
Secure Remote Access to
an Internal Web Server

Christian Gilmore, David Kormann, & Avi Rubin

AT&T Labs - Research

rubin@research.att.com 2

Internal web

• sensitive corporate data

• private employee data

• ability to change payroll data

• home phone numbers

• business plans

• manage savings plan account

• webmail, phonemail, voicemail

rubin@research.att.com 3

External web

• corporate information

• employment information

• investment information

• product information/purchase

• press releases

• tons of P.R.

rubin@research.att.com 4

At AT&T Labs - Research

• packet-based firewall

• no access to internal web from outside

• www.research.att.com = akalice (inside)

akpublic (outside)

• no safe way for users outside to access inside web

• plethora of useful stuff inside
– home phone numbers

– business plans

– payroll/benefit selections

rubin@research.att.com 5

GET http://www.research.att.com/

Different view inside and out

Web server

firewall

Internal
client

External
client

Web server

GET http://www.research.att.com/

rubin@research.att.com 6

Without absent

• use securenet key to telnet inside
– use lynx to access internal web from inside machine

• drawbacks

– sensitive data travels in clear to remote site

– No support for snazzy browser features

• no graphical user interface

• no java/javascript/ActiveX

• no multimedia

• no helper apps

• not the real web experience

rubin@research.att.com 7

Assumptions

• user has legitimate access to internal web site

• user is at a dumb web terminal (DWT)

• DWT is SSL enabled

• user may not be able to change proxy settings

• path between DWT and home site is hostile

• no changes allowed to infrastructure
– no open, reserved port in firewall

– no change to web server

rubin@research.att.com 8

Why not use VPN?
• We assume a dumb terminal

– no client smarts

• don’t have to update all clients

– finer grained control of accesses

• Cost of VPN
– cost of system

– cost of administration

• Security
– few systems w/complete source code released

• Practical consideration
– too much hassle to get sys admins to install VPN

rubin@research.att.com 9

our

Absent Architecture

rubin@research.att.com 10

User authentication

• use one-time password scheme
– we chose OPIE (S/KEY) based on hash chaining

• before leaving, user initializes password pw

• Authentication consists of a challenge and a
response over SSL connection

• Server verifies response

rubin@research.att.com 11

rubin@research.att.com 12

One-time passwords
• Once a password is used, it is useless in the future.

• Any OTP > n, should not be derivable from
passwords 1 through n.

• Authentication server must be able to verify that
OTP is correct.

• Avoid storing large databases of OTP for each
user on auth. server

• Must have option to use on untrusted machine or
terminal

rubin@research.att.com 13

OPIE
• OTP’s derived from one secret

• No secrets on server

• Mechanism for use with untrusted host or dumb
terminal

• Cheap, and easy to administer

• Requires secure initialization phase

• Based on one-way hash function

rubin@research.att.com 14

One-way Hash Functions
• One-way hash function

A function, f, where f(x) = y such that
• Given y, it is infeasible to compute x

• Given x and y, it is infeasible to find an x’ such that x ≠ x’ and
f(x’) = y.

• y has a fixed length

• E.g. Md5
– output is always 128 bits

– publicly available (source code)

rubin@research.att.com 15

OPIE
• Initialization - on secure machine

– user enters password, pw and n

– User computes:

pwn = f(f(f(...f(pw))))...) n times
where f is a one-way function

– User sends pwn to server

– Server stores pwn

rubin@research.att.com 16

Opieinit (cont.)
Client #1 Server

pw0 = user password

pw1 = f(pw0)

pw2 = f(pw1)

pw3 = f(pw2)

pw4 = f(pw3)

...

pwn = f(pwn-1) -----> client #1,pwn= f(pwn-1)

rubin@research.att.com 17

OPIE (cont.)

• To authenticate

– Server knows fn(pw)

– Client known pw

Client -> Server : “I wish to authenticate”

Server -> Client : n

Client computes fn-1(pw)

Client -> Server : fn-1(pw)

Server computes f(fn-1(pw))

rubin@research.att.com 18

Example OPIE one-time passwords
464: DAN MAP FAIR CLAN HOVE BOO

465: TOP JAM CULT MOLT LAWN SEEN
466: SLID RODE JIG SLUG HUE COIN

467: SWAG IT AMES ELI WAST TIP

468: TIP SMOG EGAN MAP VIEW AJAR
469: EEL STAG SKIT AID DONE SLY

470: SKI APT BAND KIND BAD AD

471: BOB FREY HIDE FUSS GARY LAP
472: FIRE HUCK MIND DUE REEL KUDO

473: AGO AWRY WIT HAY BULK RAW

474: TIM KNOT KEY HASH FUM PAP
475: LYNN FIVE LILY JUG FARM AVON

476: COL COOT COLD FOOL NAGY MESH

477: NOON CHEN NAIL GAB SEEM GALA

rubin@research.att.com 19

MAC

• Message authentication code

• Very useful for Internet security protocols

• Efficient to compute

• function of a key and a message

• cannot find collisions

• cannot produce without the key

rubin@research.att.com 20

Authentication in Absent

• After user authenticates
– random key, k, added to user table for each user

– k is used to compute a MAC (HMAC) of each URL

– MAC is included in rewritten URL

– user entry expires every 20 minutes

• When URL received by proxy
– check if user registered

– check if key is fresh

– verify length of URL and MAC

rubin@research.att.com 21

How absent works

• initial request from DWT

• SSL connection established (more later)

• proxy sends authentication challenge form

• user fills in response and submits

• authentication is verified

• URL request from DWT

• page served with URLs rewritten

rubin@research.att.com 22

Proxy in detail (after authentication)

rubin@research.att.com 23

Rewriting URLs
• Take

Crowds home

http://www.research.att.com/crowds

converted to
https://absent.research.att.com/geturl=user/

2b5db86c1f6e/http://www.research.att.com/crowds

• first part is used to point DWT to absent port 443

• next: cmd=user (login, geturl, logout, OTP_resp)

• 2b represents hex of length of original URL
• 5db86c1f6e represents MAC

rubin@research.att.com 24

CGI scripts

• Take CGI program count.cgi and the URL
XXX/http://www.research.att.com/~alice/cgi-bin/reg.cgi

which appears in a GET method form

• The value entered in form is returned in URL
XXX/http://www.research.att.com/~alice/cgi-bin/reg.cgi&name=bob

• No way server can know &name=bob in advance

• So, everything between (not including) XXX/ and
& is MACed

rubin@research.att.com 25

What if absent is compromised?
• denial of service possible

• can get pushweb to open data connections

• cannot read SSL traffic

• cannot issue valid web requests

• attacker sees secret MAC key used by absent

• recovery:
– generate new MAC key

– probably reboot server

• no big deal, really

rubin@research.att.com 26

What if pushweb is compromised?

• consequences
– unlimited access to internal web

– potential to put in trojan horse server to remove authentication of
future requests

– potential to compromise other internal machines, data and services

• precaution
– don’t run any other services on pushweb

– proxy server runs as nobody

– code review to avoid buffer overflow and other common problems

– log, log, log and monitor the logs

rubin@research.att.com 27

Issues

• Other issues:
– Cache-control: no-cache, etc.

– randomness (randlib by Jack Lacy)

– all sorts of networking issues (resource pooling)

• limitations:
– policy issue: SSL over SSL

– performance

– scale

– mobile code issues (embedded URLs)

– ease of use (users hate one-time passwords)

rubin@research.att.com 28

Current Status
• Fully functional system

• In use at AT&T Labs

• Obtained release for all the code

• Code is freely available on the Internet

http://www.research.att.com/projects/absent/

