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Abstract

Many modern software platforms today, including
browsers, middleware server architectures, cell phone op-
erating systems, web application engines, support third-
party software extensions. This paper proposes InvisiType,
an object-oriented approach that enables platform develop-
ers to efficiently enforce fine-grained safety checks on third-
party extensions without requiring their cooperation. This
allows us to harness the true power of third-party software
by giving it access to sensitive data while ensuring that it
does not leak data.

In this approach, a platform developer encapsulates all
safety checks in a policy class and selectively subjects ob-
jects at risk to these policies. The runtime enforces these
policies simply by changing the types of these objects dy-
namically. It uses the virtual method dispatch mechanism
to substitute the original methods and operations with code
laced with safety checks efficiently. The runtime hides the
type changes from application code so the original code can
run unmodified.

We have incorporated the notion of InvisiType into the
Python language. We have applied the technique to 4 real-
world Python web applications totaling 156,000 lines of
code. InvisiType policies greatly enhance the security of the
web applications, including MoinMoin, a popular, 94,000-
line Wiki Engine. MoinMoin has a large number of third-
party extensions, which makes security enforcement impor-
tant. With less than 150 lines of Python code, we found 16
security bugs in MoinMoin. This represents a significant
reduction in developers’ effort from a previous proposal,
Flume, which required 1,000 lines of C++ code and modi-
fications to 1,000 lines of Python code.

Our InvisiType policies successfully found 19 cross-site
scripting vulnerabilities and 6 access control errors in total.
The overhead of applying the policies is less than 4 percent,
indicating that the technique is practical.

1 Introduction

Third-party software extensions play an important role in
many software frameworks today. On the client side, impor-
tant extensions include ActiveX, Javascript and Java applets
embedded in web pages. Many “middleware” server plat-
forms provide a base on which developers can build their
applications: examples include servlets on web servers and
extensions in wiki engines. Finally, there is an emerging
class of server platforms that let end users supply their own
code: these include application engines at Google, Face-
book and MySpace. This paper describes a new object-
oriented approach to allow software platform developers to
efficiently impose fine-grained security policies on third-
party software as well as platform software.

1.1 Motivation

Third-party code adds greatly to the difficulty of securing
software. Even if we require that third-party code be signed
by a trusted party, it is likely that third-party software has
more security vulnerabilities than the underlying software
platform. Not only are third-party coders typically less ex-
perienced, they may be ignorant of the implicit principles
used in the design of the platform. As a case in point, exten-
sions for the popular MoinMoin Wiki system often neglect
access control checks for Wiki pages. In addition, third-
party code seldom goes through the same level of review
and testing as the platform itself.

Measures used today to guard against malicious software
are too crude for third-party software extensions, which are
responsible for providing much of the user-desired features
on a platform. Android isolates applications from each
other by executing them in different virtual machines. The
Google App Engine constrains direct operating system ac-
cesses and limits resource usage with a quota system. The
Java Development Kit (JDK) uses sand-boxing to restrict
unsigned code from accessing certain system resources, and
allows permissions to be granted to classes and objects be-



longing to protection domains [10]. After permissions are
granted however, JDK users do not have control over how
the resources are used or what objects are accessible. For
example, once network access is granted, it is impossible to
enforce that only non-sensitive data are sent over the net-
work.

1.2 Object-Oriented Safety Checks

It has been found that software often have implicit de-
sign rules that govern the integrity of the program. Take for
example SQL injection, an important class of security vul-
nerabilities. SQL injection [1, 16] can be eliminated by sim-
ply disallowing access of the database with tainted strings,
input strings that have not been checked for malicious con-
tents. A number of static and dynamic techniques have been
proposed to find such kinds of errors in programs automat-
ically [11, 12, 18]. A promising approach is to allow appli-
cation writers to define application-specific safety checks.
Aspect programming [14, 15] allows programmers to write
down codes related to, say, a safety check in one place, and
many lines of code scattered throughout the program may
be changed syntactically [19, 20].

Going beyond a syntactic rewrite system, our goal is to
extend the principles and benefits of object-oriented pro-
gramming to safety checks. Safety checks of primitive
types, such as null pointer and array bound checks, have
been built into high-level programming languages. They
improve software robustness as well as relieve programmers
of the burden of inserting the error checking code. Analo-
gously, classes often have class-specific safety checks, such
as the prevention of data leakage via access right violations
and security vulnerabilities through unchecked inputs.

Allowing class designers to specify safety checks in a
class and having the runtime system enforce these checks
efficiently, we bring automatic safety check benefits to a
higher semantic level. Fine-grained control enables us to
harness the true power of third-party software by giving it
access to sensitive data and resources in the system without
unduly exposing the platform to security attacks.

1.3 Introduction of InvisiType

Our approach to providing object-oriented security
check builds upon the fundamental idea of class hierarchies
in object-oriented programming. Roughly, our approach is
to create subclasses that extend the original class definitions
with virtual methods that contain safety checks. Through
the virtual method dispatch mechanism, subclassing en-
ables software to be extended efficiently with no changes
to the original code.

More specifically, we introduce the notion of a new

type called the InvisiType1 to enforce object-oriented safety
checks. An InvisiType is a class with special properties
known to the language’s runtime system.

Multiple inheritance. Safety-checking policies are en-
capsulated as policy classes derived from the InvisiType
class. We can impose a policy on an ordinary class by cre-
ating a new subclass, called a protected class, that inherits
from both the original class and the policy subclass itself.

Suppose we wish to keep track of input strings to guard
against SQL injection vulnerabilities. We can create a taint
policy, TaintPolicy, subclassed from InvisiType. A
tainted string is an instance of a protected class derived from
the string class and the TaintPolicy class.

Safety-checking rules. A policy class defines how all
operations, including method invocations, built-in opera-
tors, and native function calls, in an ordinary class are to
be augmented with safety checks. It also defines exception-
handling code. The runtime system of the language auto-
matically enforces the safety-checking rules and raises ex-
ceptions where necessary. The exceptions may be caught to
dynamically recover from the error conditions.

Third-party code transparency. Protected classes are
nameless and invisible to the application code, as suggested
by the name InvisiType. This ensures that third-party code
works without modification; even the type() function call
returns the original type. Users of a class are oblivious to the
safety checks, just like they are oblivious to the insertions
of null checks.

Dynamic selection of policy enforcement. Unlike
primitive safety checks, object-oriented safety checks can
be complex and can incur higher overheads. It is necessary
to allow application writers to choose dynamically the in-
stances of a class to be subjected to safety policies. For ex-
ample, only input strings need to be treated as tainted; fur-
thermore, they should be classified as untainted after they
are checked for malicious contents.

In our design, we make inheritance and disinheritance of
safety policies a dynamic feature by generating protected
classes and changing the protection type of an object dy-
namically. To this end, we introduce a pair of built-in func-
tions, demote and promote. Demote puts an instance of an
ordinary class under a safety policy by making the instance
a member of the protected class derived from the instance’s
class and the policy class. A demoted object is also referred
to as a protected object in this paper. Conversely, promote
turns a protected instance back to an ordinary instance of
the original class.

Efficient implementation. Unlike syntactic rewrite sys-
tems such as Aspect Programming [14, 15] that change the
definition of methods for every instance, InvisiType allows

1The name InvisiType is inspired by Invisalign, which is a series of
transparent teeth aligners used as an alternative to traditional metal dental
braces.



method definitions to change only for selected instances,
and only for the duration an instance is subject to safety
policies. The safety checking rules are implemented by
modifying the virtual method dispatch mechanism. As a re-
sult, the runtime system can enforce the safety checks with
a negligible overhead. This makes InvisiType especially ef-
ficient for low-level safety checks that need to be applied
only to selected objects.

1.4 Contributions of this Paper

This paper aims to minimize vulnerabilities in software
caused by coding errors in third-party extensions as well
as platform softwares. Examples of errors of this sort in-
clude SQL injection, cross-site scripting, and incorrect ac-
cess control checking. It is not the intention of this paper to
guard against malicious third-party developers.

The premise of this paper is that software platform de-
velopers can insert fine-grained control over third-party ex-
tension efficiently and transparently by encapsulating safety
checks in an object-oriented manner. The specific contribu-
tions of this paper are described below.

Concept of InvisiType. We propose encapsulating
object-oriented safety-checking rules as policy classes,
which are subclasses of the InvisiType class. Ordinary ob-
ject instances can be subjected to these policies selectively,
dynamically, and efficiently. The policies are enforced by
the runtime system, requiring no change be made to the
third-party code to be protected.

Common security policies described using Invisi-
Type. We use InvisiType to implement common security
policies such as taint tracking or access control on objects.
These policies are generally applicable and can enhance se-
curity of many applications.

An efficient implementation of InvisiType for Python.
We have incorporated InvisiType into Python, a widely used
programming language. The design of InvisiType requires a
relatively small change to the runtime system. The overhead
incurred is found to be negligible.

Enhanced security of Python web applications. We
used the InvisiType technique to enhance the security of 4
widely used Python web applications. These applications
totaled approximately 160,000 lines of source code, not in-
cluding the library code. All the web applications have sup-
port for third-party extensions. One example is the Moin-
Moin Wiki Engine which has a large number of extensions,
and is known to have many security bugs both in its own
distribution and in third-party extensions. We successfully
found two important classes of security bugs in the applica-
tions; in MoinMoin the two classes of security bugs account
for more than 50% of all known security bugs. In total, we
found 25 security bugs in the 4 applications.

1.5 Paper Organization

The rest of the paper is organized as follows. We first
illustrate the concept of InvisiType by showing how to use
it to eliminate cross-site scripting vulnerabilities in web ap-
plications in Section 2. Section 3 presents the rationale and
design of InvisiType. We then discuss the various secu-
rity policies we have implemented using InvisiType in Sec-
tion 4. We describe our implementation of InvisiType in
Python in Section 5. Section 6 presents the experimental re-
sults of applying InvisiType policies to a number of Python
web applications. Finally, Section 7 discusses related work
and Section 8 concludes.

2 Eliminating Cross-Site Scripting With An
InvisiType Policy

Cross-site scripting (XSS) is one of the most common
vulnerabilities that plague web server applications. Attack-
ers can send code to a web browser client if a web ap-
plication echoes back user-input strings directly as output.
Like SQL injection and many other vulnerabilities due to
unchecked inputs, XSS can be prevented with information
flow control, a technique that controls how data flows in-
side the system to the outside world. In this section, we
introduce InvisiType by way of showing how it can be used
to control information flow to prevent XSS.

2.1 Cross-Site Scripting

Let us first consider a simplified example of a cross-
site scripting vulnerability drawn from the login extension
code in the MoinMoin Wiki Engine, as shown in Figure 1.
The function cgi.FieldStorage() returns a Python
dictionary-like object representing the HTML form data.
The login extension retrieves the name and password
fields from the form data. If there is no user with the given
name, the code responds with an error message. In this case,
the user-provided input name is echoed back unchanged.
By inserting some malicious Javascript code in the name it-
self, the Javascript gets executed when it is echoed on the
client’s computer, thus launching a cross-site scripting at-
tack.

We can avoid cross-site scripting using the notion of
tainting, which is a basic form of information flow control.
There are four basic constraints in tainting:

Taint Constraint 1. All input strings are considered
tainted.

Taint Constraint 2. A string is considered tainted if it is
a concatenation of one or more tainted strings.



form = cgi.FieldStorage()
...
name = form["name"]
password = form["password"]
if not user.exist(name):
error = "Unknown user name:" + name
...
request.http_headers()
request.write(error)

Figure 1. Cross-site scripting example from
MoinMoin

Taint Constraint 3. Tainted strings cannot be used as ar-
guments in system calls.

Taint Constraint 4. Strings are safe to be used in sys-
tem calls if they cannot be interpreted as executable
Javascript. Strings can be made safe, sanitized, by
replacing characters with special meaning in HTML,
such as replacing “&” with “&amp”, “<” with “&lt”,
and “>” with “&gt”.

This taint policy is applicable across many applications.

2.2 The Taint Policy

Let us show how we use InvisiType in the context of the
Python language to implement tainting. The escape func-
tion of the cgi module in the Python standard library has
already implemented sanitization. Third-party code is ex-
pected to call escape on all input strings before echoing
them back.

The framework developer encapsulates the taint policy
in our system with the definition of TaintPolicy, a sub-
class of InvisiType, as shown in Figure 2. All objects
subjected to this policy are considered tainted. The defi-
nition of syscall enforces Taint Constraint 3, which
states that tainted objects are not allowed to be used in sys-
tem calls. The rest of the definition enforces Taint Con-
straint 2, which states that any concatenation of tainted
strings yields tainted strings. Details of the policy defini-
tion are presented in Section 3.

2.3 Applying the Policy

A framework designer next applies the taint policy by
tainting all input strings until they are escaped. Each in-
put string is tainted by calling demote on the string along
with the TaintPolicy class. Figure 3 shows tainting is

class TaintPolicy(InvisiType):
def __add__(handler, self, other):
return TaintPolicy.propagate(handler,

self, other)
def __radd__(handler, self, other):
return TaintPolicy.propagate(handler,

self, other)
def __getitem__(handler, self, other):
return TaintPolicy.propagate(handler,

self, other)
def __nativecall__(handler, self, args):
return TaintPolicy.propagate(handler,

args)
...
def propagate(handler, *args):
result = InvisiType.call(handler, *args)
# demotes result with TaintPolicy
return taint(result)

def __syscall__(handler, self):
raise OperationError("Tainted object is"+

"used in a system call")

Figure 2. Definition of TaintPolicy

recv = socket.recv
socket.recv = (lambda *args:

demote(recv(*args), TaintPolicy))

Figure 3. Tainting an input string received
from a socket

def escape(s, quote=None):
s = s.replace("&", "&amp;")
s = s.replace("<", "&lt;")
s = s.replace(">", "&gt;")
if quote:
s = s.replace(’"’, "&quot;")

promote(s, TaintPolicy)
return s

Figure 4. Untainting a sanitized string in the
escape function in the cgi module



applied to strings received from a socket. Strings are un-
tainted in the escape method by calling promote on the
sanitized string and the TaintPolicy class, as shown in
Figure 4. The pair of demote and promote operation
implements Taint Constraints 1 and 4.

2.4 Detecting Safety Violations

The runtime system of the language automatically en-
sures that there is no information flow from an input string
to system calls. A tainted string in this system is a string
that has been demoted with the TaintPolicy class. All
input strings are marked as tainted; the taint is propagated
through concatenation; taint is removed when escape is
called; any system call on tainted strings generates an ex-
ception. This example illustrates how fine-grained informa-
tion flow control can be provided in a way that requires no
modification to third-party code, at either the source or bi-
nary level.

3 InvisiType Design

In this section, we present the design and rationale of In-
visiType. We first describe the class hierarchy of policy and
protected classes, then describe how to define the safety-
checking rules. Finally, we describe how InvisiType enables
the platform developers to distinguish between third-party
and platform code using the notion of restricted code do-
mains.

3.1 InvisiType Policy and Protected Classes

As discussed in Section 1, policies are expressed as sub-
classes of InvisiType. A protected class is derived dy-
namically and implicitly, via multiple inheritance, from the
policy and the class of the object being put under the pol-
icy. A platform developer can choose to place individual
object instances under a policy possibly only for a duration.
Thus, the type of an object can change dynamically. An
object’s class hierarchy consists of the classes it belongs to
ordinarily, followed by a dynamically modifiable protected
class hierarchy consisting of one or more protected classes,
as shown in Figure 5. Note that the protected class hier-
archy is visible only to the runtime system and not to the
application software.

The built-in demote and promote functions can be
used to apply a policy to or remove a policy from an object
(Figure 6). Upon demotion, a new protected class imple-
menting the given safety-checking rules in a policy class is
added as the lowest member in the instance’s protected class
hierarchy. Upon promotion, the protected subclass corre-
sponding to the given policy is removed from the object’s
hierarchy.

 

Figure 5. Class hierarchy for InvisiType sub-
classes: normal arrow indicates inheritance sup-
ported in an underlying language and a dotted arrow
indicates inheritance supported by the InvisiType run-
time.

3.2 Safety Checking In InvisiType Classes

InvisiType is designed as an extension of the underly-
ing programming language to allow for application-specific
safety checks. Safety checks are often required when the
state of an object is read or modified and when methods
are invoked on an object. Besides the code written in the
object-oriented programming language itself, we also have
to deal with native methods. Thus, in the following, we de-
scribe how we can add safety checks to each of the three
categories in turn:

1. specific virtual methods

2. language primitives, and

3. native method call.

3.2.1 Method Invocations

A policy class can extend an ordinary class by defining new
virtual methods with the same name. Methods overriding
those in the original class are passed an extra argument by
the runtime system: the method defined in the original class.
This allows the overriding method to invoke the original
method before or after safety checks.

Consider a common safety rule that requires access
control be checked before confidential data can be ac-
cessed. Figure 7 illustrates how this safety rule can
be enforced with AccessControlPolicy, a subclass
of InvisiType. This policy simply overrides the



Function Description
demote(object, invisiType-class) Demote the object by adding the class of the given InvisiType policy to its pro-

tected class hierarchy
promote(object, invisiType-class) Promote the object by removing the given InvisiType policy from its protected

class hierarchy

Figure 6. Signature of the demote and promote functions

accessConfidentialData with one that raises an ex-
ception. All newly created clients are subjected to the Ac-
cessControlPolicy by demoting them with respect to the
policy class. They are promoted back when they pass the
checkACL method.

class AccessControlPolicy(InvisiType):
def accessConfidentialData(method, self):
raise Exception("Illegal Access")

class Client:
def __init__(self):
...
demote(self, AccessControlPolicy)

def checkACL(self):
...
if success == True:
promote(self, AccessControlPolicy)

def accessConfidentialData(self):
# accessing confidential data

Figure 7. Over-riding a virtual method in Ac-
cessControlPolicy

3.2.2 Language Primitives

Dynamic languages like Python have a set of built-in oper-
ation handlers that can be overridden by the application. A
policy class can insert fine-grained safety checks by over-
riding these operation handlers. For example, it can restrict
access to certain attributes of a protected object by chang-
ing the getattr operation handler; or it can restrict the
methods that can be invoked on protected objects by adding
checks to the call operator handler. Like the above,
the new handlers also take the policy object and the handler
for its superclass as additional arguments.

Let us return to the TaintPolicy example defined in
Figure 2. The policy class overrides operation han-
dlers such as add , radd and getitem .
When a binary add operation is applied to an object sub-
jected to the TaintPolicy, the add method in the
TaintPolicy class is called. Passed to the method are
the the original handler of the add operation ( add in

string type) and original arguments to the handler( self
and other). The add method calls the propagate
method and passes all the arguments. Propagate dele-
gates the operation to the handler and demotes the result
object with TaintPolicy.

Taint propagation is implemented similarly for other op-
erations such as getitem which returns a copy of the
character at the given index from the string. Taint also prop-
agates through string native methods such as upper()
which returns a copy of the string converted to the upper
case. The nativecall method is called for such na-
tive methods, and it calls the propagate method to per-
form taint propagation by demoting the return value of the
native functions.

3.2.3 Native methods

We now describe how we handle native method implemen-
tations. System calls are a particularly important subset of
native methods as they interface with the external world.
We often have to perform special checks to avoid leakage
of sensitive data from the application. We need to moni-
tor which of these native methods are called, and check the
protected parameters passed into such methods.

To handle native methods, the InvisiType
class has pre-defined four methods that are in-
voked by the runtime system: syscall ,
nativecall , before nativecall arg ,

and after nativecall arg , as described in
Table 1.

The InvisiType runtime invokes the syscall
method before a system call is made. A policy class can
override the syscall to add safety checks to system
calls. The syscall method takes two arguments: the
system call function and the demoted object on which the
system call is invoked.

In the TaintPolicy example in Figure 2, the
syscall method is overridden to throw an exception

if any system call is to be attempted on a protected object.
This prevents tainted strings from flowing into system calls.

Whenever the InvisiType runtime encounters a na-
tive method invocation to a protected object, it will call
nativecall . Again, policy classes can perform

safety checks by overriding the nativecall method.
nativecall takes as arguments the native method



Method Description
syscall Method invoked when a protected object is used as an argument to a system call
nativecall Method invoked when a natively implemented method of a protected object is called
before nativecall arg Method invoked before a protected object is used as an argument to a natively implemented method
after nativecall arg Method invoked after a protected object is used as an argument to a natively implemented method

Table 1. Pre-defined methods in the InvisiType class

called, the demoted object, the arguments, as well as a set of
keywords summarizing the relevant semantic information in
the native methods. For example, the keyword readonly
specifies if the native method to be invoked only reads and
not writes the object. This information allows the policy
class to react accordingly.

Finally, whenever a protected object is passed
as an argument to a native method of another
object, the before nativecall arg and
after nativecall arg methods are invoked

before and after the native method, respectively. Over-
riding this method allows safety checks to be added before
the object is used or after the native method returns.

3.3 Restricted Mode

To enable policies that differentiate between the third-
party code versus the framework itself, the InvisiType sys-
tem introduces the notion of a restricted mode. It has two
built-in functions:

import restricted(modulename) imports an un-
trusted or third-party module,

in restricted mode() returns true if the current
frame is executing code from a restricted module. This
can be used to restrict access in restricted modules.

We now demonstrate how in restricted mode()
can be used to prevent untrusted functions from modify-
ing protected objects. The ReadonlyPolicy, as shown
in Figure 8, overrides two methods: setattr and
nativecall . The former prevents restricted code

from writing to a protected object’s attributes directly. The
latter prevents restricted code from invoking any native
methods that do not possess the readonly property.

3.4 Language Compatibility

The InvisiType technique is applicable to object-oriented
languages supporting class inheritance. Multiple inheri-
tance is not required at the language level, as it is not ex-
posed at the programming level. The only class having
more than one immediate superclass is a protected class. Its
inheritance from a policy class is set up by the InvisiType
runtime system upon the invocation of a demote operation.

class ReadonlyPolicy(InvisiType):
def __setattr__(handler, self, name, attr):
if in_restricted_mode():
raise OperationError(
"Object %s is read-only" % self)

return handler(self, name, attr)
def __nativecall__(nativemethod, self,

args, readonly):
if not readonly and in_restricted_mode():
raise OperationError(
"Object %s is read-only" % self)

return nativemethod(*args)

Figure 8. ReadonlyPolicy: prevents restricted
modules from changing protected objects

Highly reflective languages such as Smalltalk, Ruby,
PHP and Javascript (which are also known as dynamic lan-
guages) are more suitable for InvisiType than less reflective
languages. In those languages, every access to an object
goes through the type dispatch mechanism, which may be
intercepted by the InvisiType runtime to override a default
behavior. This allows, for instance, the addition of safety
checks for attribute access by overriding an attribute access
operation.

It is not possible to utilize the full power of the Invisi-
Type concept in less reflective languages like Java or C#.
Since only method invocations use the type dispatch mech-
anism in these languages, the InvisiType idea is only appli-
cable to adding safety checks to method invocations.

InvisiType is compatible with optimization techniques
such as Just-In-Time (JIT) compilation. The JIT compiler
dynamically compiles a method at runtime by specializ-
ing the method with the most common argument types. If
the method is called with arguments of uncommon types,
the JIT runtime falls back on the interpreter to execute the
method. If an InvisiType instance is used as an argument for
a method for the first time, the JIT runtime considers it as an
unseen type and uses the interpreter to execute the method.
When the argument of the InvisiType is used enough times,
JIT will compile the method specializing with the Invisi-
Type.



InvisiType Policy Description
TaintPolicy Restrict an object from being used in system calls and propagate taint
ReadonlyPolicy Remove write access to an object in restricted mode
WriteonlyPolicy Remove read access to an object in restricted mode
NoAccessPolicy Remove read and write access to an object in restricted mode

Table 2. Pre-defined security policies in InvisiType

4 Security Policies

Throughout the paper, we have presented a number of se-
curity policies to illustrate the capability of the InvisiType
system. These policies, summarized in Table 2, are signif-
icant in their own right because they can be used for many
different applications.

The taint policy is useful not just for catching security
vulnerabilities in web applications. It can be used for pre-
venting data leakage of downloaded consumer applications.
For example, a mobile application on a smart phone may
wish to access some contact information. Today, an end
user may be given a choice of whether to grant it access,
which would also allow the application to export the infor-
mation if it so pleases. With the taint policy, we can prevent
the third-party application from exporting the contact infor-
mation.

Here are some other scenarios in which the various poli-
cies can be used. The readonly policy can be used to ensure
that a third-party application does not accidentally modify
configuration information which may lead to security vul-
nerabilities such as allowing access to arbitrary files. The
writeonly policy can be used to ensure that untrusted code
can initialize a session object but not read it back. This
policy guarantees that the untrusted code cannot leak in-
formation related to previous sessions to the outside. The
NoAccessPolicy may be useful to hide top-secret informa-
tion, like cryptographic keys, from third-party software.

5 An InvisiType Implementation

We have implemented a prototype of the InvisiType run-
time system as part of the Python programming language.

5.1 PyPy Implementation

We implemented our InvisiType runtime system on
PyPy. Designed to be flexible and support experimentation,
PyPy is a Python interpreter written in Python itself [28].
The interpreter is written in RPython, a restricted subset of
Python, which can be statically compiled. Some of the poli-
cies, TaintPolicy for instance, described in this paper
are also written in RPython for performance consideration.
The C-translated version of the PyPy interpreter we use has

a performance comparable to CPython, a reference imple-
mentation for Python [27]. Our prototype is compatible
with optimizations implemented in PyPy interpreter. For
instance, as an optimization, PyPy interpreter emits special
bytecodes for method access and built-in function access;
the InvisiType runtime works with the optimizations effort-
lessly.

5.2 Protected Classes

As discussed in Section 3, a protected class inherits from
a policy class and the class of the object it protects. A new
data structure needs to be generated for each class of objects
a policy protects, as illustrated in Figure 9. The protected
classes are kept in a cache for the sake of reuse.

TaintPolicy
Class

StringType

UnicodeType

__getattr__
__setattr__

...

__getattr__
__setattr__

...

__getattr__
...

__getattr__

…

InvisiType
Stub code

ProtectedClass1

ProtectedClass2

StringType

UnicodeType

 

Figure 9. Examples of protected classes: nor-
mal ProtectedClass1 inherits from String type and
TaintPolicy; ProtectedClass2 inherits from Unicode
type and TaintPolicy. The generated protected classes
are cached in the policy class.

In Python, a type has a table of handler functions for
each of the standard operations in the language such as
getattr and setattr for getting and setting an

object attribute, respectively. We create a new table of oper-
ation handlers for each protected class. If the handler is not
overridden by the policy, the handler entry simply points to
the corresponding handler in the class being protected. If it
is, the entry points to a stub code defined in InvisiType.
This stub code is responsible for invoking the handler with
an additional parameter: the overridden method. Similarly,
the overridden virtual methods in the virtual method table



for the class also point to the stub code, which again sup-
plies the extra argument.

5.3 Demoted Objects

type
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Figure 10. Object demoted to be an Invisi-
Type instance: (1) Type pointer of the object orig-
inally points at its type. (2) When a policy is applied
by calling the demote function, the InvisiType runtime
creates a subclass inheriting from the applied policy
class and the original type of the object. The runtime
examines virtual methods in the policy class and adds
stub code to the generated subclass. (3) Finally, the
runtime changes the type pointer of the object to point
at the generated InvisiType subclass.

Objects in our system have an additional field, called the
InvisiField, which points to a list of policy objects that
the object is currently subjected to, as shown in Figure 10.
The type pointer of a demoted object points to the protected
class of the lowest member of the protected class hierarchy.

A demote operation is implemented in the following
way:

1. When an object is demoted, the runtime examines if
attributes are defined in a given policy class. If so, the
runtime instantiates a policy object and appends it to
the list of policy objects.

2. The runtime changes the class hierarchy of a given ob-
ject by inserting the protected class in the class hier-
archy. The protected class is created if one does not
already exists.

3. The type pointer of the object is changed to point to the
protected class.

If a policy class defines attributes or overrides methods in
an original class, attribute/method resolution order is mod-
ified to match the new class hierarchy. The runtime does

this by overriding getattr operation handler, which
handles attribute/method access.

A promote operation removes the given policy class
from the class hierarchy as well as the corresponding policy
object from the InvisiField.

5.4 Native Methods

The nativecall method is implemented by
overriding the getattr operation handler. If the
nativecall method is defined in a policy class, the

protected class corresponding to this policy automatically
includes an overriding getattr , the attribute access
handler. When getattr detects that a native method
of the object is accessed, it copies the method object and
demotes it to override the call handler before return-
ing it. The call handler invokes nativecall
instead of the actual native method code.

To support the before nativecall arg ,
after nativecall arg , and syscall meth-

ods, we use Python’s runtime type-checking mechanism.
Since Python is a dynamically typed language, a na-
tive method has to check whether the arguments to the
method have the correct type for the method. We aug-
ment the type-checking code to check if an argument
of InvisiType subclass is passed to a native method and
invoke the appropriate before nativecall arg ,
after nativecall arg , or syscall method

accordingly.

5.5 Maintaining Transparency

We also modified the Python runtime system to hide the
protected class hierarchy from the application writer. This
involves making changes to only a few built-in functions
such as type(object) and isinstance(object,
type).

5.6 Restricted Mode

Two built-in functions for restricted mode, import re-
stricted() and in restricted mode(), are im-
plemented using the restricted execution support in
Python. The Python Interpreter executes code in re-
stricted mode unless the built-in namespace associated
with the code is bound to the standard built-in module.
Import restricted() function binds built-in names-
pace to a cloned built-in module before importing a mod-
ule, thus making the module code to run in restricted mode.
Similar technique is being used to restrict capabilities in ap-
plications on Google AppEngine [31].



5.7 Summary

InvisiType allows programmers to encapsulate safety
checks in an object-oriented manner, separating the con-
cerns of safety checks from the representation and usage
of the objects. TaintPolicy, for instance, expresses the
security policy for general tainted objects. The same policy
can be applied to different classes of data. Third-party soft-
ware can be run with the TaintPolicy enforced without
any code modifications.

It is interesting to contrast this approach to code re-
writing systems that add instrumentation code to the byte-
code. Our approach has the advantage that InvisiType adds
overhead to only the selected object instances; bytecode re-
writing adds overhead to the code invoked on all instances
of the objects. Also, simplicity is another advantage of
our approach. Not only is instrumentation at the bytecode
level complex, but bytecode re-writing imposes a non-trivial
overhead for dynamically loaded code.

6 Experimental Results

Besides implementing the security policies described
above, we have applied InvisiType to four widely-used
open-source Python web applications to find cross-site
scripting vulnerabilities and access control errors. We suc-
cessfully found bugs in every one of these applications with
relatively little effort, while incurring a low runtime over-
head.

6.1 Applications

We have chosen a set of widely-used Python web ap-
plications that allow third-party extensions. Table 3 shows
the number of lines of code in the standard distributions of
these platforms, which in some cases also include a few of
the more popular extensions.

1. PyBlosxom is a personal weblog system. Over 90 ex-
tensions have been developed for this platform; the no-
table ones include Lucene extension which searches
weblogs, and a photo-gallery extension that shows
photos for a weblog entry.

2. ViewVC is a tool for viewing the contents of CVS and
SVN repositories using a web browser. ViewVC has
extensions for third-party source repository systems
such as the popular, commercial Perforce system.

3. Roundup is a web-based issue/bug tracking system.
It has well-defined interfaces for extensions to allow
project-specific customization.

4. MoinMoin is a large and very popular Wiki system.
MoinMoin provides a central repository for exten-
sions [22]; over 200 third-party extensions have been
developed to date.

Application Description Source LOC
PyBlosxom A lightweight file-based 5,999

weblog system
ViewVC Web interface for 14,964

version control repositories
Roundup Issue tracking system 43,788
MoinMoin Extensible Wiki Engine 92,438

Table 3. Summary of applications

MoinMoin is substantially bigger than the rest and has
the largest number of extensions. We have conducted
a comprehensive case study of this application and will
present it in Section 6.4, after describing the general results
on all these applications as a whole.

6.2 Security Errors

All these applications are known to have XSS errors. To
catch XSS errors, we needed to modify only the standard
Python library to implement a taint policy like the one in
Figure 2. We did not need to change the software platform
code at all.

Roundup and MoinMoin are known to also have access
control errors. We implemented access control policies for
Roundup and MoinMoin in a manner similar to that de-
scribed in Figure 7. They require changing less than 100
and 150 lines of code in the software platform, respectively.
No changes are made to any of the extensions.

Table 4 shows the number of previously reported XSS
and access control violations for each of the four applica-
tions [23, 26, 29, 30, 34, 36]. Running these applications
with inputs known to trigger these errors, we found that the
InvisiType policies are successful in catching every one of
these errors.

Application Name # of Security Bugs
XSS ACL

PyBlosxom 3 0
ViewVC 1 0
Roundup 2 3
MoinMoin 13 3

Table 4. Number of security bugs in the appli-
cations



6.3 InvisiType Policy Overhead

To determine the overhead of the InvisiType approach,
we measure the time the applications take without Invisi-
Type, then with the InvisiType extension, and finally with
all the policies enforced. Table 5 reports the measurements
of the overhead averaged over ten runs. We found that the
overhead imposed by the InvisiType system in the Python
interpreter is negligible, being less than 1.5% in all the four
applications. The overhead due to the taint and access con-
trol policies is also minor, with the largest still under 4%.

Application InvisiType Overhead Policy Overhead
PyBlosxom 0.5% 4.0%
ViewVC 0.3% 0.5%
Roundup 1.3% 3.7%
MoinMoin 1.5% 0.7%

Table 5. Overhead of the InvisiType system
and security policies.

As a stress test, we wrote a taint micro-benchmark that
does nothing but manipulate various-sized strings. The
overhead of the InvisiType implementation itself remains
less than 1.5%. If none of the strings are considered tainted,
then there is no additional overhead. If we taint all strings,
then the performance degrades by as much as 14.1%. This
illustrates the power of the InvisiType system where over-
head is incurred only on those instances that need protec-
tion. If the overhead was uniform for all objects of the same
type, the web applications we studied would have a very
high overhead since they manipulate mostly strings.

6.4 MoinMoin Case Study

In this section, we describe our experience in applying
InvisiType policies to the MoinMoin Wiki system [21]. We
chose MoinMoin for our case study not only because it is
the biggest and has the most extensions, but since there was
a previously reported attempt to secure MoinMoin, we are
able to provide a comparison with previous work.

6.4.1 MoinMoin Overview

MoinMoin is a popular open-source wiki system imple-
mented in Python. Many well-known communities such as
Apache, Debian, Ubuntu and Python use MoinMoin as a
collaborative documentation tool.

MoinMoin started as a simple wiki engine; in its first re-
lease, MoinMoin had 11,000 lines of code and had no sup-
port for third-party plugins. As it became popular, Moin-
Moin grew quickly. As of version 1.8.0, MoinMoin is as

large as 92,000 lines of code, with support for third-party
macros/plugins and access control for wiki pages.

This rapid growth in size and complexity led to several
security issues. The MoinMoin official web site shows that
24 security bugs have been found since 2007 [23]; this num-
ber includes bugs found in the MoinMoin distribution alone.
It is likely that hundreds of third-party plugins have similar
security issues. Sixteen out of the 24 reported bugs fall into
two categories: cross-site scripting vulnerabilities and ac-
cess control errors.

6.4.2 Taint Tracking in MoinMoin

To prevent cross-site scripting, we started by implementing
the taint policy described in Figure 2. We soon found that
tainting every string received from a socket is too strict. The
reason is that the escape method in the cgi module is not
the only way to sanitize a string. More specifically, Moin-
Moin uses Python’s standard HTTP server library to pro-
cess HTTP requests. The library checks if received requests
conform to the HTTP request syntax; doing so automati-
cally ensures that Javascript is not included in the request,
making it an effective sanitizer. As a matter of fact, since
all request URIs are echoed back with the content of a page,
treating HTTP requests as tainted would raise a false alarm
each time a page is displayed.

This shows that the InvisiType system works only as well
as the policies. Fortunately, the false alarms make it rela-
tively easy for the platform developer to tighten up the spec-
ification of the policy. We can fix this problem by modify-
ing the BaseHTTPRequestHandler class in the HTTP
server in the Python standard library, as shown in Figure 11.
After the parse request method finishes parsing and
syntax checking, we can safely promote the parsed strings
back to the normal string type.

class BaseHTTPRequestHandler:
def parse_request(self):
...
requestline = self.raw_requestline

# Syntax check of HTTP request

self.command=promote(command,
TaintPolicy)

self.path=promote(path, TaintPolicy)
self.request_version=promote(version,

TaintPolicy)

Figure 11. Untainting the strings that are
checked by the HTTP Server library



6.4.3 Access Control Checking for Wiki Pages

Wiki pages in MoinMoin have access control lists (ACL)
that manage which users or groups can access the page. For
example, an ACL of a page can specify that Alice can read
and write the page, but all other users have only read access.
The access control in MoinMoin is implemented by requir-
ing developers to call an access control checking function
before reading from or writing to a wiki page. As a result,
the access control checking code is scattered throughout the
code; as of version 1.8.0, access control checks are found in
76 different places across 30 different files.

The implementation of access control checking has been
a source of security problems since it is very easy for devel-
opers to forget to insert the checking code. According to the
MoinMoin web site, there are 3 security bugs caused by dis-
regarding ACL in wiki pages [23]. Even a standard plugin
INCLUDE in the MoinMoin distribution had this problem.
INCLUDE includes a wiki page inside another wiki page;
however, the plugin failed to check the access control list
associated with the included wiki page.

Before explaining how we enhanced the security of
MoinMoin’s access control implementation, we first de-
scribe the current access control implementation. Fig-
ure 12 shows the Page class representing a wiki page
and the AccessControlList class representing access
control list for a wiki page. The handler of each HTTP
request is given its own Page object. It must first call
getACL to get the access control list for the requested wiki
page; it then invokes acl.may (request, name,
"read") where request is the current HTTP request
and name is the user’s login name; if the access control
check succeeds, then it can invoke get raw body to re-
trieve the content of the wiki page. The added complication
is that the getACL method also invokes get raw body
to retrieve the ACL associated with the page. Hence, to
enforce access control check we should restrict the in-
vocation of get raw body, except when called by the
getACL method, until acl.may (request, name,
"read") successfully passes access control.

We enforce access control checking by defining
AccessControlPolicy, as shown in Figure 13, and
subject all pages to the access control policy until their
ACLs have been checked.

To handle the complication that getACL needs to invoke
get raw body, we define an attribute accessingACL
to record the context whether getACL is currently execut-
ing for that page. get raw body is redefined so that it
will throw an exception if it is invoked, not by getACL, on
a protected object.

Every page is guarded by an AccessControlPolicy object
when it is created. In the constructor init of the Page
class, the page instance self is demoted with its own in-
stance of the AccessControlPolicy class. An object

class Page(object):
def get_raw_body(self):

# returns the raw body of the text page
...

def getACL(self, request):
...
acl = self.parseACL()
...
return acl

class AccessControlList(object):
def may(self, request, name, dowhat):

# returns True if user with name has
# access to read, write, delete, etc
...

Figure 12. MoinMoin’s Page class and Ac-
cessControlList class

is promoted back to an ordinary page when the access con-
trol check is performed successfully by the may method.

We have so far described how we enforce access con-
trol on read accesses; similar policies can be defined to pro-
tect the write accesses. We were able to detect all of Moin-
Moin’s known access control bugs. More importantly, our
system can guard against all the access control errors in the
hundreds of existing MoinMoin plugins, without requiring
any code changes be made.

6.4.4 Comparison With Previous Work

Krohn et al. previously attempted to enhance MoinMoin’s
security using Flume [17]. Flume’s approach is based on
OS-level information flow control; they extracted the login
module and made it a separate process. However, Flume
does not address cross-site scripting vulnerabilities since
it is not possible with OS-level information flow control.
Flume cannot be applied to taint tracking which needs fine-
grained information flow control. Moreover, their approach
requires more effort than ours. We used less than 150 lines
of Python code to define and apply the two policies, but
Flume required modifying 1,000 lines of Python code and
adding 1,000 extra lines of C++ code. We also modified the
Python interpreter by adding about 2,000 lines of RPython
code, but this requires significantly less effort than modify-
ing the operating system as in Flume.

7 Related Work

There has been much interest recently in using informa-
tion flow control for improving security on software sys-



class AccessControlPolicy(InvisiType):
def __init__(self):
self.accessingACL = False

def get_raw_body(method, self):
if not self.accessingACL:
raise Exception("Illegal read access")

# invoking get_raw_body method
# in Page class
return method(self)

def getACL(method, self):
self.accessingACL = True
# invoking getACL method in Page class
result = method(self)
self.accessingACL = False
return result

class Page(object):
def __init__(self, request, pagename,

**kws):
...
demote(self, AccessControlPolicy)

class AccessControlList(object):
def may(self, request, name, dowhat):
# after authorized to read the page,
# we promote the page object back.
promote(self.page, AccessControlPolicy)

Figure 13. Enforcing access control checking
for wiki pages

tems. Asbestos [6] and Histar [37] incorporated Decentral-
ized Information Flow Control (DIFC) into new operating
systems. Flume [17] implemented DIFC in the Linux op-
erating system. These projects control information flow be-
tween OS entities such as processes and threads. InvisiType
enables applying security policies at a finer-grained level.
For instance, TaintPolicy introduced in this paper sup-
ports information flow control within a process allowing en-
forcement of the policy on each object in memory.

Myers and Liskov introduced JFlow and its successor
JIF, which are Java-based programming languages with
DIFC support [24, 25]. JIF allows labeling variables to
specify access permissions, and enforces it with static anal-
ysis, thus supporting information flow control. When prop-
erly used, JIF guarantees that there is no information leak-
age in an application written in JIF while InvisiType can-
not give a similar guarantee. However, to take advantage
of it, legacy applications need to be re-written using JIF.
Our scheme allows developers to enforce policies to legacy
applications with minimal modifications; our experience
with MoinMoin shows that the amount of effort is relatively

small.
Guard interface and GuardedObject class are used to en-

force access control policy in Java security architecture [9].
An instance of GuardedObject embeds an object to be pro-
tected and a Guard object. The Guard object represents an
access control policy for the protected object. When the
protected object is requested to be retrieved, the Guard ob-
ject is called upon to check against the access control policy.
This mechanism can enforce access control on individual
objects like InvisiType. However, it cannot describe secu-
rity policies like TaintPolicy described in Section 2.2,
where code needs to be injected into specific methods or
operators.

Sekar et al. introduced the Model-Carrying Code (MCC)
approach, where a security model is extracted from an ap-
plication and the user of the application determines a se-
curity policy that is compatible with the model [32]. At
runtime, MCC guarantees that the selected security policy
is not violated by the application. MCC uses the Behavior
Monitoring Specification Language (BMSL) to capture im-
portant security events, such as entering and exiting system
calls, and describes security policies with regular expres-
sion patterns. Compared to their work, InvisiType adopts a
more object-oriented approach. InvisiType policies are de-
fined as a class hence policies may inherit from other poli-
cies; policies are applied by overriding the default behaviors
of objects to be protected. As a result, InvisiType provides
better abstraction for security policies.

Bytecode re-writing is a technique that modifies byte-
code at static time or at runtime. There has been much in-
terest in this area and there are many generic bytecode re-
writing frameworks [3, 4, 13]. Welch and Stroud used the
binary re-writing technique to enforce security policies on
mobile code [35]. However, our approach differs from those
works in that we implement security policies at the type sys-
tem layer. This makes the implementation relatively simple
and does not incur runtime translation overhead.

Aspect Oriented Programming (AOP) is a programming
paradigm which allows specifying cross-cutting concerns
across multiple classes [15]. There has been much research
in applying AOP to security [5, 33]. Although there are
similarities in that both allow modularizing security con-
cerns, our work differs from these approaches in significant
ways. First, InvisiType is capable of enforcing policies on
individual objects, whereas AOP implementations only al-
low describing aspects for classes. This is essential for se-
curity policies like the taint policy, which requires safety
checks be added at object granularity. Also, InvisiType al-
lows the removal of policies when they are no longer nec-
essary. Thus, no overhead is incurred by unused security
policies. AOP implementations use bytecode re-writing and
even when policies are not used, there is the overhead of in-
serted bytecodes.



The Inlined Reference Monitor (IRM) approach is to
modify an application to include reference monitors, which
observe the execution of the application and take actions
on operations that violate a policy [7, 8]. Transactional
Memory Introspection (TMI) is a reference monitor archi-
tecture that builds on software transactional memory [2]. In
the TMI architecture, reference monitors are invoked when
security-related resources are accessed inside transactions.
InvisiType is a more object-oriented technique than IRM or
TMI since safety checks are encapsulated in policy classes
and the policies are applied to objects by changing the type
of the objects. However, our technique is only applicable to
object-oriented languages while IRM and TMI do not have
such a restriction.

Program Query Language (PQL) allows expressing
application-specific design rules and enforces them via
static and dynamic analysis [19]. Although PQL’s pattern-
matching based query is capable of expressing many
application-specific policies, some policies may not be eas-
ily expressed. PQL does not provide any means to examine
the value of an object. This makes it difficult to express for
instance, MoinMoin access control checking policy. Also,
PQL only allows expressing error patterns; the only way
to enforce a good pattern is to query for every pattern that
violates the good pattern. Finally, PQL does not support
untrusted domain, which is necessary to enforce policies on
third-party code.

8 Conclusion

Third-party software is used across many software plat-
forms today. To help ensure that third-party software fol-
lows fine-grained security policies, we have proposed a gen-
eral type extension concept to object-oriented programming
languages called InvisiType.

InvisiType allows safety policies to be encapsulated in an
object-oriented manner. The platform developers specify all
the safety checks in a class, and can selectively and dynam-
ically decide which object instances are to be subjected to
safety checks. No changes need to be made to third-party
software, at either the source or binary level.

The InvisiType runtime system uses the efficient virtual
method dispatch mechanism to enforce the execution of
these safety checks on selected objects. Unlike source or bi-
nary level instrumentation, the overhead of safety checks is
applied only to those instances considered at risk. This im-
plementation makes it efficient to provide low-level safety
checks, even at the granularity of individual attribute ac-
cesses. Thus, fine-grained control like taint and access con-
trol can be provided efficiently with very little overhead.

Another contribution of this paper is in the security poli-
cies themselves. These policies are general and can be used
across many applications. We have demonstrated the use-

fulness of this approach by showing that we can secure
large, real-life applications with relative ease and low over-
head.
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