N)⊕ F (k0NW, N), kE = F (k0NE, E)⊕ F (k1NW, E), kS = F (k1NE, S)⊕ F (k1NW, S), kW = F (k1NE,W)⊕ F (k0NW,W).

6) The server prepares the source database Dsrc as follows. For each node u ∈ [n], the uth record in Dsrc is an encryption under
k
(r)
src,u of the following:
• The arithmetic circuit encodings Laffine

NE,x(A
(NE)
u), Laffine

NW,x(A
(NW)
u) of the source vectors A(NE)

u and A(NW)
u .

• The garbled circuit encodings Lunblind
s (u) of the source node u.

• Encryptions of the source keys for the neighbors of u in the next round of the protocol under the direction keys:

κN = Enc(kN, k
(r+1)
src,vN

), κE = Enc(kE, k
(r+1)
src,vE

), κS = Enc(kS, k
(r+1)
src,vS

), κW = Enc(kW, k
(r+1)
src,vW

),

where vN, vE, vS, vW is the neighbor of u to the north, east, south, or west, respectively. If u does not have a neighbor in a given
direction dir ∈ {N, E, S,W}, then define k(r+1)

src,vdir to be the all-zeroes string 0`.
7) The server prepares the destination database Ddst as follows. For each node u ∈ [n], the uth record in Ddst is an encryption under

kdst,u of the following:
• The arithmetic circuit encodings Laffine

NE,y(B
(NE)
u), Laffine

NW,y(B
(NW)
u) of the destination vectors B(NE)

u and B(NW)
u .

• The garbled circuit encodings Lunblind
t (u) of the destination node u.

8) The client and server engage in two PIR protocols with the client playing role of receiver:
• The client requests record s from the server’s database Dsrc and obtains a record ĉsrc.
• The client requests record t from the server’s database Ddst and obtains a record ĉdst.

9) The client decrypts the records: r̂src ← Dec(k̂
(r)
src , ĉsrc) and r̂dst ← Dec(k̂dst, ĉdst):

• It parses r̂src into two sets of arithmetic circuit encodings L̂affine
NE,x and L̂affine

NW,x, a set of garbled circuit encodings L̂unblind
s , and four

encryptions κ̂N, κ̂E, κ̂S, κ̂W of source keys for the next round.
• It parses r̂dst into two sets of arithmetic circuit encodings for L̂affine

NE,y and L̂affine
NW,y , and a set of garbled circuit encodings L̂unblind

t .
Using the encodings L̂affine

NE,x and L̂affine
NE,y , the client evaluates the arithmetic circuit (Eq. 4) to learn ẑNE. Similarly, using the encodings

L̂affine
NW,x and L̂affine

NW,y , the server evalautes to learn ẑNW. If the parsing of r̂src or r̂dst fails or the arithmetic circuit encodings are
malformed, the client sets ẑNE, ẑNW

R←− Fp.

Fig. 3: The fully-private navigation protocol, as outlined in Section IV. The protocol description continues on the next page.

7

10) The client engages in a series of 1-out-of-2 OTs with the server to obtain the garbled circuit encodings Lunblind
zNE

(ẑNE) and Lunblind
zNW

(ẑNW)
of ẑNE and ẑNW, respectively. Let L̂unblind

zNE
and L̂unblind

zNW
denote the encodings the client receives.

11) The server sends to the client the garbled circuit C̃unblind and encodings of the unblinding coefficients

Lunblind
γNE

(γNE), L
unblind
γNW

(γNW), L
unblind
δNE

(δNE), L
unblind
δNW

(δNW),

as well as encodings of the PRF keys

Lunblind
k0NE

(k0NE), L
unblind
k1NE

(k1NE), L
unblind
k0NW

(k0NW), L
unblind
k1NW

(k1NW).

12) The client evaluates the garbled circuit C̃unblind. If the garbled circuit evaluation is successful and the client obtain outputs
(b̂NE, b̂NW, k̂NE, k̂NW), then the client computes a direction dir = IndexToDirection(b̂NE, b̂NW) ∈ {N, E, S,W} (Section III).
a) The client computes the direction key k̂dir = F (k̂NE, dir)⊕F (k̂NW, dir). Next, the client decrypts the encrypted source key κ̂dir to

obtain the source key k̂(r+1)
src = Dec(k̂dir, κ̂dir) for the next round of the protocol.

b) Let vdir be the neighbor of s in the direction given by dir (define vdir to be ⊥ if s does not have a neighbor in the direction dir).
If vdir 6= ⊥, the client outputs vdir and updates s = vdir. Otherwise, if vdir = ⊥, the client outputs ⊥ and leaves s unchanged.

If the OT for the input wires to the garbled circuit fails, the garbled circuit evaluation fails, or the output of the garbled circuit is
⊥, then the client outputs ⊥, but continues with the protocol: it leaves s unchanged and sets k̂(r+1)

src
R←− {0, 1}`.

Fig. 3 (Continued): The complete secure private routing protocol, as outlined in Section IV.

Inputs: Tuples (zNE, γNE, δNE), (zNW, γNW, δNW) ∈ F3
p, PRF keys

k0NE, k
1
NE, k

0
NW, k

1
NW ∈ {0, 1}ρ, and the source and destination

nodes s, t ∈ [n]. The bit-length τ is public and fixed (hard-wired
into g).

Operation of g:
• If s = t, then output ⊥.
• If [γNEzNE + δNE]p /∈ [−2τ , 2τ] or [γNWzNW + δNW]p /∈

[−2τ , 2τ], output ⊥.
• Let bNE = 1{[γNEzNE + δNE]p > 0}, and let bNW =

1{[γNWzNW + δNW]p > 0}. Output (bNE, bNW, k
bNE
NE , k

bNW
NW).

Fig. 2: Neighbor-computation function g for the private routing
protocol.

environment E is responsible for choosing the inputs to the
protocol execution and plays the role of distinguisher between
the real and ideal experiments.

As specified in Figure 3, we assume that the following
quantities are public to the protocol execution: the topology
of the network G = (V,E), the number of columns d in the
compressed routing matrices, a bound on the bit-length τ of
the values in the matrix products A(NE) · (B(NE))T and A(NW) ·
(B(NW))T , and the total number of rounds R (i.e., the number
of hops in the longest possible shortest path). We now define
the real and ideal models of execution.

Definition IV.1 (Real Model of Execution). Let π be a
private navigation protocol. In the real world, the parties
interact according to the protocol specification π. Let E be the
environment and let A be an adversary that corrupts either the
client or the server. The protocol execution in the real world
proceeds as follows:

1) Inputs: The environment E chooses a source-destination
pair s, t ∈ V for the client and compressed next-hop
routing matrices A(NE), B(NE), A(NW), B(NW) ∈ Zn×d for
the server. The bit-length of all entries in the matrix
products A(NE) · (B(NE))T and A(NW) · (B(NW))T must be

at most τ . Finally, the environment gives the input of the
corrupted party to the adversary.

2) Protocol Execution: The parties begin executing the pro-
tocol. All honest parties behave according to the protocol
specification. The adversary A has full control over the
behavior of the corrupted party and sees all messages
received by the corrupted party.

3) Output: The honest party computes and gives its output
to the environment E . The adversary computes a function
of its view of the protocol execution and gives it to E .

At the conclusion of the protocol execution, the environment
E outputs a bit b ∈ {0, 1}. Let REALπ,A,E(λ) be the random
variable corresponding to the value of this bit.

Definition IV.2 (Ideal Model of Execution). In the ideal world,
the client and server have access to a trusted party T that
computes the shortest paths functionality f .

1) Inputs: Same as in the real model of execution.

2) Submission to Trusted Party: If a party is honest, it
gives its input to the trusted party. If a party is corrupt,
then it can send any input of its choosing to T , as directed
by the adversary A.

3) Trusted Computation: From the next-hop routing ma-
trices, the trusted party computes the first R hops on the
shortest path from s to t: s = v0, v1, . . . , vR. If vi = t
for some i < R, then the trusted party sets vi+1, . . . , vR
to ⊥. If the next hop in the path at vi for some i refers to
a node not in G, then the trusted party sets vi+1, . . . , vR
to ⊥. The trusted party sends the path v0, . . . , vR to the
client. The server receives no output.

4) Output: An honest party gives the sequence of messages
(possibly empty) it received from T to E . The adversary
computes a function of its view of the protocol execution
and gives it to E .

At the conclusion of the protocol execution, the environment
E outputs a bit b ∈ {0, 1}. Let IDEALf,A,E(λ) be the random

8

variable corresponding to the value of this bit.

To state our security theorems, we now define the environ-
ment’s distinguishing advantage. Informally, we will say that
a protocol is secure if no polynomial-size environment is able
to distinguish the real execution from the ideal execution with
non-negligible probability.

Definition IV.3 (Distinguishing Advantage — Security). Let
π be a private navigation protocol, and let f be the shortest
path functionality. Fix an adversary A, simulator S, and an
environment E . The distinguishing advantage Adv

(sec)
π,f,A,S,E(λ)

of E in the security game is given by

|Pr[REALπ,A,E(λ) = 0]− Pr[IDEALf,A,E(λ) = 0]| .

We will also work with a weaker notion of privacy against
a malicious adversary. Informally, we say that the protocol
is private if an adversary is unable to learn anything about
the inputs of the other party beyond what is explicitly leaked
by the inputs and outputs of the computation. To formalize
this notion, we use the conventions in [31] and define the
distinguishing advantage in the privacy game.

Definition IV.4 (Distinguishing Advantage — Privacy). Let π
be a private navigation protocol, and let f be the shortest path
functionality. Fix an adversary A, simulator S , and an envi-
ronment E . Define REAL′π,A,E(λ) exactly as REALπ,A,E(λ)
(Definition IV.1), except in the final step of the protocol
execution, the environment only receives the adversary’s output
(and not the honest party’s output). Define IDEAL′f,S,E(λ)

analogously. The distinguishing advantage Adv
(priv)
π,f,A,S,E(λ)

of E in the privacy game is given by∣∣Pr[REAL′π,A,E(λ) = 0]− Pr[IDEAL′f,A,E(λ) = 0]
∣∣ .

C. Security Theorems

The first requirement is that our protocol provides security
against a malicious client. This captures the notion that a
malicious client does not learn anything more about the
server’s routing information beyond the shortest path between
its requested endpoints and the publicly available information.
In our setting, we allow a privacy-performance trade-off where
the client has a small probability (R · 2−µ, where µ is the
statistical security parameter) of learning additional informa-
tion about the routing information. Since the order p of the
finite field must satisfy p > 2τ+µ+1, using larger finite fields
will decrease the failure probability, but at the expense of
performance. In our experiments, R · 2−µ ≈ 2−30. We now
state the formal security guarantee, but defer its formal proof
to the extended version of this paper.

Theorem IV.5 (Security Against a Malicious Client). Let
π be the protocol in Figure 3 instantiated with a CPA-
secure encryption scheme (Enc,Dec), a secure PRF F , and
an OT scheme secure against a malicious client. Let λ, µ
be the security parameter and statistical security parameter,
respectively. Let f be the ideal shortest-paths functionality.
Then, for all PPT adversaries A, there exists a PPT adversary
S such that for every polynomial-size circuit family E = {E}λ,

Adv
(sec)
π,f,A,S,E(λ) ≤ negl(λ) +R · 2−µ,

where negl(λ) denotes a negligible function in λ.

In addition to security against a malicious client, we require
our protocol to provide privacy against a malicious server.
In other words, while a malicious server might be able to
cause the client to receive an invalid path, it still cannot learn
any information about the client’s source or destination. We
formalize this in the following theorem.

Theorem IV.6 (Privacy Against a Malicious Server). Let π
be the protocol in Figure 3 instantiated with PIR and OT
primitives that provide privacy against a malicious server. Let
λ be a security parameter and let f be the ideal shortest-paths
functionality. Then, for all PPT adversaries A, there exists a
PPT adversary S such that for every polynomial-size circuit
family E = {E}λ,

Adv
(priv)
π,f,A,S,E(λ) ≤ negl(λ),

where negl(λ) denotes a negligible function in λ.

Proof (Sketch): We give a sketch of the proof, and defer
the full argument to the extended version of this paper. We
argue that the server’s view of the protocol execution can be
simulated independently of the client’s input. At a high-level,
this follows from the fact that the server’s view in the protocol
execution consists only of its view in OT and PIR protocols.
By assumption, privacy of the OT and PIR protocols implies
the existence of a simulator that can simulate the server’s
view of the OT or PIR protocol independently of the client’s
input. Thus, for any adversarial server A in the real-world, we
can construct a simulator S that is able to simulate a view
computationally indistinguishable from that of A in the real
protocol (by invoking the underlying PIR and OT simulators
for each sub-protocol).

V. EXPERIMENTS

In this section, we describe our implementation of the
private routing protocol from Figure 3. Then, we describe
our procedure for preprocessing and compressing actual road
networks for major cities taken from OpenStreetMap [49].
Finally, we give concrete performance benchmarks for our
preprocessing and compression pipeline as well as our private
routing protocol on actual road networks.

A. Protocol Implementation

To evaluate the performance of the protocol in Figure 3, we
implemented the complete protocol in C++. In this section, we
describe the building blocks of our implementation. For each
primitive, we choose the parameters to guarantee a minimum
of 80 bits of security. The complete protocol implementation
contains approximately 4000 lines of code.

PIR. We implemented the (recursive) PIR protocol based
on additive homomorphic encryption from [36], [50]. We
instantiate the additive homomorphic encryption scheme with
Paillier’s cryptosystem [51], and use NTL [56] over GMP [28]
to implement the necessary modular arithmetic. We use a
1024-bit RSA modulus for the plaintext space in the Paillier
cryptosystem, which provides 80 bits of security. We use two
levels of recursion in the PIR protocol, so the communication
scales as O(3

√
n) for an n-record database.

9

OT. We instantiate the OT protocol with the protocol from
[29, §7.3] which provides security against malicious clients
and privacy against malicious servers. This protocol is a direct
generalization of the Naor-Pinkas OT protocol [47] based
on the decisional Diffie-Hellman (DDH) assumption. Security
against a malicious client is enforced by having the client
include a zero-knowledge proof of knowledge (specifically,
a Schnorr proof [55]) with its OT request. To decrease the
number of rounds of communication, we apply the Fiat-Shamir
heuristic [21] to transform the interactive proof of knowledge
into a non-interactive one by working in the random oracle
model. We instantiate the random oracle with the hash function
SHA-256. For improved performance, we implement the Naor-
Pinkas OT protocol over the 256-bit elliptic curve group
numsp256d1 from [9]. We use the MSR-ECC [9] library for
the implementation of the underlying elliptic curve operations.
The 256-bit curve provides 128 bits of security.

Arithmetic and Yao’s circuits. We implement our arithmetic
circuits over the finite field Fp where p = 261−1 is a Mersenne
prime. Then, reductions modulo p can be performed using just
two p-bit additions. We use NTL [56] over GMP [28] for the
finite field arithmetic.

For the garbled circuit implementation, we use JustGar-
ble [4] with the “free XOR” [34] and row-reduction optimiza-
tions [52]. We set the parameters of the garbling framework
to obtain 80-bits of security. We use the optimized addition,
comparison, and multiplexer circuits from [33] to implement
the neighbor-computation function shown in Figure 2. For
multiplication, we implement the basic “school method.”

Record encryption and PRF. We instantiate the CPA-secure
encryption scheme in Figure 3 with AES in counter mode. We
also instantiate the PRF used for deriving the neighbor keys
(Step 5 in Figure 3) with AES. We use the implementation of
AES from OpenSSL [59].

B. Preprocessing and Map Compression.

We extract the street maps for four major cities (San
Francisco, Washington, D.C., Dallas, and Los Angeles) from
OpenStreetMap [49]. For each city, we take its most impor-
tant roadways based on annotations in OpenStreetMap, and
construct the resulting graph G. Specifically, we introduce
a node for each street intersection in the city and an edge
for each roadway. We assign edge weights based on the
estimated time needed to traverse the associated road segment
(computed by taking the length of the segment and dividing
by the approximated speed limit along the segment). Using the
procedure described in Section III, we preprocess the graph to
have out-degree at most 4. We then associate each edge of G
with a cardinal direction by solving the assignment problem
from Section III. We use Stachniss’ implementation [57] of
the Hungarian method [35] to solve this assignment problem.

Given the graph G corresponding to the road network for
each city, we run Dijkstra’s algorithm [19] on each node s in G
to compute the shortest path between all pairs of nodes. Then,
using the all-pairs shortest paths information, we construct the
next-hop routing matrices (M (NE),M (NW)) for G. We remark
that we can substitute any all-pairs shortest path algorithm for
Dijkstra’s in this step. The underlying principle we exploit
in the construction of our protocol is the fact that next-hop

City n Preprocessing Time (s) Compression Time (s)
San Francisco 1830 0.625 97.500
Washington, D.C. 2490 1.138 142.431
Dallas 4993 4.419 278.296
Los Angeles 7010 9.188 503.007

TABLE I: Average time to preprocess and compress the next-hop
routing matrices for different networks. The second column gives the
number of nodes n in each city’s road network. The preprocessing
time column gives the average time needed to orient the edges,
compute all-pairs shortest paths, and construct the next-hop routing
matrix for the network. The compression time column gives the
average time needed to compress the NE or NW component of the
next-hop routing matrices.

routing matrices for road networks have a simple compressible
structure amenable to cryptography.

Finally, we implement the optimization-based compression
approach described in Section III to compress the next-hop
routing matrices M (NE) and M (NW). We minimize the ob-
jective function from Eq. (1) with the loss function set to
the modified Huber hinge loss from Eq. (2). Because of the
highly parallelizable nature of the objective function, we write
specialized CUDA kernels to evaluate the objective function
and its derivative on the GPU. In our experiments, we use the
LBFGS optimization algorithm [11] from the Python scientific
computation libraries NumPy and SciPy [3] to solve the
optimization problem.

C. Experiments

Graph preprocessing and compression. We first measure the
time needed to preprocess and compress the next-hop routing
matrices for several road networks. The preprocessing time
includes the time needed to orient the edges, compute all-pairs
shortest paths, and construct the next-hop routing matrix for
the network (as described in Section V-B).

We also measure the time needed to compress the resulting
next-hop routing matrices for the different networks. Recall
that our compression method takes a matrix M ∈ {−1, 1}n×n
and produces two matrices A,B ∈ Zn×d such that sign(ABT)
is a good approximation of M . Since the modified Huber
hinge loss (Eq. 2) is an upper bound on the 0-1 loss function
`(x, t) = 1 {sign(x) = t}, when the objective value J(A,B) is
less than 1 (where J(A,B) is the objective function in Eq. 1),
we have sign(ABT) = M , i.e., the matrices A,B perfectly
reconstruct M . The parameter d is the number of columns in
the matrices A and B. Because our objective function is non-
convex in the variables A and B, LBFGS is neither guaranteed
to find the globally optimal solution, nor even to converge in
a reasonable number of iterations. As a heuristic for deciding
whether a candidate value of d admits a feasible solution that
perfectly reconstructs M (NE) and M (NW), we run up to 5000
iterations of LBFGS and check whether the resulting solution
gives a perfect reconstruction of M . To determine the most
compact representation, we search over a range of possible
values for d, and choose the smallest value d that yields a
perfect reconstruction of M .

We apply our compression method to the routing matrices
for road networks from four cities of varying size. Then,
we compare the size of the original matrix M to the size
of its compressed representation A,B. The number of bits

10

City n d ν τ Compression Factor
San Francisco 1830 12 10 20 7.63
Washington, D.C. 2490 14 10 19 8.89
Dallas 4993 19 12 23 10.95
Los Angeles 7010 26 12 24 11.23

TABLE II: Parameters for the compressed representation of the road
networks for each city: n is the number of nodes in each network, d
and ν are the number of columns and the precision, respectively, in the
routing matrices A(NE), B(NE), A(NW), B(NW) of the compressed repre-
sentation, and τ is the maximum number of bits needed to represent
an element in the products A(NE)(B(NE))T and A(NW)(B(NW))T . The
last column gives the compression factor attained for each network
(ratio of size of uncompressed representation to size of compressed
representation).

needed to represent A,B is determined by two factors: the
number of columns d in each matrix A,B and the precision ν
(measured in number of bits) needed to represent each entry
in A,B. Recall that the optimization procedure outputs two
real-valued matrices such that sign(ABT) = M . To obtain a
representation over the integers (as required by the arithmetic
circuits), we scale the entries of A,B by a constant factor
and round each of the resulting entries to the nearest integer.
The precision ν is the number of bits needed to represent
each integer component of A,B after rescaling. We choose the
smallest scaling factor such that the rescaled matrices perfectly
reconstruct the routing matrix M .

We run the preprocessing and compression experiments on
a machine running Ubuntu 14.04 with an 8-core 2.3 GHz Intel
Core i7 CPU, 16 GB of RAM, and an Nvidia GeForce GT
750M GPU. The preprocessing and compression times for the
different networks are summarized in Table I. A description
of the compressed representation of the routing matrices for
each network is given in Table II.

In Figure 4, we show the time needed to compress a single
component of the next-hop routing matrix, as well as the
resulting compression factor, for subgraphs of the road network
for Los Angeles. The compression is quite effective, and the
achievable compression factor increases with the size of the
network. Moreover, even though the sizes of the next-hop
routing matrices increase quadratically in the number of nodes
in the graph, the optimization time remains modest. For graphs
with 7000 nodes (and 350,000 optimization variables), finding
a compact representation that perfectly reconstructs the next-
hop matrix completes in under 10 minutes. Since we compress
both the NE and NW components of the routing matrix, the
total time to both preprocess and compress the shortest path
information for the full city of Los Angeles is just over 15
minutes. Lastly, we note that the preprocessing time for each
network is small: orienting the edges and computing all-pairs
shortest paths via Dijkstra’s algorithm completes in under 10
seconds.

Performance on road networks. Next, we measure the
run-time and bandwidth requirements of our private routing
protocol from Figure 3. Table II gives the number of columns
d, and the precision ν of the compressed representation of
the networks for the different cities. In addition, we also
compute the maximum number of bits τ needed to encode an
element in the products A(NE)(B(NE))T and A(NW)(B(NW))T .
From Theorem IV.5, a malicious client can successfully cheat
with probability at most R · 2−µ, where µ is the statistical

0

2

4

6

8

10

12

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000

Co
m

pr
es

sio
n

Fa
ct

or

Co
m

pr
es

sio
n

Ti
m

e
(s

)

Nodes in Graph

Compression Time (s) Compression Factor

Fig. 4: Average time needed to compress the next-hop routing matrix
and the resulting compression factor for networks constructed from
subgraphs of the road network of Los Angeles.

security parameter, and R is the total number of rounds in
the protocol. For each network in our experiments, we set the
number of rounds R to be the maximum length over all shortest
paths between any source-destination pair in the network. This
ensures both correctness (at the end of the protocol execution,
the client obtains the complete shortest path from its source
to its destination) as well as hides the length of the requested
shortest path from the server (since the number of rounds in
the protocol is independent of the client’s input). Next, recall
the relation between µ and the order p of the finite field
for the affine encodings: p > 2τ+µ+1. In our experiments,
we fix p = 261 − 1, and R is at most 28 = 256. These
choice of parameters translates to µ ranging from 36 to 41,
or analogously, a failure probability of 2−33 for the smaller
networks to 2−28 for larger networks. Using larger fields will
reduce this probability, but at the expense of performance.

To reduce the communication in each round of the protocol
in Figure 3, we note that it is not necessary for the server
to prepare and send a garbled circuit to the client on each
round of the routing protocol. Since the neighbor-computation
circuit is independent of the state of the protocol execution, the
circuits can be generated and stored long before the protocol
execution begins. Thus, in an offline phase, the server can
prepare and transmit to the client a large number of garbled
circuits. During the online protocol execution, on the rth

round, the server just sends the encodings corresponding to
its input to the client; it does not send the description of the
garbled circuit. This significantly reduces the communication
cost of each round of the online protocol. We note that even if
the routing matrices A(NE), B(NE), A(NW), B(NW) changed (for
instance, due to updates in traffic or weather conditions in the
network) during the protocol execution, as long as the bound τ
on the bit-length of entries in the products A(NE)(B(NE))T and
A(NW)(B(NW))T remain fixed, the client and server do not have
to redo this offline setup phase. We describe our extension for
supporting live updates to the routing information in greater
detail in Section VI.

We run the server on a compute-optimized Amazon EC2
instance (running Ubuntu 14.04 with a 32-core 2.7 GHz Intel
Xeon E5-2680v2 processor and 60 GB of RAM) to model
the computing resources of a cloud-based map provider. The
throughput of our protocol is bounded by the PIR computation
on the server’s side. We use up to 60 threads on the server
for the PIR computation. All other parts of our system are
single-threaded. For the client, we use a laptop running Ubuntu

11

City Total Time (s) Client Computation (s) Server Computation (s) Bandwidth (KB)
(Single Round) Total PIR OT GC Total PIR OT Upload Download

San Francisco 1.44± 0.16 0.35 0.31 0.02 0.02 0.88 0.80 0.08 51.74 36.50
Washington, D.C. 1.64± 0.13 0.38 0.34 0.02 0.02 1.07 1.00 0.08 52.49 37.51
Dallas 2.91± 0.19 0.45 0.41 0.02 0.02 2.19 2.11 0.08 55.50 39.52
Los Angeles 4.75± 0.22 0.55 0.51 0.02 0.02 3.70 3.62 0.08 57.01 43.53

TABLE III: Performance benchmarks (averaged over at least 90 iterations) for a single round of the private routing protocol described in
Figure 3 on road networks for different cities. The “Total Time” column gives the average runtime and standard deviation for a single round
of the protocol (including network communication times between a client and a server on Amazon EC2). The PIR, OT, and GC columns in
the table refer to the time to perform the PIR for the affine encodings, the time to perform the OT for the garbled circuit encodings, and the
time needed to evaluate the garbled circuit, respectively. The bandwidth measurements are taken with respect to the client (“upload” refers to
communication from the client to the server)

City R
Offline Setup Online Setup Total Online Total Online

Time (s) Band. (MB) Time (s) Band. (MB) Time (s) Bandwidth (MB)
San Francisco 97 0.135 49.08 0.73 0.021 140.39 8.38
Washington, D.C. 120 0.170 60.72 0.76 0.023 197.48 10.57
Dallas 126 0.174 63.76 0.92 0.027 371.44 11.72
Los Angeles 165 0.223 83.49 1.00 0.028 784.34 16.23

TABLE IV: End-to-end performance benchmarks for the private routing protocol in Figure 3 on road networks for different cities. For each
network, the number of iterations R is set to the maximum length of the shortest path between two nodes in the network. The offline computation
refers to the server preparation and garbling of the R circuits for evaluating the neighbor-computation function from Figure 2. The offline
computation time just includes the computational cost and does not include the garbled circuit download time. The online setup measurements
correspond to computation and communication in the “Setup” phase of the protocol in Figure 3. The “Total Online Time” and “Total Online
Bandwidth” columns give the total end-to-end time (including network communication) and total communication between the client and server
in the online phase (navigation component) of the protocol.

14.04 with a 2.3 GHz Intel Core i7 CPU and 16 GB of RAM.
The connection speed on the client is around 50 Mbps. Both
client and server support the AES-NI instruction set, which we
leverage in our implementation.

First, we measure the cost of one round of the private nav-
igation protocol. We assume that the client has already down-
loaded the garbled circuits prior to the start of the protocol.
Table III gives the total computation time and bandwidth per
round of the routing protocol. When measuring the total time,
we measure the end-to-end time on the client, which includes
the time for the network round trips. Table III also gives a
breakdown of the computation in terms of each component of
the protocol: PIR for the arithmetic circuit encodings, OT for
the garbled circuit encodings, and garbled-circuit evaluation
for computing the next-hop.

We also measure the total end-to-end costs for a single
shortest path query. As noted earlier, we set the number of
rounds R for each network to be the maximum length of any
shortest path in the network. Irrespective of the client’s source
or destination, the client and server always engage in exactly R
rounds of the private navigation protocol. Table IV shows the
total computation time and bandwidth required to complete a
shortest-path query in the different networks. In the end-to-end
benchmarks, we also measure the offline costs of the protocol,
that is, the time needed for the server to garble R neighbor-
computation circuits and the amount of communication needed
for the client to download the circuits. In addition, we measure
the computation and bandwidth needed in the online setup
phase of the routing protocol (Figure 3).

In our protocol, the online setup phase of the protocol
consists of three rounds of interaction. First, the server sends
the client the public description of the map. Then the client
OTs for the source and destination keys for the first round of

the protocol, which requires two rounds of communication. As
shown in Table IV, the online setup procedure completes in at
most a second and requires under 30 KB of communication in
our example networks.

Next, we consider the performance of each round of the
protocol. From Table III, the most computationally intensive
component of our protocol is computing the responses to the
PIR queries. In our implementation, we use a Paillier-based
PIR, so the server must perform O(n) modular exponentiations
on each round of the protocol. While it is possible to use a
less computationally-intensive PIR such as [42], the bandwidth
required is much higher in practice. Nonetheless, our results
demonstrate that the performance of our protocol is within the
realm of practicality for real-time navigation in cities like San
Francisco or Washington, D.C.

Lastly, we note that the offline costs are dominated es-
sentially by communication. With hardware support for AES,
garbling 100 neighbor-computation circuits on the server com-
pletes in just a quarter of a second. While garbling is fast, the
size of each garbled circuit is 518.2 KB. For city networks,
we typically require 100-150 circuits for each shortest-path
query; this corresponds to 50-100 MB of offline download
prior to the start of the navigation protocol. The experimental
results, however, indicate that the number of garbled circuits
required for an end-to-end execution grows sublinearly in the
size of the graph. For example, the total number of rounds (and
correspondingly, the number of required garbled circuits) for
a graph with 1800 nodes is just under 100, while for a graph
with almost four times more nodes, the number of rounds only
increases by a factor of 1.7. We also note that each neighbor-
computation circuit consists of just under 50,000 non-XOR
gates. In contrast, generic protocols for private navigation
that construct a garbled circuit for Dijkstra’s algorithm yield

12

circuits that contain hundreds of millions to tens of billions of
non-XOR gates [15], [14], [41].

Finally, we see that despite needing to pad the number of
rounds to a worst-case setting, the total cost of the protocol
remains modest. For the city of Los Angeles, which contains
over 7000 nodes, a shortest-path query still completes in under
15 minutes and requires just over 16 MB of total bandwidth.
Moreover, since the path is revealed edge-by-edge rather than
only at the end of the computation, the overall protocol is an
efficient solution for fully-private navigation.

Comparison to other approaches for private navigation.
Many protocols [20], [37], [62] have been proposed for private
navigation, but most of them rely on heuristics and do not
provide strong security guarantees [20], [37], or guarantee
privacy only for the client’s location, and not the server’s
routing information [62]. A different approach to fully-private
navigation is to leverage generic multiparty computation tech-
niques [63], [26]. For instance, a generic protocol for private
navigation is to construct a garbled circuit for a shortest-path
algorithm and apply Yao’s protocol. This approach is quite
expensive since the entire graph structure must be embedded
in the circuit. For instance, Liu et al. [41] demonstrate that a
garbled circuit for evaluating Dijkstra’s algorithm on a graph
with just 1024 nodes requires over 10 billion AND gates.
The bandwidth needed to transmit a circuit of this magnitude
quickly grows to the order of GB. In contrast, even for a
larger graph with 1800 nodes, the total online and offline
communication required by our protocol is under 60 MB
(and the online communication is under 10 MB). Carter et
al. [15], [14] describe methods for reducing the computational
and communicational cost of Yao’s protocol by introducing
a third (non-colluding) party that facilitates the computation.
Even with this improvement, evaluating a single shortest path
on a graph of 100 nodes still requires over 10 minutes of
computation. As a point of comparison, our protocols complete
in around 2-3 minutes for graphs that are 15-20 times larger.
Evidently, while the generic tools are powerful, they do not
currently yield a practical private navigation protocol. We
survey additional related work and techniques in Section VII.

VI. EXTENSIONS

In this section, we describe several extensions to our proto-
col: supporting navigation between cities, handling updates to
the routing information, and updating the source node during
the protocol execution (for instance, to accommodate detours
and wrong turns).

Navigating between cities. The most direct method for sup-
porting navigation across a multi-city region is to construct
a network that spans the entire region and run the protocol
directly. However, since the server’s computation in the PIR
protocols grows as O(nd log p), where n is the number of
nodes in the graph, d is the number of columns in the
compressed representation, and p is the order of the finite
field used for the affine encodings, this can quickly become
computationally infeasible for the server.

An alternative method that provides a performance-privacy
trade-off is to introduce a series of publicly-known waypoints
for each city. For example, suppose a user is navigating from
somewhere in Los Angeles to somewhere in San Diego. In

this case, the user would first make a private routing request to
learn the fastest route from her current location to a waypoint
in Los Angeles. Once the user arrives at the waypoint in Los
Angeles, she requests the fastest route to a waypoint in San
Diego. This second query is performed entirely in the clear,
so the user reveals to the server that she is traveling from Los
Angeles to San Diego. Once the user arrives at a waypoint in
San Diego, she makes a final private routing request to learn
the fastest route to her destination. In this solution, the server
only obtains a macro-view of the user’s location: it learns only
the user’s source and destination cities, and no information
about the user’s particular location within the city. As we
have demonstrated, the protocol in Figure 3 is able to handle
real-time navigation for a single city; thus, using this method
of waypoints, we can also apply our protocol to navigation
between cities with limited privacy loss.

Live updates to routing information. Routing information
in road networks is dynamic, and is influenced by current
traffic conditions, weather conditions, and other external fac-
tors. Ideally, the edges revealed in an iterative shortest-path
protocol should always correspond to the shortest path to the
destination given the current network conditions. It is fairly
straightforward to allow for updates to the routing information
in our protocol. Specifically, we observe that the compressed
routing matrices A(NE), A(NW), B(NE), B(NW) need not be fixed
for the duration of the protocol. As long as the total number
of columns d, the bound on the bit-length τ of the values in
the matrix products A(NE) ·(B(NE))T and A(NW) ·(B(NW))T , and
the total number of rounds R in the protocol remain fixed, the
server can use a different set of routing matrices on each round
of the protocol. Therefore, we can accommodate live updates
to the routing information during the protocol execution by
simply setting a conservative upper bound on the parameters
d, τ, R. Note that we can always pad a routing matrix with
fewer than d columns to one with exactly d columns by adding
columns where all entries are 0. Since computing the shortest
path information for a city-wide network and compressing the
resulting routing matrices completes in just a few minutes, it is
possible to ensure accurate and up-to-date routing information
in practice.

Updating sources and destinations. Typically, in navigation,
the user might take a detour or a wrong turn. While the
protocol is designed to constrain the client to learn a single
contiguous route through the network, it is possible to provide
a functionality-privacy trade-off to accommodate deviations
from the actual shortest path. One method is to introduce an
additional parameter K, such that after every K iterations of
the protocol, the server chooses fresh source keys for the next
round of the protocol. After every K rounds, the client would
also OT for a new source key. Effectively, we are resetting
the protocol every K rounds and allowing the client to choose
a new source from which to navigate. Correspondingly, we
would need to increase the total number of rounds R in order
to support the potential for detours and wrong turns. Though
we cannot directly bound the number of rounds R, we can use
a conservative estimate. Of course, a dishonest client can now
learn multiple sub-paths to its chosen destination, namely, one
sub-path each time it is allowed to choose a different source.
In a similar manner, we can support updates to the destination.

13

VII. RELATED WORK

Numerous approaches have been proposed for private
shortest path computation [20], [37], [45], [44], [62], [15],
[14], [8], [61], [32], [41]. Early works such as [20], [37]
propose hiding the client’s location by either providing ap-
proximate locations to the server [20] or by having the client
submit dummy sources and destinations with each shortest path
query [37]. However, these approaches only provide limited
privacy for the client’s location. Later works [44], [45], [62]
describe PIR-based solutions for hiding the client’s location.
In [44], [45], the client first privately retrieves subregions of the
graph that are relevant to its query [44], [45] and then locally
computes the shortest path over the subgraph. In [62], the client
privately requests for columns of the next-hop routing matrix
to learn the next hop in the shortest path. While these methods
provide privacy for the client’s location, they do not hide the
server’s routing information.

There is also work on developing secure protocols for other
graph-theoretic problems and under different models [10], [22].
For example, Brickell and Shmatikov [10] consider a model
where two parties hold a graph over a common set of vertices,
and the goal is to compute a function over their joint graphs.
Their protocols do not extend to navigation protocols where
one party holds the full graph, and only the client should learn
the result of the computation. In [22], the authors describe
protocols for parties who each hold a subset of a graph
to privately reconstruct the joint graph. Their methods are
designed for social network analysis and do not directly apply
to private navigation.

Another line of work has focused on developing data-
oblivious algorithms for shortest path computation [8] or
combining shortest path algorithms such as Dijkstra’s with
oblivious data structures or ORAM [61], [32]. In these meth-
ods, the routing data is stored in an ORAM or an oblivious data
structure on the server. The client then executes the shortest-
path algorithm on the server to learn the path between its
source and destination. Since the pattern of memory accesses
is hidden from the server, these approaches provide client
privacy. While these protocols can be efficient in practice, they
do not provide security against a malicious client trying to
learn additional details about the routing information on the
server. Thus, for scenarios where the map data is proprietary
(for instance, in the case of real-time traffic routing), or when
the routing information itself is sensitive (for instance, when
providing navigational assistance for a presidential motorcade
or coordinating troop movements in a military scenario [15],
[14]), the ORAM-based solutions do not provide sufficient
security.

Also relevant are the works in secure multiparty compu-
tation (MPC) [63], [26]. While these methods can be suc-
cessfully used to build private navigation protocols [41], [15],
[14], they do not currently yield a practical private navigation
protocol. A more comprehensive comparison of our protocol
to these generic methods is provided at the end of Section V-C.

There is also a vast literature on graph compression algo-
rithms. For planar graphs, there are multiple methods based
on computing graph separators [40], [6], [7]. Other methods
based on coding schemes [30] have also been proposed and
shown to achieve information-theoretically optimal encoding.

While these algorithms are often viable in practice, it is not
straightforward to represent them compactly as a Boolean or
an arithmetic circuit. Thus, it is unclear how to combine them
with standard cryptographic primitives to construct a private
shortest path protocol.

Finally, there has also been work on developing compact
representations of graphs for answering approximate distance
queries in graphs [60]. These techniques have been suc-
cessfully applied for privacy-preserving approximate distance
computation on graphs [43]. However, these distance-oracle-
based methods only provide an estimate on the length of the
shortest path, and do not give a private navigation protocol.

VIII. CONCLUSION

In this work, we constructed an efficient protocol for
privately computing shortest paths for navigation. First, we
developed a method for compressing the next-hop matrices for
road networks by formulating the compression problem as that
of finding a sign-preserving, low-rank matrix decomposition.
Not only did this method yield a significant compression,
it also enabled an efficient cryptographic protocol for fully
private shortest-path computation in road networks. By com-
bining affine encodings with Yao’s circuits, we obtained a
fully-private navigation protocol efficient enough to run at a
city-scale.

ACKNOWLEDGMENTS

The authors would like to thank Dan Boneh, Roy Frostig,
Hristo Paskov, and Madeleine Udell for many helpful com-
ments and discussions. While conducting this work, authors
David Wu and Joe Zimmerman were supported by NSF Grad-
uate Research Fellowships. This work was further supported by
the DARPA PROCEED research program. Opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of DARPA or NSF.

REFERENCES

[1] J. Angwin and J. Valentino-Devries, “Apple, Google collect user data,”
The Wall Street Journal, 2011.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz, “How to garble arithmetic
circuits,” SIAM J. Comput., vol. 43, no. 2, pp. 905–929, 2014.

[3] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant,
“Numerical python,” Lawrence Livermore National Laboratory, Tech.
Rep., 2001.

[4] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in IEEE Symposium on Security
and Privacy, 2013, pp. 478–492.

[5] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” Cryptology ePrint Archive, Report 2012/265, 2012, http:
//eprint.iacr.org/.

[6] D. K. Blandford, G. E. Blelloch, and I. A. Kash, “Compact
representations of separable graphs,” in SODA, 2003, pp. 679–688.
[Online]. Available: http://dl.acm.org/citation.cfm?id=644108.644219

[7] ——, “An experimental analysis of a compact graph representation,”
in Workshop on Analytic Algorithmics and Combinatorics, 2004, pp.
49–61.

[8] M. Blanton, A. Steele, and M. Aliasgari, “Data-oblivious graph algo-
rithms for secure computation and outsourcing,” in ASIA CCS, 2013,
pp. 207–218.

14

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dl.acm.org/citation.cfm?id=644108.644219

[9] J. Bos, C. Costello, P. Longa, and M. Naehrig, “Specification of curve
selection and supported curve parameters in MSR ECCLib,” Microsoft
Research, Tech. Rep. MSR-TR-2014-92, June 2014.

[10] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms in
the semi-honest model,” in ASIACRYPT, 2005, pp. 236–252.

[11] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM J. Comput., vol. 16, no. 5,
pp. 1190–1208, 1995.

[12] C. Cachin, S. Micali, and M. Stadler, “Computationally private informa-
tion retrieval with polylogarithmic communication,” in EUROCRYPT,
1999, pp. 402–414.

[13] R. Canetti, “Security and composition of cryptographic protocols: a
tutorial (part I),” SIGACT News, vol. 37, no. 3, pp. 67–92, 2006.

[14] H. Carter, C. Lever, and P. Traynor, “Whitewash: outsourcing garbled
circuit generation for mobile devices,” in ACSAC, 2014, pp. 266–275.

[15] H. Carter, B. Mood, P. Traynor, and K. R. B. Butler, “Secure outsourced
garbled circuit evaluation for mobile devices,” in USENIX, 2013, pp.
289–304.

[16] Y. Chang, “Single database private information retrieval with logarith-
mic communication,” in ACISP, 2004, pp. 50–61.

[17] J. Cheng, “How Apple tracks your location without consent, and why
it matters,” Ars Technica, 2011.

[18] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in FOCS, 1995, pp. 41–50.

[19] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[20] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,” in PERVASIVE, 2005, pp. 152–170.

[21] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO, 1986, pp. 186–194.

[22] K. B. Frikken and P. Golle, “Private social network analysis: how to
assemble pieces of a graph privately,” in WPES, 2006, pp. 89–98.

[23] C. Gentry and Z. Ramzan, “Single-database private information retrieval
with constant communication rate,” in ICALP, 2005, pp. 803–815.

[24] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data
privacy in private information retrieval schemes,” J. Comput. Syst. Sci.,
vol. 60, no. 3, pp. 592–629, 2000.

[25] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, 1986.

[26] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in STOC, 1987, pp. 218–229.

[27] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[28] T. Granlund and the GMP development team, GNU MP: The GNU
Multiple Precision Arithmetic Library, 5th ed., 2012, http://gmplib.org/.

[29] C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols - Tech-
niques and Constructions, ser. Information Security and Cryptography.
Springer, 2010.

[30] X. He, M. Kao, and H. Lu, “A fast general methodology for information-
theoretically optimal encodings of graphs,” SIAM J. Comput., vol. 30,
no. 3, pp. 838–846, 2000.

[31] Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank, “On
achieving the “best of both worlds” in secure multiparty computation,”
SIAM J. Comput., vol. 40, no. 1, pp. 122–141, 2011.

[32] M. Keller and P. Scholl, “Efficient, oblivious data structures for MPC,”
in ASIACRYPT, 2014, pp. 506–525.

[33] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled
circuit building blocks and applications to auctions and computing
minima,” Cryptology ePrint Archive, Report 2009/411, 2009, http:
//eprint.iacr.org/.

[34] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP, 2008, pp. 486–498.

[35] H. W. Kuhn and B. Yaw, “The Hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

[36] E. Kushilevitz and R. Ostrovsky, “Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval,” in FOCS,
1997, pp. 364–373.

[37] K. C. K. Lee, W. Lee, H. V. Leong, and B. Zheng, “Navigational
path privacy protection: navigational path privacy protection,” in CIKM,
2009, pp. 691–700.

[38] Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol for
two-party computation,” J. Cryptology, vol. 22, no. 2, pp. 161–188,
2009.

[39] H. Lipmaa, “An oblivious transfer protocol with log-squared commu-
nication,” in ISC, 2005, pp. 314–328.

[40] R. J. Lipton and R. E. Tarjan, “A separator theorem for planar graphs,”
SIAM J. Appl. Math, no. 2, pp. 177–189, 1979.

[41] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
programming framework for secure computation,” in IEEE Symposium
on Security and Privacy, 2015.

[42] C. A. Melchor, J. Barrier, L. Fousse, and M. Killijian, “Xpire:
Private information retrieval for everyone,” IACR Cryptology ePrint
Archive, vol. 2014, p. 1025, 2014. [Online]. Available: http:
//eprint.iacr.org/2014/1025

[43] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “GRECS:
graph encryption for approximate shortest distance queries,” IACR
Cryptology ePrint Archive, vol. 2015, p. 266, 2015. [Online]. Available:
http://eprint.iacr.org/2015/266

[44] K. Mouratidis, “Strong location privacy: A case study on shortest path
queries,” in ICDE, 2013, pp. 136–143.

[45] K. Mouratidis and M. L. Yiu, “Shortest path computation with no
information leakage,” PVLDB, vol. 5, no. 8, pp. 692–703, 2012.

[46] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,”
in STOC, 1999, pp. 245–254.

[47] ——, “Efficient oblivious transfer protocols,” in SODA, 2001, pp. 448–
457.

[48] ——, “Computationally secure oblivious transfer,” J. Cryptology,
vol. 18, no. 1, pp. 1–35, 2005.

[49] OpenStreetMap Contributors, “OpenStreetMap,” http://www.
openstreetmap.org/.

[50] R. Ostrovsky and W. E. S. III, “A survey of single-database private
information retrieval: Techniques and applications,” in Public Key
Cryptography, 2007, pp. 393–411.

[51] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, 1999, pp. 223–238.

[52] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASIACRYPT, 2009, pp. 250–267.

[53] M. O. Rabin, “How to exchange secrets with oblivious transfer,” IACR
Cryptology ePrint Archive, vol. 2005, p. 187, 2005.

[54] L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are
loss functions all the same?” Neural Computation, vol. 16, no. 5, pp.
1063–107, 2004.

[55] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in CRYPTO, 1989, pp. 239–252.

[56] V. Shoup, “NTL: A library for doing number theory,” http://www.shoup.
net/ntl/.

[57] C. Stachniss, “C implementation of the Hungarian method,” http:
//www2.informatik.uni-freiburg.de/∼stachnis/misc.html, 2004.

[58] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in CCS, 2013, pp. 299–310.

[59] The OpenSSL Project, “OpenSSL: The open source toolkit for
SSL/TLS,” April 2003, www.openssl.org.

[60] M. Thorup and U. Zwick, “Approximate distance oracles,” in STOC,
2001, pp. 183–192. [Online]. Available: http://doi.acm.org/10.1145/
380752.380798

[61] X. S. Wang, K. Nayak, C. Liu, T. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in CCS, 2014, pp. 215–226.

[62] Y. Xi, L. Schwiebert, and W. Shi, “Privacy preserving shortest path
routing with an application to navigation,” Pervasive and Mobile
Computing, vol. 13, pp. 142–149, 2014.

[63] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in FOCS, 1986, pp. 162–167.

[64] T. Zhang, “Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms,” in ICML, 2004.

15

http://gmplib.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/1025
http://eprint.iacr.org/2014/1025
http://eprint.iacr.org/2015/266
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://www2.informatik.uni-freiburg.de/~stachnis/misc.html
http://www2.informatik.uni-freiburg.de/~stachnis/misc.html
www.openssl.org
http://doi.acm.org/10.1145/380752.380798
http://doi.acm.org/10.1145/380752.380798

	Introduction
	Preliminaries and Threat Model
	Graph Processing
	Private Navigation Protocol
	Protocol Design Overview
	Semi-honest Secure Construction
	Enforcing Consistency for Stronger Security

	Security Model
	Security Theorems

	Experiments
	Protocol Implementation
	Preprocessing and Map Compression.
	Experiments

	Extensions
	Related Work
	Conclusion
	References

