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Abstract

The complexity of the client-side components of web

applications has exploded with the increase in popularity

of web 2.0 applications. Today, traditional desktop ap-

plications, such as document viewers, presentation tools

and chat applications are commonly available as online

JavaScript applications.

Previous research on web vulnerabilities has primarily

concentrated on flaws in the server-side components of web

applications. This paper highlights a new class of vulnera-

bilities, which we term client-side validation (or CSV) vul-

nerabilities. CSV vulnerabilities arise from unsafe usage of

untrusted data in the client-side code of the web applica-

tion that is typically written in JavaScript. In this paper,

we demonstrate that they can result in a broad spectrum of

attacks. Our work provides empirical evidence that CSV

vulnerabilities are not merely conceptual but are prevalent

in today’s web applications.

We propose dynamic analysis techniques to systemati-

cally discover vulnerabilities of this class. The techniques

are light-weight, efficient, and have no false positives. We

implement our techniques in a prototype tool called FLAX,

which scales to real-world applications and has discovered

11 vulnerabilities in the wild so far.

1 Introduction

Input validation vulnerabilities constitute a majority of

web vulnerabilities and have been widely studied in the

past [4, 8, 24, 28, 30, 35, 42, 43]. However, previous vul-

nerability research has focused primarily on the server-side

components of web applications. This paper focuses on

client-side validation (or CSV) vulnerabilities, a new class

of vulnerabilities which result from bugs in the client-side

code.

A typical Web 2.0 application has two parts: a server-

side component and a client-side component. The server-

side component processes the user’s request and generates

an HTML response that is sent back to the browser. The

client-side code of the web application, typically written in

JavaScript, is sent with the HTML response from the server.

The client-side component executes in the web browser and

is responsible for processing input data and dynamically up-

dating the view of web page on the client. We define a CSV

vulnerability as one which results from unsafe usage of un-

trusted data in the client-side code of the web application.

CSV vulnerabilities belong to the general class of in-

put validation vulnerabilities, but are different from tradi-

tional web vulnerabilities like SQL injection [10, 35] and

reflected/stored cross-site scripting [18, 26, 37, 39]. For ex-

ample, one type of CSV vulnerability involves data that

enters the application through the browser’s cross-window

communication abstractions and is processed completely by

JavaScript code, without ever being sent back to the web

server. Another type of CSV vulnerability is one where a

web application sanitizes input data sufficiently before em-

bedding it in its initial HTML response, but does not sani-

tize the data sufficiently for its use in the JavaScript compo-

nent.

CSV vulnerabilities are becoming increasingly likely

due to the growing complexity of JavaScript applications.

Increasing demand for interactive performance of rich web

2.0 applications has led to rapid deployment of application

logic as client-side scripts. A significant fraction of the data

processing in AJAX applications (such as Gmail, Google

Docs, and Facebook) is done by JavaScript components.

JavaScript has several dynamic features for code evaluation

and is highly permissive in allowing code and data to be

inter-mixed. As a result, attacks resulting from CSV vulner-

abilities often result in compromise of the web application’s

integrity.

Goals. As a first step towards finding CSV vulnerabil-

ities, we aim to develop techniques that analyzes a web

application in an end-to-end manner. Since most existing



works have targeted their analyses to server-side compo-

nents (written in PHP, Java, etc.), this paper develops com-

plementary techniques to discover vulnerabilities in client-

side code. In particular, we develop a framework for sys-

tematic analysis of JavaScript1 code. Our objective is to

build a tool for vulnerability discovery that does not require

developer annotations, has no false positives and is usable

on real-world applications.

Challenges. The first challenge of holistic application anal-

ysis is in dealing with the complexity of JavaScript. Many

JavaScript programs use code evaluation constructs to dy-

namically generate code as well as to serialize strings into

complex data structures (such as JSON arrays/objects). In

addition, the language supports myriad high-level opera-

tions on complex data types, which makes the task of prac-

tical analysis difficult.

In JavaScript application code, we observe that parsing

operations are syntactically indistinguishable from valida-

tion checks. This makes it infeasible for automated syn-

tactic analyses to reason about the sufficiency of validation

checks in isolation from the rest of the logic. Due to the

convenience of their use in the language, developers tend

to treat strings as a universal type for exchange, both of

code as well as data. Consequently, complex string op-

erations such as regular expression match and replace are

pervasively used both for parsing input and for performing

custom validation checks.

Third, in many web applications the client-side code pe-

riodically sends data to a remote server for processing via

browser interfaces such as XMLHttpRequest, and then

operates on the returned result. We call such a flow of data,

to a server and back, a reflected flow. Client-side analyses

face the inherent difficulty of dealing with hidden process-

ing on remote servers due to reflected flows.

Existing Approaches. Fuzzing or black-box testing is a

popular light-weight mechanism for testing applications.

However, black-box fuzzing does not scale well with a large

number of inputs and is often inefficient in exploration of

the input space. A more directed approach used in the past

in the context of server-side code analysis is based on dy-

namic taint-tracking. Dynamic taint analysis is useful for

identifying a flow of data from an untrusted source to a

critical operation. However, dynamic taint-tracking alone

alone can not determine if the application sufficiently vali-

dates untrusted data before using it, especially when parsing

and validation checks are syntactically indistinguishable. If

an analysis tool treats all string operations on the input as

parsing constructs, it will fail to identify validation checks

and will report false positives even for legitimate uses (as

shown by our experiments in Section 5). On the other hand,

1Our JavaScript analysis techniques take a blackbox view of the server-

side code currently, though in the future these could be be combined with

existing whitebox analyses of server-side components

if the analysis treats any use of untrusted data which has

been passed through a parsing/validation construct as safe,

it is likely to miss many bugs. Static analysis is another

approach [14, 17]; however static analysis tools do not di-

rectly provide concrete exploit instances and require addi-

tional developer analysis to prune away false positives.

Recently, symbolic execution techniques have been used

for discovering and diagnosing vulnerabilities in server-side

logic [9, 23, 25, 42]. However, web applications pervasively

use complicated operations on string and arrays data types,

both of which raise difficulties for decision procedures in-

volved in symbolic execution techniques. The power and

expressiveness of string decision procedures today is lim-

ited. Practical implementations of string decision proce-

dures presently do not deal with the generality of JavaScript

string constraints involving common operations (such as

String.replace, regular expression match, concatena-

tion and equality) expressed together over multi-variable,

variable-length inputs [9,20,23,25]. Other approaches have

been limited to a subset of input-transformation operations

in PHP [4]. The present limitations of symbolic execution

tools motivate the need for designing lighter-weight tech-

niques.

Our Approach. We propose a dynamic analysis approach

to discover vulnerabilities in web applications called taint

enhanced blackbox fuzzing. Our technique is a hybrid ap-

proach that combines the features of dynamic taint analy-

sis with those of automated random fuzzing. It remedies

the limitations of purely dynamic taint analysis (described

above), by using random fuzz testing to generate test cases

that concretely demonstrate the presence of a CSV vulner-

ability. This simple mechanism eliminates false alarms that

would result from a purely taint-based tool.

The number of test cases generated by vanilla blackbox

fuzzing increases combinatorially with the size of the input.

In our hybrid approach, we use character-level precise dy-

namic taint information to prune the input search space sig-

nificantly. Dynamic taint information extracts knowledge

of the type of sink operation involved in the vulnerability,

thereby making the subsequent blackbox fuzzing special-

ized for each sink type (or in other words, be sink-aware).

Taint enhanced blackbox fuzzing scales well because the

results of dynamic taint analysis are used to create indepen-

dent abstractions of the original application which are small

and take fewer inputs, and can be tested efficiently with

sink-aware fuzzing. From our experiments (Section 5), we

report an average reduction of 55% in the input sizes with

the use of dynamic taint information.

Summary of Results. We implement our techniques into a

prototype tool called FLAX. So far, FLAX has discovered

11 CSV vulnerabilities in our preliminary study of 40 pop-

ular real-world JavaScript-intensive programs in the wild,

which includes several third-party iGoogle gadgets, web



sites, AJAX applications and third-party libraries. These

vulnerabilities were unknown to us prior to the experi-

ments. Our findings confirm that CSV vulnerabilities are

not merely conceptual but are prevalent in web applications

today. Our experimental results also provide a quantitative

measurement of the improvements taint enhanced blackbox

fuzzing gains over vanilla dynamic taint analysis or random

testing in our application.

Summary of Contributions. This paper makes the follow-

ing contributions:

1. We introduce client-side validation vulnerabilities, a

new class of bugs which result from unvalidated usage

of untrusted data in JavaScript code. We provide em-

pirical evidence of these vulnerabilities in real-world

applications.

2. We build a framework to systematically discover CSV

vulnerabilities called FLAX, which has found 11 pre-

viously unknown CSV bugs. Internally, FLAX simpli-

fies JavaScript semantics to an intermediate language

that has a simple type system and a small number of

operations. This enables dynamic analyses employed

in FLAX to be implemented in a robust and scalable

way. Additionally, FLAX is designed to analyze ap-

plications with reflected flows without the need for a

server analysis component.

3. FLAX employs taint enhanced blackbox fuzzing : a

hybrid, dynamic analysis approach which combines

the benefits of dynamic taint analysis and random

fuzzing. This technique is light-weight as compared to

symbolic execution techniques, has no false positives

and is scalable enough to use on real-world applica-

tions.

2 Problem Definition

In this section, we outline our threat model, give exam-

ples of CSV vulnerabilities and conceptualize them as a

class, and define the problem of finding CSV vulnerabili-

ties.

2.1 Threat Model and Problem Definition

We define a CSV vulnerability as a programming bug

which results from using untrusted data in a critical sink

operation without sufficient validation. A critical sink is a

point in the client-side code where data is used with spe-

cial privilege, such as in a code evaluation construct, or as

an application-specific command to a backend logic or as

cookie data.

In our analysis, any data which is controlled by an ex-

ternal web principal is treated as untrusted. Additionally,

user data (such as from form fields or text areas) is treated

as untrusted as well. Untrusted data could enter the client-

side code of a web application in three ways. First, data

from an untrusted web attacker could be reflected in the

honest web server’s HTML response and subsequently read

for processing by the client side code. Second, untrusted

data from other web sites could be injected via the browser’s

cross-window communication interfaces. These interfaces

include HTML 5’s postMessage, URL fragment identi-

fiers, and window/frame cross-domain properties. Finally,

user data fed in through form fields and text areas is also

marked as untrusted.

The first two untrusted sources are concerned with the

threat model where the attacker is a remote entity that has

knowledge of a CSV vulnerability in an honest (but buggy)

web application. The attacker’s goal is to remotely ex-

ploit a CSV vulnerability to execute arbitrary code, to poi-

son cookie data (possibly inject session identifiers), or to

issue web application-specific commands on behalf of the

user. The attack typically only involves enticing the user

into clicking a link of the attacker’s choice (such as in a

reflected XSS attack).

We also consider the “user-as-an-attacker” threat model

where the user data is treated as untrusted. In general, user

data should not be interpreted as web application code. For

instance, if user can inject scripts into the application, such

a bug can be used in conjunction with other vulnerabilities

(such as a login-CSRF vulnerabilities) in which the victim

user is logged-in as the attacker while the application be-

havior is under attacker’s control [6]. In our view, FLAX

should make developers aware of the existence of errors in

this threat model, even though the severity of resulting ex-

ploits is usually limited and varies significantly from appli-

cation to application.

This paper addresses the problem of finding CSV vulner-

abilities in the target web application by generating concrete

witness inputs. The problem of vulnerability discovery has

two orthogonal challenges — exploring the entire function-

ality of the program, and finding an input that exposes a

vulnerability in some explored functionality. In this paper,

we focus solely on the second challenge, assuming that our

analysis would be driven by an external test harness that

explores the large space of the application’s functionality.

Specifically, the input to our analysis is a web application

and an initial benign input. Our analysis aims to find an ex-

ploit instance by systematically searching the equivalence

class of inputs that force the program execution down the

same path as the given benign input.

Running Example. For ease of explanation and concrete-

ness, we introduce a running example of a hypothetical

AJAX chat application. The example application consists

of two windows. The main window, shown in Figure 1,

asynchronously fetches chat messages from the backend



1: var chatURL = "http://www.example.com/";

2: chatURL += "chat_child.html";

3: var popup = window.open(chatURL);

4: ...

5: function sendChatData (msg) {

6: var StrData = "{\"username\": \"joe\", \"message\": \"" + msg + "\"}";

7: popup.postMessage(StrData, chatURL);

}

Figure 1. An example of a chat application’s JavaScript code for the main window, which fetches

messages from the backend server at http://example.com/

server. Another window receives these messages from the

main window and displays them, the code for which is

shown in Figure 2. The communication between the two

windows is layered on postMessage2, which is a string-

based message passing mechanism proposed for inclusion

in HTML 5. The application code in the display window

has two sources of untrusted data — the data received via

postMessage that could be sent by any browser win-

dow, and the event.origin property, which is the origin

(port, protocol and domain) of the sender.

2.2 Attacks resulting from CSV Vulnerabilities

While some of the vulnerabilities described below have

been discussed in previous research literature by leveraging

other web vulnerabilities, in this section we show that they

can result from CSV vulnerabilities as well.

Origin Mis-attribution. Certain cross-domain commu-

nication primitives such as postMessage are designed

to facilitate sender authentication. Applications using

postMessage are responsible for validating the authen-

ticity of the domain sending the message. The example in

Figure 2 illustrates such an attack on line 13. The vulnera-

bility arises because the application checks the domain field

of the origin parameter insufficiently, though the protocol

sub-field is correctly validated. The failed check allows any

domain name containing “example”, including an attacker’s

domain hosted at “evilexample.com”, to send messages. As

a result, the vulnerable code naively trusts the received data

even though the data is controlled by an untrusted principal.

In the running example, for instance, an untrusted attacker

can send chat messages to victim users on behalf of benign

users.

Code injection. Code injection is possible because

JavaScript can dynamically evaluate both HTML and

script code using various DOM methods (such as

document.write) as well as JavaScript native con-

2In the postMessage interface design, the browser is responsible

for attributing each message with the domain, port, and protocol of the

sender principal and making it available as the “origin” string property of

the message event [7, 40]

structs (such as eval). This class of attacks is commonly

referred to as DOM-based XSS [27,29]. An example of this

attack is shown in Figure 2 on line 19. In the example, the

display child window uses eval to serialize the input string

from a JSON format, without validating for its expected

structure. Such attacks are prevalent today because popular

data exchange interfaces, such as JSON, were specifically

designed for use with the eval constructs. In Section 5,

we outline additional phishing attacks in iGoogle gadgets

layered on such XSS vulnerabilities, to illustrate that a wide

range of nefarious goals can be achieved once the applica-

tion integrity is compromised.

Command injection. Many AJAX applications use un-

trusted data to construct URL parameters dynamically,

which are then used to direct XMLHttpRequest requests

to a backend server. Several of these URL parameters func-

tion as application-specific commands. For instance, the

chat application in the example sends a confirmation com-

mand to a backend script on lines 29-31. The backend

server script may take other application commands (such

as adding friends, creating a chat room, and deleting his-

tory) similarly from HTTP URL parameters. If the HTTP

request URL is dynamically constructed by the application

in JavaScript code (as done on line 30) using untrusted data

without validation, the attacker could inject new applica-

tion commands by inserting extra URL parameters. Since

the victim user is already authenticated, command injection

allows the attacker to perform unintended actions on be-

half of the user. For instance, the attacker could send ’hi

& call=addfriend&name=evil’ as the message which could

result in adding the attacker to the buddy list of the victim

user.

Cookie-sink vulnerabilities. Web applications often use

cookies to store session data, user’s history and preferences.

These cookies may be updated and used in the client-side

code. If an attacker can control the value written to a cookie

by exploiting a CSV vulnerability, she may fix the values of

the session identifiers (which may result in a session fixation

attack) or corrupt the user’s preferences and history data.



1:function ParseOriginURL (url) {

2: var re=/(.*?):\/\/(.*?)\.com/;

3: var matches = re.exec(url);

4: return matches;

5:}

6:

7:function ValidateOriginURL (matches)

8:{

9: if(!matches) return false;

10: if(!/https?/.test(matches[1]))

11: return false;

12: var checkDomRegExp = /example/;

13: if(!checkDomRegExp.test (matches[2])) {

14: return false; }

15: return true; // All Checks Ok

16:}

17:// Parse JSON into an array object

18:function ParseData (DataStr) {

19: eval (DataStr);

20:}

21:function receiveMessage(event) {

22: var O = ParseOriginURL(event.origin);

23: if (ValidateOriginURL (O)) {

24: var DataStr = ’var new_msg =(’ +

25: event.data + ’);’;

26: ParseData(DataStr);

27: display_message(new_msg);

29: var backserv = new XMLHttpRequest(); ...;

30: backserv.open("GET","http://example.com/srv.php?

call=confirmrcv&msg="+new_msg["message"]);

31: backserv.send();} ... } ...

32: window.addEventListener("message",

receiveMessage,...);

Figure 2. An example vulnerable chat application’s JavaScript code for a child message display win­
dow, which takes chat messages from the main window via postMessage. The vulnerable child mes­

sage window code processes the received message in four steps, as shown in the receiveMessage
function. First, it parses the principal domain of the message sender. Next, it tries to check if the ori­
gin’s port and domain are “http” or “https” and “example.com” respectively. If the checks succeed,

the popup parses the JSON [3] string data into an array object and finally, invokes a function for
displaying received messages. In lines 29­31, the child window sends confirmation of the message
reception to a backend server script.

Figure 3. Approach Overview

3 Approach

In this section, we present the key design points of our

approach and explain our rationale for employing a hybrid

dynamic analysis technique into FLAX.

3.1 Approach and Architectural Overview

Figure 3 gives a high-level view of our approach – the

boxed, shaded part represents the primary technical contri-

bution of this work. The input to our analysis is an ini-

tial benign input and the target application itself. The tech-

nique explores the equivalence class of inputs that execute

the same program path as the initial benign input and finds a

flow of untrusted data into a critical sink without sufficient

validation.

Approach. In the first step, we execute the application with

the initial input I and perform character-level dynamic taint

analysis. Dynamic taint analysis identifies all uses of un-

trusted data in critical sinks. This analysis identifies two

pieces of information about each potentially dangerous data

flow: the type of critical sink, and, the fractional part of

the input that is influences the data used in the critical sink.

Specifically, we extract the range of input characters IS that

on which data arguments of a sink operation S are directly

dependent. All statements that operate on data that is di-

rectly dependent on IS , including path conditions, are ex-

tracted into an executable slice of the original application

which we term as an acceptor slice (denoted as AS ). AS is

termed so because it is a stand-alone program that accepts

all inputs in the equivalence class of I, in the sense that they
execute the same program path as I up to the sink point S.
As the second step, we fuzz each AS to find an input that

exploits a bug. Our fuzzing is sink-aware because it uses

the details of the sink node exposed by the taint analysis

step. Fuzz testing on AS semantically simulates fuzzing on

the original application program. Using an acceptor slice to

link the two high-level steps has two advantages:

• Program size reduction. AS can be executed as a pro-

gram on its own, but is significantly smaller in size

than the original application. From our experiments in

Section 5,AS is typically smaller than the executed in-

struction sequence by a factor of 1000. Thus, fuzzing

on a concise acceptor slice instead of the original com-

plex application is a practical improvement. It avoids

application restart, decouples the two high-level steps,



and allows testing of multiple sinks to proceed in par-

allel.

• Fuzzing search space reduction. Sink-aware fuzzing

focuses only on IS for each AS , rather than the entire

input. Additionally, our sink-aware fuzzer has custom

rules for each type of critical sink because each sink

results in different kinds of attacks and requires a dif-

ferent attack vector. As an example, it distinguishes

eval sinks(which allow injection of JavaScript code)

from DOM sinks(which allow HTML injection). Our

sink-aware fuzzing employs input mutation strategies

that are based on grammars such as the HTML syntax,

JavaScript syntax, or URL syntax grammars.

3.2 Technical Challenges and Design Points

One of our contributions is to design a framework that

simplifies JavaScript analysis and explicitly models re-

flected flows and path constraints. We explain each of these

design points in detail below.

Modeling Path Constraints. The running example in

Figure 2 shows how validation checks manifest as condi-

tional checks, affecting the choice of execution path in the

program. Saner, an example of previous work that pre-

cisely analyzes server-side code, has considered only input-

transformation functions as sanitization operations in its dy-

namic analysis, thereby ignoring branch conditions [4]. Our

techniques improve on Saner’s by explicitly modelling path

constraints, thereby enabling FLAX to capture the valida-

tion checks as branch conditions, as shown in the running

example in the AS .

Simplifying JavaScript. There are two key problems in

designing analyses for JavaScript code.

• Rich data types and complex operations. JavaScript

supports complex data types such as string and ar-

ray, with a variety of native operations on them. The

ECMA-262 specification defines over 50 operations on

string and array data types alone [1]. JavaScript anal-

ysis becomes complex because there are several syn-

tactic constructs that can perform the same semantic

operations. As a simple indicative example, there are

several ways to split a string on a given separator (such

as by using String.split, String.match, String.indexOf,

and String.substring).

In our approach, we canonicalize JavaScript opera-

tions and data references into a simplified intermedi-

ate form amenable for analysis, which we call JASIL

(JAvascript Simplified Instruction Language). JASIL

has a simpler type system and a smaller set of instruc-

tions which are sufficient to faithfully express the se-

mantics of higher-level operations relevant to the ap-

plications we study. As a result, JASIL serves as a

robust platform for simplified implementation of dy-

namic taint analysis and other analyses.

• Aliasing. There are numerous ways in which two dif-

ferent syntactic expressions can refer to the same ob-

ject at runtime. This arises because of the dynamic fea-

tures of JavaScript, such as reflection, prototype-based

inheritance, complex scoping rules, function overload-

ing, as well as due to numerous exposed interfaces to

access DOM elements. Reasoning about such a di-

verse set of syntactic variations is difficult. Previous

static analysis techniques applied to this problem area

required complex points-to analyses [14, 17].

This forms one of the main motivations for designing

FLAX as a dynamic analysis tool. FLAX dynamically

translates JavaScript operations to JASIL, and by de-

sign each operand (an object, variable or data element)

in JASIL is identified by its allocated storage address.

With appropriate instrumentation of the JavaScript in-

terpreter, we identify element accesses regardless of

the syntactic complexity of the access pattern used in

the references.

Dealing with reflected flows. In this paper, we consider

data flows of two kinds: direct and reflected. A direct flow

is one where there is a direct data dependency between a

source operation and a critical sink operation in script code.

Dynamic taint analysis identifies such flows as potentially

dangerous. A reflected flow occurs when data is sent by the

JavaScript application to a backend server for processing

and the returned results are used in further computation on

the client. Our dynamic taint analysis identifies untrusted

data propagation across a reflected flow using a common-

substring based content matching algorithm3. During a re-

flected flow, data could be transformed on the server. The

exact data transformation/sanitization on the server is hid-

den from the client-side analysis. To address this, we com-

positionally test the client-side code in two steps. First, we

test the client-side code independently of the server-side

code by generating candidate inputs that make simple as-

sumptions about the transformations occurring in reflected

flows. Subsequently, it verifies the assumption by running

the candidate attack concretely, and reports a vulnerability

if the concrete test succeeds.

4 Design and Implementation

We describe our algorithm for detecting vulnerabilities

and present details about the implementation of our proto-

type tool FLAX.

3It is possible to combine client-side taint tracking with taint tracking

on the server; however, in present work we take a blackbox view of the

web server.
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Figure 4. System Architecture for FLAX

4.1 Algorithm

Figure 4 shows the architectural overview of our taint

enhanced blackbox fuzzing algorithm. The pseudocode of

the algorithm is described in Figure 5. At a high level, it

consists of 5 steps:

1. Dynamic trace generation and conversion to JASIL.

Run the application concretely in our instrumented

web browser to record an execution trace in JASIL

form.

2. Dynamic taint analysis. Perform dynamic taint analy-

sis on the JASIL trace to identify uses of external data

in critical sinks. For each such potentially dangerous

data flow into a sink S, our analysis computes the part

of the untrusted input (IS) which flows into the critical
sink.

3. Generate an acceptor slice. For each sink S and the

given associated information about S from the previ-

ous step, the analysis extracts an executable slice, AS ,

as defined in Section 3.1.

4. Sink-aware Random testing. Apply random fuzzing to

check if sufficient validation has been performed along

the path to a given sink operation. For a given AS ,

our fuzzer generates random inputs according to sink-

specific rules and custom attack vectors.

5. Verification of candidate inputs. Randomized testing

of AS generates candidate vulnerability inputs assum-

ing a model of the transformation operations on the

Input: T : Trace

Output: V : AttackString List

type Flow : {
var Sink, Source : Int List,

var TaintedInsList : Int List,

var InputOffset : (Int,Int) List

};
var FlowList : Flow List;

FlowList = CalculateF lows (T );
var Candidates = InputString List;

var V = InputString List;

foreach F in FlowList do
AS = GenAutomaton(F , T );
Candidates = Fuzz ( AS

,max length,max iters);
foreach C in Candidates do

CT = ExecuteOnInput(C)
var Result = V erifyAttack(T , CT )
if Result then

V.append([F , CT .input]);
end

end

end

return V;

Figure 5. Algorithm for FLAX



x : τ ::= v : τ (Assignment, Type Conversion)

x : τ ::= ∗ (v : Ref(τ)) (Dereference)

x : Int ::= v1 : Int op v1 : Int (Arithmetic)

x : Bool ::= v1 : τ op v1 : τ (Relational)

x : Bool ::= v1 : Bool op v1 : Bool (Logical)

x : PC ::= if (testvar : Bool) then (c : Int) else (c : Int) (Control Flow)

x : String ::= substring(s : String, startpos : Int, len : Int) (String Ops)

x : String ::= concat(s1 : String, s2 : String) (String Ops)

x : String ::= fromArray(s1 : Ref(τ)) (String Ops)

x : String ::= convert(s1 : String) (String Ops)

x : Char ∗ κ ::= convert(i : Int) (Character Ops)

x : Int ::= convert(i : Char ∗ κ) (Character Ops)

x : τ ::= F (i1 : τ , . . ., in : τ ) (Uninterpreted Function Call)

Figure 6. Simplified operations supported in JASIL intermediate representation

τ := η | β[η] | Bool | Null | Undef | PC

η := Int | β
β := Ref(τ) | String(κ) | Char(κ)
κ := UTF8 | UTF7 | . . .

Figure 7. Type system of JASIL intermediate
representation

server that may occur in reflected flow. This final step

verifies that the assumptions hold, by testing the at-

tacks concretely on the web application and checking

that the attack succeeds by using a browser-based ora-

cle.

4.2 JASIL

To simplify further analysis, we lower the semantics of

the JavaScript language to a simplified intermediate repre-

sentation which we call JASIL. JASIL is designed to have

a simple type system with a minimal number of operations

on the defined data types. A brief summary of its type sys-

tem and categories of operations are outlined in Figure 7

and Figure 6 respectively. JavaScript interpreters already

perform some amount of semantic lowering in converting

to internal bytecode. However, the semantics of typical

JavaScript bytecode are not substantially simpler, because

most of the complexity is hidden in the implementation of

the rich native operations that the interpreter’s runtime sup-

ports.

JASIL has a substantially smaller set of operations,

shown in Figure 6. In our design, we have found JASIL

to be sufficient to express the operational semantics of a

subset of JavaScript commonly used in real applications.

Our design is implemented using WebKit’s JavaScript in-

terpreter, the core of the Safari web browser, and is faith-

ful to the semantics of the operations as implemented

therein. In our work, we lower all the native string oper-

ations, array operations, integer operations, regular expres-

sion based operations, global object functions, DOM func-

tions, and the operations on native window objects. Low-

ering to JASIL simplifies analyses. For instance, consider

a String.replace operation in JavaScript. Intuitively,

a replace operation retains some parts of its input string in

its output while transforming the other parts with specified

strings. An execution of the replace operation can be re-

placed by a series of substring operations followed by a final

concatenation of substrings. With JASIL, subsequent dy-

namic taint analysis is greatly simplified because the taint-

ing engine only needs to reason about simple operations like

substring extraction and concatenation.

In addition to lowering semantics of complex operations,

JASIL explicitly models procedure call/return semantics,

parameter evaluation, parameter passing, and object cre-

ation and destruction. Property look-ups on JavaScript ob-

jects and accesses to native objects such as the DOM or

window objects are converted to operations on a functional

map in JASIL (denoted by β[η] in its type system). This

canonicalization of references makes further analysis eas-

ier.

In JASIL, each object, variable or data element is iden-

tified by its allocated storage address, which obviates the

need to reason about most forms of aliasing. As one exam-

ple of how this simplification allows robust reasoning, con-

sider the case of prototype-based inheritance in JavaScript.

In JavaScript, whenever an object O is created, the ob-

ject inherits all the properties of a prototype object corre-

sponding to the constructor function, accessible through the

.prototype property of the function (functions are first-

class types in JavaScript and behave like normal objects).

The prototype object of the constructor function could in

turn inherit from other prototype objects depending on how

they are created. When a referenceO.f is resolved, the field



Sources

document.URL

document.URLUnencoded

document.location.*

document.referrer.*

window.location.*

event.data

event.origin

textbox.value

forms.value

Critical Flow Sinks Resulting Exploit

eval(), window.execScript(),

window.setInterval(), Script injection

window.setTimeout()

document.write(...), document.writeln(...),

document.body.innerHtml, document.cookie

document.forms[0].action, HTML code injection

document.create(), document.execCommand(),

document.body.*, window.attachEvent(),

document.attachEvent()

document.cookie Session fixation attacks

XMLHttpRequest.open(,url,), Command Injection and

document.forms[*].action, parameter injection

Figure 8. (Left) Sources of untrusted data. (Right) Critical sinks and corresponding exploits that may
result if untrusted data is used without proper validation.

f is first looked up in the object O. If it is not found, it is

looked up in the prototype object ofO and in the subsequent

objects of the prototype chain. Thus, determining which

object is referenced byO statically requires a complex alias

analysis. In simplifying to JASIL, we instrumented the in-

terpreter to record the address identifier for each variable

used after the reference resolution process (including the

scope and prototype chain traversals) is completed. There-

fore, further analysis does not need any further reasoning

about prototypes or scopes.

To collect a JASIL trace of a web application for analy-

sis we instrumented the browser’s JavaScript interpreter to

translate the bytecode executed at runtime to JASIL. This

required extensive instrumentation of the JavaScript inter-

preter, bytecode compiler and runtime, resulting in a patch

of 6032 lines of C++ code to the vanilla WebKit browser. To

facilitate recovering JavaScript source form from the JASIL

representation, auxiliary information mapping the dynamic

allocation addresses to native object types is embedded as

metadata in the JASIL trace.

4.3 Dynamic taint analysis

Character-level precise modeling of string operation se-

mantics. JavaScript applications are array- and string- cen-

tric; lowering of JavaScript to JASIL is a key factor in rea-

soning about complex string operations in our target appli-

cations. Dynamic taint analysis has been used with suc-

cess in several security applications outside of the realm of

JavaScript applications [31, 32, 43]. For JavaScript, Vogt

et al. have previously developed taint-tracking techniques

to detect confidentiality attacks resulting from cross-site

scripting vulnerabilities [39]. In contrast to their work, our

techniques model the semantics of string operations and are

character-level precise.

We list the taint sources and sinks used by default in

FLAX in Figure 8. FLAX models only direct data de-

pendencies for this step; additional control dependencies

for path conditions are introduced during AS construction.

It performs taint-tracking offline on the JASIL execution

trace, which reduces the intrusiveness of the instrumen-

tation by not requiring transformation of the interpreter’s

core semantics to support taint-tracking. In our experience,

this has resulted in a more robust implementation than our

previous work on online taint-tracking [29]. Taint propa-

gation rules are straight-forward — assignment and arith-

metic operations taint the destination operand if one of

the input operands is tainted, while preserving character-

level precision. The JASIL string concatenation and

substring operations result in a merge and slicing oper-

ation over the ranges of tainted data in the input operands,

respectively. The convert operation, which imple-

ments character-to-integer and integer-to-character con-

version, typically results from simplifying JavaScript en-

code/decode operations (such as decodeURI). Taint prop-

agation rules for convert are similar: the output is tainted

if the input is tainted. Other native functions that are not ex-

plicitly modeled are treated as uninterpreted transfer func-

tions, acting merely to transfer taint from input parameters

to output parameters in a conservative way.

Tracking data in reflected flow. During this anal-

ysis data may be sent to a backend server via the

XMLHttpRequest object. We approximate taint propa-

gation across such network data flows by using an exact

substring match algorithm, which is a simplified form of

black-box taint inference techniques proposed in the previ-

ous literature [33, 34]. We record all tainted data sent in

a reflected flow, and perform a longest common substring



function acceptor (input) {

var path_constraints = true;

var re = /(.*?):\/\/(.*?)\.com/;

var matched = re.exec(input);

if (matched == null) {

path_constraints = path_constraints & false;

}

if (!path_constraints) return false;

var domain = matched[2];

var valid = /example/.test(domain);

path_constraints = path_constraints & valid;

if (!path_constraints) return false;

var port = matched[1];

valid = /https?/.test(port);

path_constraints = path_constraints & valid;

if (!path_constraints) return false;

return true;

}

http://evilexample.com/

exec

testtest

/(.*?):\/\/(.*?)\.com/

http evilexample

http://
evilexample.

com

/https?/ /example/

TrueTrue

Figure 9. (Left) Acceptor Slice showing validation and parsing operations on event.origin field in

the running example. (Right) Execution of the Acceptor Slice on a candidate attack input, namely
http://evilexample.com/

match on the data returned. Any matches that are above a

threshold length are marked as tainted, and the associated

taint metadata is propagated to the reflected data. This tech-

nique has proved sufficient for the AJAX applications in our

experiments.

Implicit Sinks. Certain source operations do not have ex-

plicit sink operations. For instance, in our running exam-

ple (Figure 2) the event.origin field has no explicit

sink. However, this field must be sanitized before any use

of event.data. We model this case of implicit depen-

dence between two fields by introducing an implicit sink

node for event.origin at any use of event.data

in critical sink operation. This has the effect that for

any use of event.data, the path constraint checks on

event.origin are implicitly included in the acceptor

slice.

4.4 Acceptor Slice Construction

After dynamic taint analysis identifies a sink point,

FLAX extracts a dynamic executable slice from the pro-

gram, by walking backwards from the critical sink to the

source of untrusted data. In order to fuzz the slice, the

JASIL slice is converted back to a stand-alone JavaScript

function. This results in an executable function that retains

the operations on IS , and returns true for any input that

executes the same path as the original run. The slicing op-

eration captures (a) data dependencies, i.e., all operations

directly processing IS and (b) a limited form of control de-

pendencies, i.e., all path constraints, conditions of which

are directly data dependent on IS . Path constraints are con-
ditional checks corresponding to each branch point which

force the execution to take the same path as IS . Data val-
ues which are not directly data dependent (marked tainted)

in the original execution, are replaced with their concrete

constant values observed during the program execution.

Acceptor Slice for the Running Example. The instruc-

tions operating on the event.origin in the running ex-

ample that influences the implicit eval sink is shown in

Figure 9. It shows the AS for the the event.origin

field of our example, after certain optimizations, like dead-

code elimination. This program models all the validation

checks performed on that field, until its use in the implicit

sink node at eval.

4.5 Sink­aware fuzzing

This step in our analysis performs randomized testing on

each AS . Note that each critical sink operation can result

in a different kind of vulnerability. Therefore, it is useful

to target each sink node (S) with a set of specialized at-

tack vectors. For instance, an unchecked flow that writes to

the innerHTML property of a DOM element can result in

HTML code injection and our fuzzer attempts to inject an

HTML tag into such a sink. For eval sink, our testing tar-

gets the injection of JavaScript code. We incorporate a large

corpus of publicly available attack vectors for XSS [19] in

our fuzzing.



While testing for an attack input that causes AS to re-

turn true, our fuzzer utilizes the aforementioned attack vec-

tors and a grammar-aware strategy. Starting with the initial

benign input, the fuzzer employs a mutation-based strategy

to transform, prepend and appends language nonterminals.

For each choice, the fuzzer first selects terminal characters

based on the knowledge of surrounding text (such as HTML

tags, JavaScript nonterminals) and finally resorts to random

characters if the grammar-aware strategy fails to find a vul-

nerability.

To check if a candidate attack input succeeds we use a

browser-based oracle. Each candidate input is executed in

AS and the test oracle determines if the specific attack vec-

tor is evaluated or not. If executed, the attack is verified as

being a concrete attack instance. For instance, in our run-

ning example, the event.origin acceptor slice returns

true for any URL principal which is not a subdomain of

http://example.com4. Our fuzzer tries string muta-

tions of the original domain http://example.com and

quickly discovers that there are other domains that circum-

vent the validation checks.

5 Evaluation

Our primary objective is to determine if taint enhanced

blackbox fuzzing is scalable enough to be used on real-

world applications to discover vulnerabilities. As a second

objective, we aim to quantitatively measure the benefits of

taint enhanced blackbox fuzzing over vanilla taint-tracking

and purely random testing. In our experiments, FLAX dis-

covers 11 previously unknown vulnerabilities in real appli-

cations and our results show that our design of taint en-

hanced blackbox fuzzing offers significant practical gains

over vanilla taint-tracking and fuzzing. We also investigate

the security implications of the vulnerabilities by construct-

ing proof-of-concept exploits and we discuss their varying

severity in this section.

5.1 Test Subjects

We selected a set of 40 web applications consisting of

iGoogle gadgets and other AJAX applications for our ex-

periments. Of these, FLAX observed untrusted data flows

into critical sinks for only 18 of the cases, consisting of 13

iGoogle gadgets and 5 web applications. We report detailed

results for only these 18 applications in Table 1. We tested

each subject application manually to explore its functional-

ity, giving benign inputs to seed our automated testing. For

instance, all of the iGoogle gadgets were tested by visiting

the benign URL used by the iGoogle web page to embed the

4Recall that the running example acceptor does not have an explicit

sink, therefore only return true on success and false otherwise.

gadget in its page. To explore each application’s function-

ality, we entered data into text boxes, clicked buttons and

hyperlinks, simulating the behavior of a normal user.

Google gadgets constitute the largest fraction of our

study because they are representative of third-party appli-

cations popular among internet users today. Most gadgets

are reported to have thousands of users with one of the vul-

nerable gadgets having over 1,350,000 users, as per the data

available from the iGoogle gadget directory on December

17th 2009 [2]. The other AJAX applications consist of so-

cial networking sites, chat applications and utility libraries

which are examples of the trend towards increasing code

sharing via third-party libraries. All tests were performed

using our FLAX framework running on a Ubuntu 8.04 plat-

form with a 2.2 GHz, 32-bit Intel dual-core processor and 2

GB of RAM.

5.2 Experimental Results

FLAX found several distinct taint sinks in the applica-

tions, only a small fraction of which are deemed vulnerable

by the tool. Column 2 and 3 of Table 1 reports the num-

ber of distinct sinks and number of vulnerabilities found by

FLAX respectively. The use of character-level precise taint

tracking in FLAX prunes a significant fraction of the input

in several cases for further testing. To quantitatively mea-

sure this saving we observe the average sizes of the orig-

inal input and the reduced input size in the acceptor slices

(used for subsequent fuzzing), which is reported in columns

4 and 5 of Table 1 respectively. We measure the reduction

in the acceptor size, which results in substantial practical

efficiencies in subsequent black-box fuzzing. We find that

the acceptor slices are small enough to often enable manual

analysis for a human analyst. Columns 6 and 7 report the

size of dynamic execution trace and the average size of the

acceptor slices respectively5. The last two columns in Ta-

ble 1 show the number of test cases it takes to find the first

vulnerability in each application and the kinds of vulnera-

bility found.

5.2.1 Prevalence of CSV vulnerabilities

Of the 18 applications in which FLAX observed a danger-

ous flow, it found a total of 11 vulnerabilities which we re-

port in the third column of Table 1. The vulnerabilities are

evidence of a broad range of attack possibilities, as con-

ceptualized in Section 2, though code injection vulnerabil-

ities were the highest majority. FLAX reported 8 code in-

jection vulnerabilities, 1 origin mis-attribution vulnerabil-

ity, 1 cookie-sink vulnerability and 1 application command

5In our implementation, the acceptor slices are converted back to

JavaScript form for further analysis: the size of acceptor slices increases as

a result of this conversion by a factor of 4 at most in our implementation,

as compared to the numbers reported in column 7



Name # of Verified Size of Size of Trace Size Avg. size # of Tests Vulnerability Type

Taint Sinks Vuln. Total Inputs Acceptor (# of insns) ofAS to Find

Inputs 1st Vuln.

Plaxo 178 0 119 60 557,442 36 - -

Academia 1 1 334 21 156,621 286 16 Origin Mis-attribution

Facebook Chat 44 0 127 127 6,460,591 1,151 - -

ParseURI 1 1 78 62 55,179 638 6 Code injection

AjaxIM 20 2 28 28 223,504 517 93 Code injection , Application

Command Injection

AskAWord 3 1 26 26 59,480 611 93 Cookie Sink

Block Notes 1 1 474 96 11,539 766 28 Code injection

Birthday Reminder 6 0 632 246 2,178,927 664 - -

Calorie Watcher 3 0 681 20 449,214 733 - -

Expenses Manager 6 0 1,137 65 522,788 1,454 - -

MyListy 1 1 578 47 17,054 1,468 4 Code injection

Notes LP 5 0 740 30 144,829 3,327 - -

Progress Bar 151 0 496 264 118,108 475 - -

Simple Calculator 1 1 27 27 72,475 4 93 Code injection

Todo List 1 0 632 40 647,849 1,181 - -

TVGuide 2 1 586 66 24,144,843 188 8,366 Code injection

Word Monkey 1 1 26 26 237,837 99 93 Code injection

Zip Code Gas 5 1 412 69 410,951 248 2 Code injection

Table 1. Applications for which FLAX observed untrusted data flow into critical sinks. The top 5
subject applications are websites and the rest are iGoogle gadgets.

injection vulnerability. We confirmed that all vulnerabili-

ties reported were true positives by manually inspecting the

JavaScript code and concretely evaluating them with exploit

inputs. The severity of the vulnerabilities varied by appli-

cation and source of untrusted input, which we discuss in

section 5.2.3.

5.2.2 Effectiveness

We quantitatively measure the benefits of taint enhanced

blackbox fuzzing over vanilla taint-tracking and random

fuzzing from our experimental results.

False Positives Comparison. The second column in Ta-

ble 1 shows the number of distinct flows of untrusted data

into critical sink operations observed; only a fraction of

these are true positives. Each of these distinct flows is an in-

stance where a conservative taint-based tool would report a

vulnerability. In contrast, the subsequent step of sink-aware

fuzzing in FLAX eliminates the spurious alarms, and a vul-

nerability is reported (column 3 of Table 1) only when a

witness input is found. It should be noted that FLAX can

have false negatives and could have missed bugs, but com-

pleteness is not an objective for FLAX.

We manually analyzed the taint sinks reported as safe

by FLAX and, to the best of our ability, found them to be

true negatives. For instance, we determined that most of the

sinks reported for the Plaxo case were due to code which

output the length of the untrusted input to the DOM, which

executed repeatedly each time the user typed a character in

the text box. Many of the true negatives we manually an-

alyzed employed sufficient validation – for instance, Face-

book Chat application correctly validates the origin prop-

erty of every postMessage event it received in the exe-

cution. Several other applications validate the structure of

the input before using it in a JavaScript eval statement or

strip dangerous characters before using it in HTML code

evaluation sinks.

Efficiency of sink-aware fuzzing. Table 1 (column 8)

shows the number of test cases FLAX generated before it

found the vulnerability for the cases it deems unsafe. Part

of the reason for the small number of cases on average, is

that our fuzzing leverages knowledge of the sink operations.

Column 4 of the Table 1 shows that the size of the origi-

nal inputs for most applications is in the range of 100-1000

characters. Slicing on the tainted data prunes away a signif-

icant portion of the input space, as seen from column 5 of

Table 1. We report an average reduction of 55% from the

original input size to the size of test input used in acceptor

slices.

Further, the average size of an acceptor slice (reported

in column 7 of Table 1) is smaller than the original execu-

tion trace by approximately 3 orders of magnitude. These

reductions in test program size for sink-aware fuzzing allow

sink-aware fuzzing to work with much smaller abstractions

of the original application, thereby significantly improving

the efficiency of this step.

Qualitative comparison to other approaches. Figure 10

shows one of the several examples that FLAX gener-

ates which can not be directly expressed to the languages



function acceptor(input) {

//input = ’{"action":"","val":""}’;

must_match = ’{]:],]:]}’;

re1 =/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;

re2 =/"[ˆ"\\\n\r]*"|true|false|null|

-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;

re3 = /(?:ˆ|:|,)(?:\s*\[)+/g;

rep1 = input.replace(re1, "@");

rep2 = rep1.replace(re2, "]");

rep3 = rep2.replace(re3,"");

if(rep3 == must_match) { return true; }

return false;

}

Figure 10. An example of a acceptor slice
which uses complex string operations for in­
put validation, which is not directly express­

ible to the off­the­shelf string decision proce­
dures available today.

supported by off-the-shelf existing string decision proce-

dures [21,25], which FLAX deems as safe. We believe that

even human analysis for such cases is tedious and error-

prone.

5.2.3 Security Implication Evaluation and Examples

To gain insight into their severity we further analyzed the

vulnerabilities reported by FLAX and created proof-of-

concept exploits for a few of them to validate the threat.

All vulnerabilities were disclosed to the developers either

through direct communication or through CERT.

Origin Mis-attribution in Facebook Connect. FLAX

reported an origin mis-attribution vulnerability for

academia.edu, a popular academic collaboration and

document sharing web site used by several academic

universities. FLAX reported that the application was vul-

nerable due to a missing validation check on the origin

property of a received postMessage event. We manually

created a proof-of-concept exploit which demonstrates that

any remote attacker could inject arbitrary script code into

the vulnerable web application. On further analysis, we

found that the vulnerability existed in the code for Face-

book Connect library, which was used by academia.edu as

well as several other web applications. We disclosed the

vulnerability to Facebook developers on December 15th

2009 and they released a patch for the vulnerability within

6 hours of the disclosure.

Code Injection. FLAX reported 8 code injection vulnera-

bilities (DOM-based XSS) in our target applications, where

untrusted values were written to code evaluation constructs

in JavaScript (such as eval, innerHTML). One DOM-

based XSS vulnerability was found on each of the follow-

ing: 6 distinct iGoogle gadgets, an AJAX chat application

(AjaxIM), and one URL parsing library’s demonstration

page. We manually verified that all of these were true pos-

itives and resulted in script execution in the context of the

vulnerable domains, when the untrusted source was set with

a malicious value. Four of the code injection vulnerabilities

were exploitable when remote attackers entice the user into

clicking a link of an attacker’s choice. The affected web

applications were also available as iGoogle gadgets and we

discuss an a gadget overwriting attack using the CSV vul-

nerabilities below. The remaining 4 code injection vulnera-

bilities were self-XSS vulnerabilities as the untrusted input

source was user-input from a form field, a text box, or a text

area. As explained in section 2.1, these vulnerabilities do

not directly empower a remote attacker without additional

social engineering (such as enticing users into copy-and-

pasting text). All gadget developers we were directly able

to communicate with positively acknowledged the concern

and agreed to patch the vulnerabilities.

Gadget Overwriting Attacks. In a gadget overwriting at-

tack, a remote attacker compromises a gadget and replaces

it with the content of its choice. We assume the attacker

is an entity which controls a web-site and has the ability to

entice the victim user into clicking a malicious link. We de-

scribe a gadget overwriting attack with an example of how

it can be used to create a phishing attack layered on the gad-

get’s CSV vulnerability. In a gadget overwriting attack, the

victim clicks an untrusted link, just as in a reflected XSS

attack, and sees a page such as the one shown in Figure 11

in his browser. The URL bar of the page points to the le-

gitimate iGoogle web site, but the gadget has been compro-

mised and displays attacker’s contents: in this example, a

phishing login box which tempts the user to give away his

credentials for Google. If the user enters his credentials,

they are sent to the attacker rather than Google or the gad-

get’s web site. The attack mechanics are as follows. First,

the victim visits the attacker’s link which points to the vul-

nerable gadget domain (typically hosted at a subdomain of

gmodules.com). The link exploits a code injection CSV vul-

nerability in the gadget and the attack payload is executed in

the context of the gadget’s domain. The attacker’s payload

then spawns a new window which points to the full iGoogle

web page (http://www.google.com/ig) containing

several gadgets including the vulnerable gadget in separate

iframes. Lastly, the attacker’s payload replaces the con-

tent of the vulnerable gadget’s iframe in the new window

with contents of its choice. This cross-window scripting is

permitted by browser’s same-origin policy because the at-

tacker’s payload and the gadget’s iframe principal are the

same.

We point out that Google/IG is designed such that each

iGoogle gadget runs as a separate security principal hosted

at a subdomain of http://gmodules.com. This mitigation

prevents an attacker who compromises a gadget from hav-



Figure 11. A gadget overwriting attack layered on a CSV vulnerability. The user clicks on an untrusted
link which shows the iGoogle web page with an overwritten iGoogle gadget. The URL bar continues
to point to the iGoogle web page.

ing any access to the sensitive data of the google.com do-

main. In the past, Barth et al. described a related attack,

called a gadget hijacking attack, which allows attackers6 to

steal sensitive data by navigating the gadget frame to a mali-

cious site [7]. Barth et al. proposed new browser frame nav-

igation policies to prevent these attacks. Gadget overwrit-

ing attacks resulting from CSV vulnerabilities in vulnerable

gadgets can also allow attacker to achieve the same attack

objectives as those remedied by the defenses proposed by

Barth et al. [7].

Cookie-sink Vulnerabilities. FLAX reported a cookie cor-

ruption vulnerability in one of AskAWord iGoogle gad-

gets which provide the AskAWord.com dictionary and spell

checker service. FLAX reported that the cookie data could

be corrupted with arbitrary data and additional cookie at-

tributes could be injected, which is a low severity vulnera-

bility. However, on further analysis, we found that the gad-

get used the cookie to store the user’s history of previous

searches which was echoed back on the server’s HTML re-

6A gadget attacker described by Barth et al. requires the privilege that

the integrator embeds a gadget of the attacker choice, which is different

from the attacker model in a gadget overwriting attack

sponse without any client-side or server-side validation. We

subsequently informed the developers about the cookie at-

tribute injection and the reflected XSS vulnerability through

the cookie channel, and the developers patched the vulner-

ability on the same day.

Application Command Injection. One vulnerability re-

ported by FLAX for AjaxIM chat application indicated that

such bugs can result in practice. FLAX reported that un-

trusted data from an input text box could be used to inject

application commands. AjaxIM uses untrusted data to con-

struct a URL that directs application-specific commands to

its backend server using XMLHttpRequest. These com-

mands include adding/deleting chat rooms, adding/deleting

friends and changing the user’s profiles. FLAX dis-

covered a vulnerability where an unsanitized input from

an input-box is used to construct the URL that sends a

GET request command to join a chat room. An attacker

can exploit this vulnerability by injecting new parame-

ters (key-value pairs) to the URL. A benign command re-

quest URL to join a chat room named ‘friends’ in AjaxIM

is of the form ajaxim.php?call=joinroom&room=friends.

We confirmed that by providing a room name as



‘friends&call=addbuddy&buddy=evil’ results in overrid-

ing the value of the call command from ‘joinroom’ to a

command that adds an untrusted user (called “evil”) to the

victim’s friend list.

The severity of this vulnerability is very limited as it does

not allow a remote attacker to exploit the bug without addi-

tional social engineering. However, we informed the devel-

opers and they acknowledged the concern agreeing to fix

the vulnerability.

6 Related Work

CSV vulnerabilities constitute attack categories that have

similar counterparts in server-side application logic — this

has driven a majority of the research on web vulnerabilities

to analysis of server-side logic written in languages such

as PHP. First, we discuss the techniques employed in these

and compare it our taint enhanced blackbox fuzzing. Next,

we compare the benefits of our approach with purely taint-

based analysis approaches, and other semi-random testing

based approaches. Finally, we discuss the recent frame-

works proposed for analysis of JavaScript applications.

Server-side vulnerabilities. XSS, SQL injection, directory

traversal, cross-site request forgery and command injection

have been the most important kind of web vulnerabilities in

the last few years [36]. Techniques including static anal-

yses [22, 24], model checking [28], mixed static-dynamic

analyses [4], as well as decision procedure based automated

analyses [21,25] have been developed for server-side appli-

cations written in PHP and Java. Of these techniques, only

a few works have aimed to precisely analyze custom valida-

tion routines. Balzarotti et al. were the first to identify that

the use of custom sanitization could be an important source

of both false positives and negatives for analysis tools in

their work on Saner [4]. The proposed approach used static

techniques for reasoning about multiple paths effectively.

However, the sanitization analysis was limited to a subset of

string functions and ignored validation checks that manifest

as conditional constraints on the execution path. Though an

area of active research, the more recent string decision pro-

cedures do not yet support the full generality of constraints

we practically observed in our JavaScript subject applica-

tions [9, 21, 25].

Dynamic taint analysis approaches. Vogt et al. have de-

veloped taint-analysis techniques for JavaScript to study the

problem of confidentiality attacks resulting from XSS vul-

nerabilities [39]. In addition to the features provided by

their work, our taint-tracking techniques are character-level

precise and accurately model the semantics of string oper-

ations as our application domain requires such precision.

Purely dynamic taint-based approaches have been used for

runtime defense against web attacks [18, 29, 32, 35, 37, 38,

43]. However, applying these to discover attacks is difficult

because reasoning about validation checks is important for

precision. Certain tools such as PHPTaint [38] approximate

this by implicitly clearing the taint when data is sanitized

using a built-in sanitization routine.

Directed random testing. Our taint enhanced blackbox

fuzzing technique shares some of the benefits of a related

technique called taint-based directed whitebox fuzzing [15].

Both techniques use taint information to narrow down the

space of inputs that are relevant; however, our technique

uses the knowledge of the sink to perform a directed black-

box analysis for the vulnerability as opposed to their white-

box analysis due to the limitation of current decision proce-

dures in our application domain. Techniques developed in

this paper are related to dynamic symbolic execution based

approaches [11,12,16,21] which use decision procedures to

explore the program space of the application. As discussed

earlier, automated decision procedures for theory of strings

today do not support the expressiveness to directly solve

practical constraints we observe in real JavaScript applica-

tions. In comparison, our taint enhanced blackbox fuzzing

algorithm is a lighter-weight mechanism which, in prac-

tice, efficiently combines the benefits of taint-based anal-

yses with randomized testing to overcome the limitations of

decision-procedure based tools.

JavaScript analysis frameworks. Several works have re-

cently applied static analysis on JavaScript applications [14,

17]. In contrast, we demonstrate the practical effectiveness

of a complimentary dynamic analysis technique and we ex-

plain the benefits of our analyses over their static counter-

parts. GateKeeper enforces a different set of policies us-

ing static techniques which may lead to false positives. Re-

cent frameworks for dynamic analyses [44] have been pro-

posed for source-level instrumentation for JavaScript; how-

ever, source-level transformations are much harder to rea-

son about in practice due to the complexity of the JavaScript

language.

Browser vulnerabilities. CSV vulnerabilities are related

to, but significantly different from browser vulnerabili-

ties [5, 7, 13, 41]. Research on these vulnerabilities has

largely focused on better designs of interfaces that could be

used securely by mutually untrusted principals. In this pa-

per, we showed how web application developers use these

abstractions, such as inter-frame communication interfaces,

in an insecure way.

7 Conclusion

This paper presents a new class of vulnerabilities, which

we call CSV vulnerabilities. We proposed a hybrid ap-

proach to automatically test JavaScript applications for the

presence of these vulnerabilities. We implemented our ap-



proach in a prototype tool called FLAX. FLAX has discov-

ered several real-world bugs in the wild, which suggests that

such tools are valuable resources for security analysts and

developers of rich web applications today. Results from

running FLAX provide key insight into the prevalence of

this class of CSV vulnerabilities with empirical examples,

and point out several implicit assumptions and program-

ming errors that JavaScript developers today make.
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