
PGRIP: PNNI Global Routing Infrastructure Protection�

Sabrina De Capitani di Vimercati Patrick Lincoln Livio Ricciulli Pierangela Samaratiy

Dipartimento di Scienze dell'Informazione Computer Science Laboratory

Universit�a di Milano SRI International

20135 Milano, Italy Menlo Park, CA 94025, USA

decapita@dsi.unimi.it flincoln,livio,samaratig@csl.sri.com

Abstract

We describe a system for achieving PNNI (Private
Network-Network Interface) Global Routing Infrastruc-
ture Protection (PGRIP). We give details of PGRIP's
system-level design and identify some conditions to rig-
orously guarantee the distributed fault tolerant detection
of anomalies. PGRIP detects integrity compromises of
PNNI routing by enforcing rules that characterize topol-
ogy information updates that are anomalous (or uncom-
mon) with respect to the network status, past events oc-
curred, or statistical measures. Rules are expressed in
a
exible and expressive, yet simple, language using a
tree structure to organize and reference topology infor-
mation maintained at each node. We introduce a pow-
erful notation to identify data objects contained in the
PNNI topology database and statistical operators to ex-
amine the history of topology database updates accumu-
lated during PNNI operation. Using the given notation,
we give heuristical rules to illustrate how some anoma-
lous database operations can be detected.

1 Introduction

Global routing networks require novel security mecha-
nisms to protect control information spanning multiple
untrusted administrative domains. Proper protection
of the global data structures necessary for the opera-
tion of large distributed networks is necessary because
(1) compromises of the topology information can have
catastrophic e�ects for the operation of the network,
thus being a good target for denial-of-service attacks
and (2) user-level security mechanisms can be made less
e�ective by compromising the underlying data transport
layers (for example, by preempting the updates of the

�This work has been supported by Sprint Contract No.
CK5005116JMD and National Science Foundation under grant
ECS-94-22688.

yOn leave from Universit�a di Milano.

cryptographic keys, one could force a user to use less
secure, expired keys).

Several designs based on cryptography have been pro-
posed to secure routing infrastructures (see, for exam-
ple, [4, 14, 17, 18, 20]). These designs typically rely on a
key management infrastructure that must be as large as
the routing network itself and that is resilient to faults.
The key management problem has not been completely
solved even for relatively small networks. Therefore,
performing secure and fault tolerant key management
for global networks can be considered a substantial ob-
stacle. Another shortcoming of cryptographically se-
cure routing protection designs is that they focus on
protection against malicious faults, and do not directly
address spontaneous accidental failures. In fact, most
designs have no direct handling of nonmalicious faults,
and leave these simpler fault tolerance issues to other
network protocols. These limitations result in possible
con
icts between the built-in mechanisms that recon-
�gure the system upon failure and the security mech-
anisms that overlay the routing protocols. For these
reasons, other methods of achieving global network in-
tegrity are required. Our design overcomes the above-
mentioned limitations by protecting the routing infras-
tructure against both malicious and nonmalicious faults
in a uni�ed manner by replicating network resources and
using Byzantine fault tolerant protocols to identify fail-
ures.

Another limitation of cryptographic protection come
from the fact that it is preventive: the router nodes
(nodes or routers, for short) protect the integrity of the
system by preventing unauthorized modi�cation of the
state through encryption. This approach, if correctly
implemented, o�ers very strong guarantees that no in-
tegrity is lost because of malicious activities. This guar-
antee, however, may come at a very high price in perfor-
mance for having to continuously encrypt and decrypt a
large amount of redundant topology information.1 Our

1In most cases, to protect against reply attacks, identical infor-
mation needs to be made unique through the use of time-stamps.

1 of 15

approach is reactive: we leave the routing protocols
in the clear, thus releasing the burden of encryption,
and replicate enough resources to guarantee that, if an
anomaly can be detected by a heuristical rule present
in the system, it will be detected shortly after it hap-
pens. In our reactive approach, once an anomaly is
detected and correctly diagnosed, prede�ned protocols
(perhaps cryptographically secure) intervene in resolv-
ing the anomaly. The advantage of a reactive approach
is that it treats the common case more eÆciently (i.e.,
in the absence of anomalies the topology information
propagates un encrypted), and introduces policing ac-
tions only in the rare cases when they are needed.2

By replicating both processing and communication
resources according to rigorous and well-understood
rules derived from fault tolerant distributed system the-
ory [9], PGRIP is able to detect and, in some cases,
tolerate large classes of fault or attack scenarios, ei-
ther intentionally or unintentionally provoked, relying
on cryptography only when absolutely necessary. Ide-
ally, every router could be equipped with PGRIP so
that all nodes could independently perform detection
and resolution of anomalies. This requirement, how-
ever, may be too strong. We will show how detection,
evaluation, and anomaly resolution can be correctly per-
formed even by assuming the enforcement of our con-
trol (i.e., the implementation of PGRIP) in a relatively
small subset of the nodes. Each PGRIP node evaluates
changes to the local database and executes appropriate
actions when anomalous operations on the database are
observed. PGRIP's monitoring does not require inter-
action with the routing protocols but only monitors the
resulting operations, and therefore could be thought of
as residing in the network management layer.

PGRIP's design merges ideas from intrusion de-
tection, network management, fault tolerance, and
database security to result in a distributed fault toler-
ant system that maps extremely well to modern routing
systems [5, 11], and does not require modi�cations to
the routing protocol standards. In addition, because
PGRIP does not directly interact with the underlying
protocols, it could be coupled in an orthogonal way with
other more conventional protection measures based on
encryption, thus independently providing additional se-
curity. We detail our design and we show how it can be
naturally integrated into the Private Network-Network
Interface (PNNI) ATM routing infrastructure without
requiring modi�cations to the standard and without re-
quiring the maintenance of any additional topology in-

2This argument assumes a routing system to be stable and
therefore not to exhibit a large number of anomalies. We do
not consider unstable routing systems because they would not be
viable and would not be worth protecting.

formation. Although PGRIP's system-level architecture
in the context of PNNI is intimately tied to this particu-
lar routing standard, we believe that some of these core
ideas could be reused to achieve integrity protection for
other kinds of similar routing systems.

The remainder of the paper is organized as follows.
Section 2 gives a brief overview of the PNNI standard.
Sections 3 and 4 describe the PGRIP system-level and
node-level architectures. Sections 5 through 8 describe
the di�erent components of the PGRIP system with
particular emphasis on the language and the knowledge
representation. Section 9 discusses previous work. Fi-
nally, in Section 10 we give our concluding remarks.

2 PNNI overview

We outline the main concepts of the PNNI standard [5],
focusing on the network topology information, main-
tained at each node, whose protection is the goal of our
work.

2.1 Basic concepts

The Private Network-Network Interface (PNNI) is
based on the link-state routing technique [5]. To re-
duce the amount of network connectivity information
that each node must store and maintain and for eÆcient
routing, the PNNI protocol uses a hierarchical organiza-
tion. Nodes are organized into peer groups, each having
a unique peer group identi�er (PGID). Each group has
a leader (PGL) that abstracts and represents the group
at the next higher level of the hierarchy. This organiza-
tion is recursive and at each higher level of the hierarchy,
PGLs are organized into peer groups in which leaders
are de�ned and abstracted again at a subsequent higher
level. The leader representing a peer group at the next
level of the hierarchy is elected by the nodes of the peer
group in a priority-based election process (the node with
the highest leadership priority in a peer group becomes
the PGL). Figure 1 illustrates an example of PNNI hier-
archy. The exempli�ed network is composed, at the low-
est level, of eight nodes organized into three peer groups,
PG(A:1:1), PG(A:1:2), and PG(A:2), which are repre-
sented, at the subsequent level, by nodes A:1:1, A:1:2,
and A:2, respectively. The protocol distinguishes dif-
ferent types of links connecting nodes: horizontal links ,
which connect nodes within the same peer group; out-
side links , which connect nodes (called border nodes)
belonging to di�erent peer groups; and uplinks , which
are derived links that connect a border node to a node
representing a peer group to which the node is con-

2 of 15

Border node
Peer Group Leader (PGL)

Outside link

A.1.1

PG(A.1)

PG(A)

A.2A.1

A.2.1 A.2.3

A.2.2

A.1.2.2A.1.2.1
A.1.1.1

A.1.1.2

PG(A.1.1) PG(A.1.2) PG(A.2)

A.1.2

A.1.1.3

Legend
Horizontal link

Uplink

Figure 1: PNNI network example

nected. With respect to routing, user data transmission
between end systems belonging to di�erent peer groups
is logically routed through higher-level logical nodes.

2.2 Network topology databases

To determine routing paths of packets to be transmit-
ted, each node must maintain some information regard-
ing the nodes in the network and their connectivity.
The hierarchical organization of the network and the
corresponding routing protocol do not require nodes to
maintain information on every other node, but only on
a subset of them. In particular, each node maintains a
topology database containing information regarding the
node itself, all the nodes belonging to its peer group,
and all ancestor nodes. For instance, with reference to
Figure 1, A:1:1:1 will maintain information on nodes
A:1:1:1, A:1:1:2, A:1:1:3, A:1:1, A:1:2, A:1, and A:2.
Information maintained for each node is organized into
information groups (IGs) as follows.

� Nodal Information (NI) describes the state of a
node. It includes address, priority information, and
administrative
ags regulating the participation of
the nodes in routing and election protocols.

� Nodal State Parameter (NSP) provides information
on properties of the node. It is used when the node
represents its peer group at the next higher level of
the hierarchy. It includes all metrics and attributes
for the given input-output port pair.

� Horizontal Link (HL) contains information on the
connections between nodes. For each link, it in-

cludes node ID and port ID of the nodes it connects,
and all metrics and attributes associated with the
link.

� Uplink (UPL) contains information on the uplinks.
For each uplink, it includes node ID and port ID
of the border node, and all metrics and attributes
associated with both directions of the link.

� Internal and External Reachable ATM Address
(IRA and ERA) contain information on the end
systems directly reachable from the node.

Metrics and attributes in the information groups de-
scribed above are also organized into (sub)information
groups, called Resource Availability Information Groups
(RAIGs). Examples of metrics are the administrative
weights to be used in routing decisions and the data
transmission delay. Examples of attributes are the max-
imum and available data transmission.

The information groups stored at a node re
ect the
node's view of the network. Modi�cations to the net-
work structure are communicated by transmission of
collections of IGs, called PNNI Topology State Elements
(PTSEs), grouping together information groups of the
same type. A node's topology database consists of a
collection of all PTSEs received. If a node has all the
PTSEs for all nodes in its peer group, it has the com-
plete topology and can compute routes to any address
in that peer group. PTSEs are transmitted to nodes
by means of the
ooding and database synchronization
protocols. The
ooding protocol is a reliable transmis-
sion protocol by which packets (PTSEs) are transmitted

3 of 15

between nodes. The database synchronization protocol
uses
ooding to eÆciently exchange topology informa-
tion between directly connected nodes in the same peer
group. In addition to manual administrative changes,
information stored at each node can be modi�ed by
other PNNI protocols: the hello protocol, by which
nodes establish and control connectivity, and the PGL
election protocol, by which nodes of the same peer group
establish their leader.

3 PGRIP system-level architec-

ture

Necessary and suÆcient conditions must be satis�ed in
the design of PGRIP's system-level architecture in or-
der to provide correct identi�cation and resolution of
anomalies. We only require that a subset of the nodes,
called Peer Group Core Group (PGCG), in each PNNI
peer group be equipped with PGRIP. The PGCG nodes
must include the PGL and must meet speci�c connec-
tivity requirements.

We will now both motivate and characterize the con-
ditions under which PGRIP must operate with regard
to the peer groups' topology, the amount of replication
of PGRIP's resources, and the location of PGRIP nodes
within peer groups. All these conditions are assumed to
be recursively applied at all levels of the hierarchy.

3.1 Peer Group Topology

Nodes belonging to the same peer group share common
views of the state of the network (link states and reach-
ability information) by periodically
ooding the peer
group with messages that synchronize their topology
databases. The
ooding protocol is such that a node
receiving a packet that changes any information in its
own topology database automatically relays the change
to all the other nodes directly connected to it (minus the
node from which the change was received or nodes resid-
ing in other peer groups). PGRIP's anomaly detection
and diagnosis requirements map very naturally to this
mechanism and can fully exploit this inherent feature.
The only requirement for PGRIP's proper operation is
to keep the peer group fully connected at all times, so
that messages
ooding a peer group reach every node
in the group, even during multiple failures.

We assume Byzantine faults (faults can be arbitrarily
bad), and therefore we must assume that faulty nodes
may be able to drop, modify, or forge malicious pack-
ets that travel throughout a peer group. In particular,

because of our Byzantine assumption, there is no guar-
antee that legitimate messages traversing a peer group
can reach every node in the peer group. To provide this
guarantee, and to prevent m faulty nodes from parti-
tioning the peer group, we formulate the �rst condition
under which PGRIP must operate.

Condition 1 Given a maximum of m simultaneous
faulty routers, peer groups must be (m + 1)-connected,
that is, any two routers in any peer group must have
at least m+1 distinct paths, to communicate with each
other, that do not traverse any other node twice.

This condition, analogous to the one proposed by
Perlman [14], guarantees that, even if them faults block
m routes, there exists at least one other route through
which legitimate message transmissions can take place.
Notice that the (m + 1)-connected requirement only
imposes a precise and rigorous amount of redundancy
in the communication links, which can be easily intro-
duced at the planning stage of the network topology.
The network illustrated in Figure 2, where nodes are 2-
connected, satis�es this condition for m = 1 at all levels
of the hierarchy.

3.2 Byzantine Agreement

By judiciously picking a subset of the nodes (PGCG) to
independently carry out fault detection tasks, one can
tolerate a failure in any nodes in the system, includ-
ing one or more of the nodes performing the diagnosis.
The theoretical results arising from the formulation of
Byzantine agreement algorithms (�rst appearing in [9]
and later re�ned in [19]) can be applied to provide neces-
sary and suÆcient conditions for determining how many
PGCG nodes must be employed in each peer group.

Condition 2 In order to tolerate the correct diagnosis
of m arbitrary (including Byzantine) faults, there must
exist at least 3m+1 routers, in the system, which inde-
pendently perform the diagnosis.

By employing at least 3m+1 nodes of the peer group
in performing the diagnostic functions, we ensure that
the nodes will reach a consensus on the diagnosis3 even
if m or fewer PGCG nodes conspire in an attempt to
confuse the diagnosis.

Securing the fault detection system through crypto-
graphic means by using techniques like the ones in [15]

3Note that it is also possible to reach a consensus on the im-
possibility of a correct diagnosis.

4 of 15

..............

PG(B.2)

B.1.3

Level 3

Level 2

Level 1

PG(B.2.1)

Legend
Peer Group Leader (PGL)

Peer Group Core Group (PGCG)

B.1.1.2
PG(B.1.1) PG(B.1.2)

PG(B.1)

B.1.4

B.1.2

B.1 B.2

B.1.1

B.1.2.3

B.1.2.2
B.1.2.1

B.1.1.1

B.2.1

B.2.1.1

PG(B)

..............

.......

..............

Figure 2: An example of PNNI network equipped with PGRIP

would require a key management hierarchy and non-
portable cryptographic algorithms. Instead, link state
routing protocols like PNNI provide quality of service
guarantees that can be exploited in the fault detection
process to achieving Byzantine agreement with standard
algorithms without requiring cryptographic authentica-
tion. To achieve this, PGCG nodes must have addi-
tional redundancy in the connectivity among them. In
fact, another well-known result from [9] translates to
the following:

Condition 3 If the 3m+1 PGCG nodes are connected
through point-to-point connections (as in a PNNI net-
work), the topology of the 3m+1 nodes must be at least
3m-connected.

This condition prevents malicious PGCG nodes from
a�ecting the consensus by intercepting and changing
messages while the nodes perform the diagnosis agree-
ment algorithm. The topology illustrated in Figure 2 is
tolerant to one fault (m = 1) and satis�es both Condi-
tion 2 and Condition 3. At any level of the hierarchy,
four completely connected PGCG nodes are responsible
for reaching a consensus on fault diagnosis.

3.3 Partitioning Requirements

In Section 7.3 we discuss a situation in which the PGCG
nodes must actively partition a peer group in order to
prevent malicious nodes from becoming peer group lead-
ers. In another instance, PGCG nodes (as discussed in
Section 8.2) may agree to preempt a particular node

that exhibits faulty behavior. In this case also, the
PGCG routes must be able to block malicious messages
so that they do not interfere with the preemption pro-
cess.

Given these requirements, Condition 4 ensures that
the nonfaulty PGCG nodes can block unauthorized mes-
sages and therefore can partition a peer group in such a
way that no one partition contains more than one-third
of the nodes in the group.

Condition 4 All possible combinations of 3m PGCG
nodes out of the 3m + 1 can partition the peer group's
topology in subgraphs such that any subgraph contains
less than one-third of the total nodes in the group.

With reference to Figure 2, Condition 4 is trivially
satis�ed by having a large proportion of PGCG nodes.

4 PGRIP node-level architecture

PGRIP's anomaly detection and processing system is
installed on the PGCG nodes. As shown in Figure 3,
PGRIP's node-level architecture is composed of four
modules:

� The Anomaly Detection module monitors all
changes to the Topology Database to determine
suspicious or anomalous modi�cations. Based on
anomaly detection rules , which may be customized
at each node, the Anomaly Detection module

5 of 15

Fault Tolerant DiagnosisAlarm Propagation

Resolver

Anomaly Detection
module module module

module

PGRIP

Routing Protocols

Database
Topology

PNNI

PNNI

Figure 3: PGRIP architecture

can generate alarms that characterize anomalous
changes to the database.

� The Alarm Propagation module receives alarms,
generated by the anomaly detection rule evalua-
tion, from either the local node or remote nodes.
It can further propagate the alarm to other remote
nodes or to its local Fault Tolerant Diagnosis mod-
ule.

� The Fault Tolerant Diagnosis module uses inter-
active consistency agreement protocols of the kind
proposed in [9, 19] to reach consensus on the actions
to take. The most basic form of action is to simply
log a diagnosis for further review by an operator.
Other possible actions are to further propagate the
alarm through the Alarm Propagation module or
to feed the diagnosis to the Resolver module.

� The Resolver module logs results coming from the
diagnosis module and in some extreme cases initi-
ates a specialized protocol to remedy the diagnosed
fault.

We are currently �nalizing the detailed design and
speci�cation of the Anomaly Detection module and are
planning to perform detailed analysis of its computa-
tional requirements. We are also planning the devel-
opment of a prototype to be used in the �eld to log
anomalous topology updates for review by an operator.
We believe that this functionality alone could be very
useful in a production environment to spot and resolve
inconsistencies in the system con�guration that could
lead to integrity violations. The key technology for the
prototyping and �nal realization of the Anomaly Detec-
tion module is available today [3] and could be relatively
easily ported to PGRIP. The Alarm Propagation mod-
ule should be relatively easily implemented, given its
simplicity. An e�ective Fault Tolerant Diagnosis mod-
ule to analyze the anomaly reports can be realized only
with substantial additional research and development.
By automatically correlating and summarizing relevant

information in a distributed and fault tolerant man-
ner, PGRIP will greatly amplify the e�ectiveness of the
Anomaly Detection module. We plan to adopt tech-
nologies, such as the one described in [8], to provide
a starting point for this module. The Resolver mod-
ule will be developed as the last stage to automate the
diagnostic system response mechanisms. This module
requires the formulation of a set of specialized protocols
(see Section 8) designed to remedy speci�c faults. The
realization of the Resolver module, therefore, requires
a limited degree of standardization. The main motiva-
tion for providing automatic response services through
the Resolver module is to greatly reduce the response
time for remedying integrity compromises.

In the remainder of this paper we describe each of the
four main components of PGRIP's node architecture
and show how their design can be integrated into the
existing PNNI standard. In particular, we concentrate
on the Anomaly Detection module that, for the moment,
is our main focus.

5 Anomaly Detection module

The Anomaly Detection module monitors all changes to
the topology database stored at a node to detect possi-
ble anomalous updates. The evaluation is based on rules
characterizing modi�cations that may result as anoma-
lous with respect to the current network status, events
occurred, or statistical measures, and that could com-
promise the integrity of the topology information. In
addition to supervising the consistency of the database
state, this module exploits statistical knowledge accu-
mulated during the operation of the nodes to detect
database operations that are unexpected. An anomaly
detection rule describes when a database modi�cation is
to be considered suspicious. The speci�cation and eval-
uation of anomaly detection rules require a means of
addressing topology information stored at a node, char-
acterizing operations, and expressing anomalies. Their

6 of 15

flagsflags flags

port, portport, portport, port

flagsflags flags

flagsflags flags

flags

Nodal State Parameters subtreeExternal Reachable Address subtree

Internal Reachable Address subtreeNodal Information subtree

Topology Database Tree

.....

length prefix

n1

.....

.....

addlength addcount

.....

.....

.....

..........
port, scope port, scope port, scope

port portport
.....

..........

.....
aggtoken

prefix

.....

prefixes

length prefix length

1 n

.....

.....
port, scope port, scope port, scope

addlength addcount

prioritytransitaddress leader branch

.....

Horizontal Link subtree

.....

.....

.....

..........

.....

Node

..........

ni ira hl upl era nsp

ni hl

Uplink subtree

seqnum

port portport.....

.....

.....

.....

flags flags

.....

upl

ira

era

nexthighinfo

lgnadd lgnid pglid

reportid renodeid raig

nsp

raig
aggtoken

raig

raig ulia

nodeid nodeid nodeid

vpcapac vcmerg vpcapac vcmerg

aw maxcr

vcmergvpcapac

aw maxcr

.....

aw maxcr

maxcraw

addupnode

prefpgl election represen

pgidparpgid

commpgvpcapac vcmerg upnodeid
vpcapac vcmerg prefixes

prefixlength

Figure 4: Graphical representation of the PNNI topology database

treatment is the focus of the remainder of this section.

5.1 Topology information representa-
tion

An important issue we faced in the design of the
Anomaly Detection module was the choice of a represen-
tation for the topology information stored in a topology
database. As illustrated in Section 2, topology infor-
mation is received and stored by means of PTSEs col-
lecting information groups, referred to a given node, of
the same type. For instance, some PTSEs will contain
Nodal State Parameter information groups, other PT-
SEs will contain Horizontal Link information groups,
and so on. Information describing a node's local topol-
ogy may therefore be dispersed in di�erent PTSEs. We
provide an abstraction of the topology database that
collects IGs referring to the same node. Intuitively,
each information group is a record. However, the struc-

ture is not as regular. Some �elds are optional (e.g.,
the outgoing and/or incoming RAIG within the Inter-
nal Reachable ATM Address IG); other �elds appear
several times (e.g., in the Horizontal Link IG, the outgo-
ing RAIG is repeated for each service category). More-
over, as PNNI is still under standardization, new infor-
mation groups might be added. To provide for future
extensibility, it is important that the chosen represen-
tation is simple enough, and yet
exible and powerful
enough, to describe topology information without mod-
ifying the database structure. Thus, by borrowing some
ideas from graph rewriting theory [3] and, more recently,
semistructured data management [1, 2, 13], we abstract
the topology information maintained at each node by
viewing it as a tree, called the topology database tree.

A topology database tree has labeled vertices. The
label of a vertex is either the name of a property in
an information group or a base value (such as a node
identi�er, or a port identi�er) of a property. The parent-
child relationship of the tree re
ects the structural or-

7 of 15

ganization of the information. Figure 4 illustrates the
structure of the topology database tree. For readability,
the subtrees corresponding to the di�erent information
groups are represented separately. Italic labels denote
vertices that correspond to base values. For simplicity,
leaf vertices containing the values of an IG's �elds are
not reported. The root of the tree, named \Node", has
one child for each router for which information is stored,
where each router is identi�ed by the corresponding
router identi�er. For instance, with reference to Fig-
ure 1, the tree at node A:1:1:1 will have seven children,
namely, A:1:1:1, A:1:1:2, A:1:1:3, A:1:1, A:1:2, A:1, and
A:2. Each vertex corresponding to a router has six chil-
dren, one for each information group referred to it. Each
vertex corresponding to an information group, in turn,
has children and descendants representing the topology
information it contains. Vertices with base values are
needed to univocally identify entities (such as nodes or
links) to which information is referred. In particular,
as is visible from Figure 4, Nodal State Parameter IGs
are identi�ed by the pair hinput port, output porti; In-
ternal and External Reachable ATM Address IGs are
identi�ed by the pair hport,scope4i; Horizontal Link IGs
and Uplink IGs are identi�ed by their ports; Resource
Availability IGs are identi�ed by the
ags indicating the
service categories to which the metrics and attributes
apply.

Given the tree organization of the topology informa-
tion, every piece of data maintained at a router can be
referenced by means of the corresponding path expres-
sion. A path expression is a dot-separated sequence of
labels of the form Node.label1.label2 : : :labeln represent-
ing the path from the root to vertex labeln. To avoid
confusion between dots separating the di�erent elements
of a node identi�er and dots separating di�erent labels
in a path expression, we report node's identi�er be-
tween parenthesis. For instance, with reference to Fig-
ure 1, the path expression \Node.(A.1.1.2).ni.priority"
denotes the �eld priority within the A:1:1:2's Nodal In-
formation IG.

By adopting ideas taken from graph rewriting the-
ory [3], we allow path expressions to contain vari-
ables representing generic vertex labels, thus greatly in-
creasing the expressive power of path expressions. In
the following, we use uppercase single letters to de-
note variables. Variables provide a powerful mechanism
for representing information in the topology database
that matches to di�erent values, possibly bounded by
some conditions. For instance, the path expression
\Node.X.hl.Y" denotes the set of all horizontal links of
every node X in the topology database. The expression

4The scope de�nes the highest level of the hierarchy at which
the address will be visible.

\Node.X.ni.priority.Z, X=A.1.2.1" denotes the priority
Z of node A:1:2:1.

5.2 Update operations and recording

Another important issue we addressed in the design of
our system was the identi�cation and characterization
of updates to topology information. Consideration of
modi�cations at the level of protocol (e.g., database syn-
chronization) or at the level of whole PTSEs, however,
does not seem to be suÆcient to enforce meaningful
controls. Although update operations are at such large
granularity, we consider information at a �ner, more se-
mantically meaningful, granularity level. In particular,
we consider topology information changes (additions,
updates, or deletions) referred to speci�c information
groups. With respect to the interface with PNNI opera-
tion, reception of a given PTSE will therefore be consid-
ered as the execution of a set of operations (one for each
information group contained in the PTSE). The opera-
tion are Add if the information group is not presented,
Upd (for update) if the information group already exists
and therefore is replaced, and Del (for delete) if the in-
formation group is deleted. It is important to note that
the update to an information group may actually change
only some of the properties within it. For instance, only
the weight associated with a link might have changed.
In accordance with the PNNI approach, we do not con-
sider operations as executed at such �ne level of gran-
ularity (i.e., update of a property) but we consider the
operations at the level of the whole information group.
We illustrate in Section 5.4 how our language allows the
evaluation the speci�c changes entailed within the up-
date of an information group. In the remainder of this
paper we often refer to the occurrence of an operation
on an information group as an event . Events are char-
acterized as op(path exp) describing the execution of an
operation op on an object path exp.

To allow the evaluation of anomaly conditions based
on previous operations executed, or on the previous sta-
tus of the network, each node records all operations
executed. Operations are recorded as triples of the
form htime, IG before image, IG after imagei, denot-
ing the snapshot of the information group on which
the operation is executed before and after the opera-
tion and the time at which the operation occurred. The
IG before image (IG after image resp.) is null in case
of an insert (delete resp.) operation. To avoid the his-
tory log to grow inde�nitely, pruning operations can be
executed removing records that do not need to be con-
sidered further.

8 of 15

5.3 Basic operators of the language

Our language provides some basic operators that al-
low us to refer to summaries, aggregates, and statistical
measures derived from the recorded history. Operators
fall into three classes of measures.

� Count measures count the number of occurrences
of events. They include the following operator.

{ count(result,event,time int) returns the
number result of events event executed over
the time interval time int .

� Time measures keep track of the time interval be-
tween two distinct, successive operations. They in-
clude the following operators.

{ avgtime(result,path exp,time int) returns the
average time interval result between any two
requests on object path exp over the time in-
terval time int .

{ timeint(result,event1,event2,time int)
returns the time interval result between the
last two events event1 and event2 occurring
within time interval time int .

� Aggregation measures combine a set of past opera-
tions into useful abstractions to be used to decide
whether the e�ect of a given change operation ap-
pears consistent with historical observations.

{ freq(result,event,time int) returns the fre-
quency with which a given event has occurred
over a given period of time time int (e.g.,
number of updates originated by a node per
unit time in the last hour).

{ avgval(result,path exp,time int) returns the
average value result of the metric/attribute
denoted by path exp over the time interval
time int (e.g., the average value of the avail-
able cell rate on a horizontal link).

{ max(result,path exp,time int) returns the
maximum value result assigned to the met-
ric/attribute denoted by path exp over the
time interval time int (e.g., the maximum
value of the available cell rate on a horizon-
tal link).

{ min(result,path exp,time int) returns the
minimum value result assigned to the met-
ric/attribute denoted by path exp over the
time interval time int (e.g., the minimum
value of the available cell rate on a horizon-
tal link).

5.4 Anomaly detection rules

The syntax of the language to express rules is reported
in Figure 5. Each rule is composed of the following four
�elds.

� Operation: a description of the operation on the
topology database tree. This �eld is composed of
an event and an optional path expressions. Path
expressions refer to the database topology tree that
would result after the operation is executed. These
expressions, therefore, allow the anomaly detection
rules to evaluate the e�ect of the operation on the
database.

� state: a description of the state of the local
PNNI database before the operation is executed.
This �eld may contain statistical measures on past
events and path expressions referring to the topol-
ogy database tree before the execution of the oper-
ation.

� condition: a logical expression of conditions on the
variables bounded in both the operation and the
state �elds. It always evaluates to either True or
False.

� alarm: a unique identi�er for a type of anomaly to
be raised whenever the condition evaluates to True.

Intuitively, the rule semantics reads as follows. Upon
the request to execute the operation, evaluate the ex-
pressions in state and, if there exists an instantiation
of variables such that the condition evaluates to True,
then raise the alarm. Figure 6 reports some exam-
ples of rules, where, for space reasons the alarm �eld is
not speci�ed. Anomalous situations controlled by those
rules can be classi�ed as follows.

Suspicious modi�cations Some database entries
should be modi�ed very seldom and their modi-
�cation may be considered anomalous and require
further investigation. For instance, the leadership
priority of a node is expected to change rarely if not
accompanied by a corresponding change of the lead-
ership status (leader to non-leader or vice versa).
This situation can be controlled by Rule 1. An-
other example of relatively static information is
the weight associated with a link, which a�ects the
PNNI routing decisions. Rule 2 raises an alarm
whenever the weight associated with a link is mod-
i�ed.

Monitoring of the status of the network Other
anomalies may correspond to improbable (sequence

9 of 15

hrule de�nitioni ::= hoperationi hstatei hconditioni halarmi
hoperationi ::= operation: heventi [,hpath exp listi]
heventi ::= Add(hpath expi) j Upd(hpath expi) j Del(hpath expi)
hstatei ::= state: hcomplex statei
hcomplex statei ::= hsimple statei j hsimple statei,hcomplex statei
hsimple statei ::= hpath expi j count(hvariablei,heventi,htime inti) j avgtime(hvariablei,hpath expi,htime inti) j

timeint(hvariablei,heventi,heventi,htime inti) j avgval(hvariablei,hpath expi,htime inti) j
min(hvariablei,hpath expi,htime inti) j max(hvariablei,hpath expi,htime inti)j
freq(hvariablei,heventi,htime inti)

hconditioni ::= condition: hcomplex condi
hcomplex condi ::= hsimplex condi j hcomplex condi hbool opi hcomplex condi
hsimplex condi ::= hvariablei hcomp opi hvariablei j hvariablei heq opi hvariablei
halarmi ::= hstringi
hpath exp listi ::= hpath expi j hpath expi,hpath exp listi
hpath expi ::= hlabeli j hlabeli.hpath expi
hbool opi ::= ^ j _
hcomp opi ::= > j < j � j �
heq opi ::= = j 6=

htime inti ::= [hvariableijhnumberi,hvariableijhnumberi]
hvariablei ::= hstringi
hlabeli ::= hstringi j hnumberi

Figure 5: Syntax of the language to express rules

of) updates. Anomalous situations can be, for in-
stance, a sharp increase or decrease in the band-
width associated with a link; a node or link that
goes up and down frequently; or a short inter-
val between two requests originated by the same
node (note that PNNI requires a minimum time
between two requests from the same node). Exam-
ples of rules controlling these anomalies are Rules 3
through 7. Rule 3 raises an alarm whenever the
available cell rate of a RAIG di�ers considerably
from the mean values of the rates observed until
now. Rule 4 raises an alarm whenever the time be-
tween two update requests from the same node is
smaller than a speci�ed threshold. Rules 5 and 6
raise an alarm whenever there are two requests (Add
and Del, or vice versa) for the same link within an
interval of time smaller than a speci�ed threshold.
Rule 7 raises an alarm whenever there is disagree-
ment about the identities of the nodes at each end
of a link.

Consistency of the topology database Rules can
also be used to verify the consistency of the infor-
mation stored in a topology database. For instance,
the maximum cell rate (maxCR) of a node must
always be greater than or equal to the correspond-
ing available cell rate AvCR; maxCR must also be
smaller than or equal to the AvCR associated with
the input/output ports of the link; maxCR asso-
ciated with input and output ports with the same
link should be equal. Rules 8, 9, and 10 can be
used to control satisfaction of these conditions.

6 Alarm Propagation module

As a result of applying anomaly detection heuristics,
nodes can generate alarms that are propagated through-
out the PNNI routing infrastructure. The PNNI ar-
chitecture is hierarchical. The nodes are arranged in
groups that share common views of the state of the net-
work (link states and reachability information) by con-
stantly
ooding the peer group with messages (called
PNNI Topology State Packets-PTSPs) that synchronize
the di�erent nodes' databases. In addition, PGL nodes
aggregate and summarize local information and make it
available to higher-level peer groups, thus implementing
the PNNI hierarchy.

PGRIP's alarm propagation requirements map very
naturally to the PNNI data
ow organization and can
fully exploit it. After the distributed diagnosis phase
executed among the PGCG nodes (see Section 7), the
PGL5 uses the alarm propagation module to take one
or more of three actions: (1) log the diagnosis locally
and take no further action, (2) employ speci�c coun-
termeasures thorough the Resolver module, or (3) use
higher-level binding information to
ood the alarm in
its higher-level PNNI group.

Action 1 should always be followed, modulo some �l-
tering to avoid redundant log. Action 2 is followed when
the diagnosis module reaches a conclusion and therefore
recommends precise response actions (see Section 8).

5If the PGL is not preempted because it is believed to be non-
faulty.

10 of 15

Rule 1 operation: Upd(Node.X.ni), Node.X.ni.priority.P, Node.X.ni.leader.L
state: Node.X.ni.priority.O, Node.X.ni.leader.M
condition: P 6= O ^ L = M

Rule 2 operation: Upd(Node.X.hl.Y), Node.X.hl.Y.raig.Z.aw.A
state: Node.X.hl.Y.raig.Z.aw.B
condition: A 6= B

Rule 3 operation: Upd(Node.X.Y.Z), Node.X.Y.Z.raig.F.avcr.C
state: avg(V,Node.X.Y.Z.raig.F.avcr.W,[0,now])
condition: C < V _ C > V

Rule 4 operation: Upd(Node.X.Y.Z)
state: timeint(V,Upd(Node.X.W.P),Upd(Node.X.Y.Z),[0,now])
condition: V < threshold

Rule 5 operation: Add(Node.X.hl.Y)
state: timeint(V,Del(Node.X.hl.Y),Add(Node.X.hl.Y),[0,now])
condition: V < threshold

Rule 6 operation: Del(Node.X.hl.Y)
state: timeint(V,Add(Node.X.hl.Y),Del(Node.X.hl.Y),[0,now])
condition: V < threshold

Rule 7 operation: Upd(Node.X.hl.Z), Node.X.hl.Z.renodeid.R, Node.X.hl.Z.reportid.P
state: Node.R.hl.P.renodeid.Y
condition: Y 6= X

Rule 8 operation: Upd(Node.X.nsp.(Y,Z)), Node.X.nsp.(Y,Z).raig.F.avcr.A, Node.X.nsp.(Y,Z).raig.F.maxcr.M
state:
condition: A > M

Rule 9 operation: Upd(Node.X.hl.Q), Node.X.hl.Q.raig.W.avcr.C
state: Node.X.nsp.(P,Q).raig.W.maxcr.M, Node.X.hl.P.renodeid.R, (R and X remote nodes)

Node.X.hl.P.reportid.O, Node.R.hl.O.raig.W.avcr.A (O and P ports connecting R and X)
condition: C > M _ A > M

Rule 10 operation: Upd(Node.X.hl.Z), Node.X.hl.Z.raig.F.maxcr.C, Node.X.hl.Z.renodeid.R, Node.X.hl.Z.reportid.P
state: Node.R.hl.P.raig.F.maxcr.M
condition: C 6= M

Figure 6: Example of rules

Action 3 results in delegating higher-level PGCG nodes
to perform a more global analysis of the anomaly. Each
time the alarm goes up a level in the hierarchy, following
action 3, the PGL of each higher level possesses more
and more global information and perhaps can correlate
alarms coming from di�erent lower-level sources to make
more informed decisions. At the same time, this mech-
anism removes traditional bottlenecks arising from the
aggregation of several alarms at a unique alarm correla-
tion service (as it is commonly done today). Propaga-
tion of alarms upward in the hierarchy results in good
distribution of the alarm correlation, transmission, and
processing load.
The Alarm Propagation module implementation is
straightforward within the PNNI design because it can
simply reuse the
ooding protocol and hierarchy infor-
mation already present in the node, interpret the results
coming from the diagnosis module, and take appropri-
ate actions according to a small set of statically de�ned
deterministic rules.

7 Fault Tolerant Diagnosis mod-

ule

The Fault Tolerant Diagnosis module should satisfy two
basic requirements. First, it should be able to correctly
interpret anomaly reports (alarms) so that appropriate
action can be taken in case of signi�cant failures. In par-
ticular, it should avoid false positive and false negative
diagnoses. Second, it should be itself resilient to faults.
The �rst objective is more challenging. The second ob-
jective can be obtained by using well-known results de-
rived from fault tolerant theory (see Section 3). We
describe three possible fault scenarios and recommend
a way to improve decidability. Moreover, we illustrate
a case in which the PGL is found to be faulty.

7.1 Fault diagnosis

Researchers in the �eld of distributed network man-
agement have long been investigating techniques for
performing diagnosis of network malfunctions through
alarm correlation (for an overview see, for exam-
ple, [16]). The rationale is that, given a set of symptoms

11 of 15

represented by a variety of distinct alarm messages, an
expert system should be able to correlate the symp-
toms and diagnose the underlying problem. We describe
three di�erent kinds of alarm processing scenarios in the
context of PNNI. For simplicity, we describe these sce-
narios with respect to the PGRIP topology depicted in
Figure 2.

Decidable Non-fault In the �rst scenario, a lower-
level node B:1:1:1
oods an anomalous database up-
date regarding the fact that B:1:1:1's connection to
peer group PG(B:1:2) has changed to PG(B:1:3). The
anomaly is detected by the members of the PGCG with
the rule

operation: Upd(Node.X.upl.P), Node.X.upl.P.upnodeid.U
state: Node.X.upl.P.upnodeid.V
condition: U 6= V

The PGCG nodes at this point may come to a con-
sensus that the anomaly is signi�cant but should be
resolved at a higher level. Therefore, the inconclusive
diagnosis is fed back to the Alarm Propagation module,
and the PGL B:1:1:2 of group PG(B:1:1) passes the
alarm up to the higher level of the routing hierarchy. At
the same time in group PG(B:1:2), the switching from
PG(B:1:2) to PG(B:1:3) also causes an anomaly to be
reported in the group's PGCG. As in group PG(B:1:1)
the PGLB:1:2:3 of group PG(B:1:2)
oods the anomaly
up to the higher-level group. At the higher level, logical
nodes B:1:1, B:1:2, B:1:3, and B:1:4 therefore receive
two alarms and can independently come up with a diag-
nosis. After a consensus is reached, the two alarms may
be either sinked or combined into a single alarm, per-
haps called topology change, that is recursively passed
up by node B:1:4 to the next higher level, where it may
be simply logged.

Not Decidable Fault The scenario just described
can result from normal network behavior. In a
more interesting case, peer group PG(B:1:2), although
equipped with PGRIP, does not generate any anomaly.
This situation is more serious in that either B:1:1:1
or PG(B:1:2)'s PGL may be malicious because either
B:1:1:1 is lying about B:1:2:2 having changed peer
group or PG(B:1:2)'s PGL is spoo�ng PG(B:1:3) with
B:1:1:1. Unfortunately, it impossible to tell who is ma-
licious just from examining the anomaly. The only so-
lution is to pass the signi�cant anomaly, perhaps called
unresolved topology change up to the higher-level group
for logging and for an operator's evaluation.

CA

Diagnosing Node

B

D

Figure 7: Diagnosis of Byzantine Fault

Decidable Fault A more productive scenario is given
by the case in which peer group PG(B:1:2) detects
that node B:1:2:2 advertises to be part of a di�erent
peer group PG(B:1:3). In peer group PG(B:1:2), this
anomaly can be detected with the rule

operation: Add(Node.X.ni), Node.X.ni.address.A
state: Node.X.ni.address.B
condition: A 6= B

When both peer groups detect an anomaly, higher-
level nodes B:1:1, B:1:2, B:1:3, and B:1:4 can deduce
that B:1:2:2, identi�ed by X in the above rule, is faulty
because it reports being part of a new peer group. As
a result of this more de�nitive diagnosis, nodes B:1:1,
B:1:2, B:1:3, and B:1:4 may further concur to em-
ploy preemption of node B:1:2:2. The Resolver in peer
group PG(B:1:2) (located in the PGL of peer group
PG(B:1:2)) can then use the mechanism outlined in
Section 8 to
ood necessary packets through its own
peer group and delete node B:1:2:2 from the routing
hierarchy.

7.2 Improving decidability

A major assumption existing in current alarm correla-
tion software is that the faults are nonmalicious. Fault
diagnosis in a Byzantine environment is much harder be-
cause in some situations a malicious node can be smart
enough to generate alarms that inhibit the correlation
functions. Although the limitation of fault diagnosis
in a Byzantine environment has been long recognized,
recent work by Lincoln et al. [19] has demonstrated
that, under reasonable fault modeling assumptions, by
recording the history of anomalous events, one can con-
struct an algorithm that converges to satisfactorily high
levels of accuracy of diagnosis even of Byzantine faults.

The idea is illustrated in Figure 7. Consider nodes
A, B, C, and D. Suppose that A tells D that B gener-
ated an anomaly and that B tells D that A generated
an anomaly. D can detect that there is a fault but does
not have enough information to determine which node
is lying. D records the anomaly and does not take any

12 of 15

corrective action. Suppose now that, some time later,
C tells D that B generated the anomaly and B makes a
counter claim as before. This time, D can use its his-
tory and deduce that it is unlikely that A and C are both
conspiring against B, and therefore heuristically declare
B faulty on the basis of multiple correlated anomaly re-
ports. Although algorithms such as the one described
in [19] could be used for improving PGRIP's fault diag-
nosis behavior in the Byzantine environment, the fun-
damental limitation in diagnosis of Byzantine must be
recognized and acknowledged in the design to accommo-
date the case in which anomaly reports cannot resolve
the source of a fault. For this reason, as outlined in Sec-
tion 6, the Alarm Propagation module can simply log
an undecidable diagnosis without taking further action.

It is important to realize that the extent of this lim-
itation depends on the accuracy of the Anomaly De-
tection module and its ability to correlate anomalous
behavior with past events, and it is therefore not easily
quanti�able. A more common and easily solvable case
(which is directly addressed by standard alarm corre-
lation software) is the case in which anomaly correla-
tion can be performed on the basis of multiple concur-
rent anomaly reports coming simultaneously from dif-
ferent routers. As described in Section 7.1, by gathering
enough global information the diagnosis system may im-
mediately and decisively identify faulty nodes and pass
the information to the Resolver module.

7.3 Faulty PGL

Assuming that the PGCG satis�es both Condition 2
and Condition 3, by running an interactive consistency
algorithm of the kind proposed in [9] or [10], the nodes
can agree on a common diagnosis and implicitly allow
the PGL to respond with the right action. An inter-
esting situation arises when the PGCG nodes �nd that
the PGL is faulty. In this case, it is necessary to demote
the PGL and elect a new leader to carry out appropriate
fault recovery mechanisms.6 The PGL could be mali-
cious and therefore it is not suÆcient to start a stan-
dard PGL election phase, because the malicious PGL
may interfere with the election process by granting it-
self arbitrary priorities. This problem has two solutions.
The �rst one requires modi�cation to the baseline PNNI
standard. The second one requires a certain topological
assumption and employing changes only in the PGCG
nodes'
ooding algorithm. Our design favors the latter
solution because of its lesser impact. The idea is for 3m
of the PGCG nodes to block any leader election mes-
sages coming from the faulty node so that no consensus

6This case also presents itself when a non-PGCG malicious
node unilaterally decides to become PGL without authorization.

may be reached for its election. The PNNI standard re-
quires that at least two-thirds of the nodes in the peer
group must acknowledge the election of a PGL for it to
be legal. Condition 4 ensures that the (non-faulty sub-
set of) PGCG nodes can block unauthorized election
messages and inhibit the election of a faulty node.

8 Resolver module

The Resolver is activated in the PGL node after the
PGCG nodes agree on a diagnosis. The Resolver mod-
ule should answer, with very speci�c countermeasures,
only those threats that are particularly severe. The Re-
solver module should be used carefully or not used at
all because it can a�ect the network's operation. If mis-
used, the Resolver can introduce instability or side ef-
fects that may be worse than the original fault.

We see the Resolver module as being capable of o�er-
ing additional protocols to the PNNI standard so that
(1) routing information can be veri�ed, thus exploiting
the redundancy and replication of information in the
PNNI hierarchy and (2) the PGCG can preempt some
nodes by cutting them out of the routing hierarchy un-
til an operator can assess and remedy potential integrity
compromises. Both mechanisms could be implemented,
as the rest of the PGRIP system, without cryptography
but, as we will see, their e�ectiveness would be greatly
increased through the use of cryptographic signatures.
In PNNI v2.0 the nodes of the routing hierarchy bene�t
from the key management hierarchy based on x.500. In
this standard, nodes have group-wide asymmetric cryp-
tographic keys that can be used for establishing cryp-
tographically secure chains of trust. In PNNI v2.0 the
keys are used during the hello handshake to authenti-
cate the logical addresses of neighboring nodes. The key
management infrastructure provides the necessary func-
tionality to distribute and maintain the public/secret
key pairs in the network.

8.1 Database veri�cation

In the PNNI standard, nodes that have established con-
nectivity through the Hello protocol synchronize their
databases by directly exchanging topology information.
In the database veri�cation mechanism, the protocol
used by nodes that are directly connected is used also
by nodes that are indirectly connected when they sus-
pect that a directly connected neighbor is faulty. In
this mechanism, as a result of detecting a faulty node, a
PGL node can establish a special connection to a third-
party node and explicitly request topology information.

13 of 15

This mechanism reuses the existing PNNI database syn-
chronization protocol and permits an additional level of
veri�cation mechanism without much standardization.
The mechanism does not require cryptography, but re-
lies exclusively on redundancy. Cryptography, if avail-
able, could make this veri�cation mechanism even more
e�ective when the topology does not satisfy Condition 1
and the suspected faulty node can mount a man-in-the-
middle attack and a�ect the database synchronization.

8.2 Node preemption

The preemption mechanism allows the PGL to e�ec-
tively eliminate a node from the peer group databases
so that it cannot adversely a�ect the group. Preemp-
tion can be implemented in a fault tolerant way by
reusing the PGL election algorithm. Condition 4 was
introduced to allow the preemption of the PGL if the
PGCG diagnoses the PGL as faulty. The properties in-
troduced by Condition 4 can be exploited once more to
guarantee that if a node founding faulty by the PGCG
cannot in
uence, with malicious messages, more than
two-thirds of the nodes in the group and thus prevent
consensus. Once the group reaches a consensus on pre-
empting a particular node, all paths through the node
must be deleted and any message originating from the
preempted node must be dropped. In the absence of
cryptographic tools, this mechanism could guarantee
the proper operation of only two-thirds of the nodes
in the peer group and would still permit a malicious
node (through the forging of spoofed messages) to be
active in one-third of the group and even elect itself
as PGL. However, because our two-connection assump-
tion should be obeyed at all levels of the hierarchy, this
anomalous condition would certainly be detected by the
higher-level peer group. At the higher-level the peer
group containing the malicious node will appear to be-
have inconsistently and/or to have two PGLs. Upon
detection of this anomaly the entire peer group may
therefore be preempted.

As in the case of database veri�cation, cryptograph-
ically securing the node preemption algorithm would
render it much more e�ective. Once a node is diagnosed
to be faulty, properly signed messages can be broadcast
by the PGL node to implement the preemption through-
out the entire per group. In this case a malicious node
could not a�ect the preemption process; thus, a reso-
lution of the fault could be performed in a much more
expeditious manner.

9 Related work

Most routing infrastructure protection mechanisms that
have been proposed (see [4, 14, 17, 18]) di�er from
our approach because they are preventive in that they
use cryptographic services to secure the routing proto-
cols. Hauser et al. [6], while still proposing a preventive
methodology based on the work in [14], propose to re-
duce the cost of cryptographic protection by optimizing
the authentication of the routing messages that carry
redundant information though hash chains. The work
closest to ours is the one by Wu et al. [7]. They de-
signed an intrusion detection system that can detect
anomalies in the OSPF routing protocol. In their de-
sign, properly modi�ed SNMP agents and protocol an-
alyzers are distributed throughout the OSPF routing
hierarchy to detect anomalous behavior. Although the
idea is in principle similar to PGRIP, there several cru-
cial di�erences. The most relevant di�erence is that
PGRIP does not analyze the protocol packets but oper-
ates at a higher abstraction level. This allows PGRIP to
be decoupled from the actual routing transport mecha-
nism and therefore to be more portable. In particular,
PGRIP can transparently coexist with di�erent security
measures employed at the protocol level without mod-
i�cation. Another important di�erences are that Wu
et al. concentrate on intrusions; they do not seem to
allow the cooperation of di�erent distributed nodes in
the diagnosis process, and their design does not seem to
handle spontaneous failures. Moreover, their detection
module allows the real-time interception and manipu-
lation of routing packets, thus introducing additional
complexity in the veri�cation of the routing protocols
thus compromising their resilience.

10 Conclusion

We have presented a novel approach for securing global
routing infrastructures and have instantiated our ideas
for the design of PGRIP. The PGRIP design can be used
to augment the current PNNI standard and to o�er a
high level of integrity protection without requiring sig-
ni�cant changes to the standard, and without entirely
relying on cryptography. PGRIP handles both mali-
cious and nonmalicious faults in a uni�ed manner and
can therefore be used as an additional level of assurance
for the proper operation of large communication net-
works. PGRIP's e�ectiveness is intimately tied to its
ability to properly detect and processing anomalies and
making precise and informative diagnoses. It is there-
fore necessary to validate its e�ectiveness with hands-on
experiments that can reproduce numerous fault scenar-

14 of 15

ios and help in accumulating enough heuristical experi-
ence for the speci�cation of e�ective anomaly detection
rules. In addition, the substantial complexity of Byzan-
tine faults diagnosis should be addressed as one of our
primary future research e�orts.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J.L. Wiener. The Lorel Query Language for
Semistructured Data. Journal of Digital Libraries,
1(1), 1997.

[2] P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. In ACM SIG-
MOD International Conference, pages 505{516,
Montreal, Canada, June 1996.

[3] S. Eker. Fast Matching in Combinations of Regular
Equational Theories. In J. Meseguer, editor, First
Intl. Workshop on Rewriting Logic and Its Appli-
cations, pages 90{108. Elsevier Science, September
1996.

[4] D. Estrin and G. Tsudik. Security Issues in Policy
Routing. In Proc. of the 1989 IEEE Symposium
on Security and Privacy, pages 183{193, Oakland,
CA, May 1989.

[5] ATM Forum. Private Network-Network Interface
Version 2.0 Speci�cation. Technical Report BTD-
PNNI-02.00, 1997.

[6] R. Hauser, T. Przygienda, and G. Tsudik. Reduc-
ing the Cost of Security in Link-State Routing. In
Proc. of the 1997 Symposium on Network and Dis-
tributed System Security (NDSS'97), pages 93{99,
San Diego, CA, February 1997.

[7] Y.F. Jou and S.F. Wu. Architecture Design of a
Scalable Intrusion Detection System for the Emerg-
ing Network Infrastructure. Technical Report,
DARPA E296, April 1997.

[8] S.K. Kilger, S. Yemini, Y. Yemini, D. Ohsie, and
S. Stolfo. A Coding Approach to Event Correlation.
In A. S. Sethi, Y. Raynaud, and F. Faure-Vincent,
editors, Integrated Network Management IV, page
266. Chapman & Hall, 1995.

[9] L. Lamport, R. Shostak, and M. Pease. The Byzan-
tine General Problem. ACM Transaction on Pro-
gramming Languages and Systems, 4(3):382, 1982.

[10] P. Lincoln and J. Rushby. A Formally Veri�ed Al-
gorithm for Interactive Consistency under a Hy-
brid Fault Model. Technical Report SRI-CSL-93-
02, April 1993.

[11] J. Moy. OSPF Version 2. Technical Report RFC
2178, 1997.

[12] S.L. Murphy and M.R. Badger. Digital Signa-
ture Protection of the OSPF Routing Protocol. In
Proc. of the 1996 Symposium on Network and Dis-
tributed System Security (NDSS'96), San Diego,
CA, February 1996.

[13] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object Exchange Across Heteroge-
neous Information Sources. In IEEE International
Conference on Data Engineering, pages 251{260,
Taipei, Taiwan, March 1995.

[14] R. Perlman. Network Layer Protocols with Byzan-
tine Robustness. Technical Report, MIT LCS TR-
429, Massachusetts Institute of Technology, Octo-
ber 1988.

[15] M.K. Reiter. Secure Agreement Protocols: Reliable
and Atomic Multicast in Rampart. In 2nd ACM
Conference on Computer and Communication Se-
curity, pages 68{80, Fairfax, Virginia, November
1994.

[16] L. Ricciulli and N. Shacham. Modeling Corre-
lated Alarms in Network Management Systems. In
Communication Networks and Distributed Systems
Modeling and Simulation, 1997.

[17] K.E. Sirios and S.T. Kent. Securing the Nimrod
Routing Architecture. In Proc. of the 1997 Sympo-
sium on Network and Distributed System Security
(NDSS'97), pages 74{84, San Diego, CA, February
1997.

[18] B.R. Smith, S. Murthy, and J.J. Garcia-Luna-
Aceves. Securing Distance-Vector Routing Proto-
cols. In Proc. of the 1997 Symposium on Network
and Distributed System Security (NDSS'97), pages
85{92, San Diego, CA, February 1997.

[19] C.J. Walter, P. Lincoln, and N. Suri. Formally
Veri�ed On-Line Diagnosis. IEEE Transactions on
Software Engineering, 23(11):684, 1997.

[20] S.F. Wu, F. Wang, B.M. Vetter, R. Cleaveland,
Y.F. Jou, F. Gong, and C. Sargor. Intrusion Detec-
tion for Link-State Routing Protocols. Presented
in the 5 Minute Talks session at 1997 IEEE Sympo-
sium on Security and Privacy , Oakland, CA, May
1997.

15 of 15

