
A Simple Generic Attack on Text Captchas

Haichang Gao1*, Jeff Yan2*, Fang Cao1, Zhengya Zhang1, Lei Lei1, Mengyun Tang1,

Ping Zhang1, Xin Zhou1, Xuqin Wang1 and Jiawei Li1

1. Institute of Software Engineering, Xidian University, Xi’an, Shaanxi, 710071, P.R. China
2. Security Lancaster & School of Computing and Communications, Lancaster University, UK

∗Corresponding authors: hchgao@xidian.edu.cn, Jeff.Yan@lancaster.ac.uk

Abstract—Text-based Captchas have been widely deployed
across the Internet to defend against undesirable or malicious
bot programs. Many attacks have been proposed; these fine prior
art advanced the scientific understanding of Captcha robustness,
but most of them have a limited applicability. In this paper,
we report a simple, low-cost but powerful attack that effectively
breaks a wide range of text Captchas with distinct design features,
including those deployed by Google, Microsoft, Yahoo!, Amazon
and other Internet giants. For all the schemes, our attack achieved
a success rate ranging from 5% to 77%, and achieved an
average speed of solving a puzzle in less than 15 seconds on
a standard desktop computer (with a 3.3GHz Intel Core i3 CPU
and 2 GB RAM). This is to date the simplest generic attack
on text Captchas. Our attack is based on Log-Gabor filters; a
famed application of Gabor filters in computer security is John
Daugman’s iris recognition algorithm. Our work is the first to
apply Gabor filters for breaking Captchas.

I. INTRODUCTION

Captcha allows websites to automatically distinguish com-
puters from humans. This technology, in particular text-based
Captchas, has been widely deployed on the Internet to curb
abuses introduced by automated computer programs mas-
querading as human beings. Although many text Captchas
have been broken, the most recent studies, such as one by
a UC Berkeley team [21] and one by Stanford and Google
[6], suggest that Captchas are still an effective security tool.

Captcha has had many failure modes. Designers typically
learn from previous failures to design better schemes. Current
Captchas are much more sophisticated than the earliest gener-
ation designed at Carnegie Mellon. As predicated in [25], this
technology has been going through a process of evolutionary
development, like cryptography, digital watermarking and the
like, with an iterative process in which successful attacks lead
to the development of more robust systems.

The robustness of text Captchas has been an active field in
the research communities. Many attacks have been proposed.
For examples, in 2003, Mori and Malik used sophisticated
object recognition algorithms to break two early designs: EZ-
Gimpy and GIMPY [18]. In 2005, Chellapilla and Simard

attacked many early Captchas deployed on the Internet [19].
Yan and El Ahmad broke most visual schemes provided at
Captchaservice.org in 2006 [24], published a segmentation
attack on Captchas deployed by Microsoft and Yahoo! [25]
in 2008, and broke the Megaupload scheme with a method
of identifying and merging character components in 2010 [1].
In 2011, Bursztein et al. showed that 13 Captchas on pop-
ular websites were vulnerable to automated attacks, but they
achieved zero success on harder schemes such as reCAPTCHA
and Google’s own scheme [5]. In the same year, Yan’s team
published an effective attack on both of these schemes [2]. At
CCS’13, Gao’s team and Yan jointly published a successful
attack on a family of hollow schemes [13]. The latest attack
on Captchas [4] was published in August 2014.

As a side note, other notable attacks include [14, 17, 20,
23, 27]. But they studied alternative Captcha designs such as
animation, image and audio schemes, rather than text ones.
Therefore, we will not look into the details.

These fine prior art advanced the scientific understanding
of Captcha robustness, but most of them have a limited
applicability. Many of them broke specific schemes, and only
a few broke a security mechanism as a whole. We quote the
following from a well-cited paper [25].

The relatively wide applicability of our attack
on the MSN scheme is encouraging. However, we
doubt that there is a universal segmentation attack
that is applicable to all text Captchas, given that
hundreds of design variations exist. Instead, a more
realistically expectation is to create a toolbox (i.e. a
collection of algorithms and attacks, ideally organ-
ised in a composable way) for evaluating the strength
of Captchas.

This toolbox approach has been a common practice (with
a few exceptions) in the Captcha research community, as
evidenced by papers published afterwards. Decaptcha [5], was
a well conceived tool for analysing Captcha robustness and
was considered to be a generic attack, but it followed such a
toolbox approach, as we will explain in details later.

In this paper, we propose a simple but effective attack that
breaks a wide range of text Captchas. Our attack is based on
Log-Gabor filters, a versatile signal processing technique. A
key innovation of John Daugman’s iris recognition algorithm
was to encode iris patterns into binary bits using 2D Gabor
filters [10]. Our attack uses 2D Log-Gabor, a variant of Gabor
filters. By convolving a Captcha image with Log-Gabor filters
of four different orientations (i.e. directions) respectively, we

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23154

extract character components along each orientation. Then, we
use a recognition engine to combine adjacent components in
different ways to form individual characters. The most likely
combination is output as our recognition result.

We have tested our attack on Captchas deployed by top 20
most popular websites according to Alexa ranking [3]. These
real-world Captchas include Google’s new reCAPTCHA, hol-
low schemes, and conventional designs; they represent a wide
range of design features. We have also tested our attack on
much harder Captchas such as an old version of reCAPTCHA
and two other designs. Our attack is designed to aim for sim-
plicity and general applicability, rather than high success rates
for breaking individual schemes. However, it has successfully
broken all the schemes we tested, judged by both criteria
commonly used in the Captcha community [5, 7]. For most
of the schemes, it has achieved a good success rate.

Novelty and significance. Our attack uses a single segmen-
tation and recognition strategy, and it is to date the best in
terms of simplicity, power and general applicability. Breaking
some Captchas is rarely news, but breaking all the Captchas
with a single method that is so simple is surprising (even to
ourselves). Although we have had much experience in breaking
various Captchas, we did not expect at the beginning that our
method would work so well.

Our attack might suggest that the current common practice
of text Captcha designs is doomed, but it does not pronounce
a death sentence to the idea of text Captcha altogether. It’s
highly likely that new text Captchas will be invented. We are
experimenting some new ideas, for example.

On the other hand, another important value of our attack
is that it can be used as a standard test: any new design that
cannot pass this test should not be deployed. Moreover, for
people working in security economics, this work also suggests
the possibility that adversaries can launch concerted automated
attacks on Captchas to reduce their cost.

We organise this paper as follows. Section II briefly intro-
duces the essence of Log-Gabor filters. Section III describes
popular real-world Captchas we collected from top 20 web
sites. Section IV presents technical details of our attack. Sec-
tion V evaluates our attack empirically and compares it with
prior art. Section VI examines various design alternatives and
shows that our attack is optimal among these design choices.
In Section VII, we argue that common countermeasures only
provide a partial defence against our attack. Section VIII
discusses our attack’s implications and concludes the paper.

II. GABOR FILTERS

Gabor filters are powerful signal processing algorithms, and
they offer the best localization of spatial and frequency in-
formation simultaneously. Nobel Physics Prize winner Dennis
Gabor laid their theoretical foundations in 1946. A complex
Gabor filter is defined as the product of a Gaussian kernel and
a complex sinusoid. The temporal (1-D) Gabor filter can serve
as excellent band-pass filters for unidimensional signals (e.g.,
speech). John Daugman extended Gabor’s work to invented
the Spatial (2-D) Gabor Filter [9].

Gabor filters have two main limitations. The maximum
bandwidth of a Gabor filter is limited, approximately about one

octave. If the bandwidth is larger, a non-zero DC component
will exist. If a wide spectrum is needed, Gabor filters are not
optimal.

Proposed by David Field in 1987, Log-Gabor filters [11]
improve normal Gabor filters in the following sense. Log-
Gabor’s transfer function is a Gaussian on a logarithmic
frequency axis. Normal Gabor filters often over-represent the
low frequencies, but it is not the case for the Log-Gabor. Log-
Gabor filters allow arbitrary bandwidth and the bandwidth can
be optimised to produce a filter with minimal spatial extent.
Field suggested that Log-Gabor filters encode natural images
more efficiently than ordinary Gabor functions, and that the
former are consistent with measurements of mammalian visual
systems which indicate we human beings have cell responses
that are symmetric on the log frequency scale.

Mathematically, 2D Log-Gabor filters are constructed in
the polar coordinate system of frequency domain as follows.

G(f, θ) = G(f) ·G(θ) (1)

G(f) = exp {−[log (f/f0)]
2/[log (σ/f0)]

2} (2)

G(θ) = exp [−(θ − θ0)
2/2σ2

θ] (3)

f and θ represent the radial and angle coordinate, respec-
tively. f0 and θ0 represent center frequency and direction of
the filter, respectively. σ and σθ represent radial bandwidth and
directional bandwidth of the filter.

G(f) is the radial component that controls the bandwidth
of the filter, and G(θ) is the angle component that controls the
choice of filter orientations. G(f, θ) defines a complete 2D
Log-Gabor function. By definition, Log-Gabor filters always
have no DC component.

Gabor filters were used before in the context of computer
security, but mainly in the field of biometrics. The most famous
application of Gabor filters in computer security is Daugman’s
iris recognition [10]. Our work is the first application of Gabor
filters to analyse Captcha robustness. A study [8] proposed to
construct Captchas using Gabor sub-space, but its contribution
is entirely orthogonal to ours.

III. REAL WORLD POPULAR CAPTCHAS

We aim to use a wide range of real-world Captchas,
each with distinct design features, to evaluate the effec-
tiveness of our attack. We choose those used by the top
20 most popular web sites (including Google, Facebook,
Youtube, Linkedin, Twitter, Blogspot, Wordpress, Yahoo!,
Baidu, Hao123, Wikipedia, QQ, Microsoft, Amazon, Taobao,
Sina and Ebay), since they all use popular text-based Captchas.
Some of the websites use the same Captcha scheme. For
example, Google, Youtube, Facebook, Linkedin, Blogspot,
Wordpress and Twitter all use reCAPTCHA. We have collected
in total 10 Captcha schemes, as summarized in Table I. With
regard to the reCAPTCHA scheme, we are interested only in
control words, i.e. the right part of each challenge. The left
part is not a text scheme, but involves with a different image
recognition task.

According to font styles and positional relationships be-
tween adjacent characters, current text-based Captchas can

2

TABLE I. TARGET CAPTCHA SCHEMES.

Scheme Website Sample Captcha Characteristics

reCAPTCHA

google, facebook, youtube,

linkedin, twitter, blogspot,

wordpress, google.co.in

CCT scheme,

only digits used, rotation used,

varied font sizes, varied Captcha lengths.

Yahoo!
yahoo.com,

yahoo.co.jp

hollow scheme, varied fonts,

rotation and distortion used,

varied Captcha lengths

Baidu
baidu.com

hao123.com
CCT scheme, rotation used

Wikipedia wikipedia.org

Character isolated scheme,

varied Captcha lengths,

no digits used

QQ qq.com
Hollow scheme, rotation used,

overlap used, varied font sizes

Microsoft
live.com

bing.com

Character isolated scheme,

varied Captcha lengths,

varied font sizes, rotation used

Amazon amazon.com
CCT scheme, constant font,

rotation used

Taobao taobao.com
CCT scheme, rotation used,

large alphabet set

Sina sina.com.cn
CCT scheme, background clutter,

noise arcs used

Ebay ebay.com
CCT scheme, varied font sizes,

rotation used

be classified into three categories: character isolated schemes,
hollow character schemes and ‘crowding characters together’
(CCT) schemes. Clearly, our target schemes cover all these
categories. For example, there are character isolated schemes
(e.g. Microsoft and Wikipedia), hollow schemes (e.g. Yahoo!
and QQ) and CCT schemes (e.g. reCAPTCHA and Baidu).

Moreover, some schemes are with noise arcs (e.g. Sina),
but some without (e.g. Taobao and Ebay). Some schemes use
a fixed string length (e.g. Amazon and Taobao), but some with
a varied string length (e.g. reCAPTCHA and Yahoo!). Some
schemes use rotation, and some do not. Fonts used vary across
different schemes, too.

Overall, these schemes represent a wide spectrum of de-
signs, each with distinctive features.

IV. OUR ATTACK

Our attack includes two main steps:

1) Extracting components. Log-Gabor filters are used to
extract character components from Captcha images along four
directions, respectively. In contrast to previous attacks such
as [4, 13], preprocessing is unnecessary for our attack, and
Log-Gabor filters are applied directly to the images.

2) Partition and recognition. A recognition engine is used
to try different combinations of adjacent components, and then
the most likely combination (or partition) is chosen as the
correct recognition result. We choose k-Nearest Neighbours
(KNN) as our recognition engine, because KNN is a top
performer in text recognition [16].

In the following, we explain the detail of our attack, using
Microsoft, QQ and Baidu Captchas as examples. They are

representatives of the three design categories, namely character
isolated schemes, hollow character schemes and CCT schemes.

(0)

(/4)

(/2)

(3 /4)

Gabor

filters

filter binarize

Fig. 1. Extracting character components.

A. Extracting Components

This step uses Log-Gabor filters to extract character infor-
mation, as shown in Figure 1. We set θ to four different angles,
0, π/4, π/2, and 3π/4. That is, we extract character information
along the four directions by convolving a Captcha image with
each of the filters respectively. We set f0 to 1.414, an empirical
setting that makes extracted components clearly visible. We set
σθ to π/8, σ/f0 to 0.55, resulting in a bandwidth of roughly
2 octaves, which achieve a good balance between retaining
texture structure and removing noise. These configurations
remain the same for all our target Captchas.

This filtering operation is directly applied to gray-scale
images, and then the resulting images are binarised to get
character components in black and white.

Table II shows for each of the schemes our extraction result
along each of the four directions. Each character component
is extracted out along the direction that is closest to it. Among

3

the four directions, it is possible that no component is extracted
at all at some directions, but this is not an issue of concern. In
fact, we discard small components extracted, with little impact
on our follow-up recognition. For the purpose of illustration,
Table II also shows a superposition of character components
extracted from all four orientations.

TABLE II. EXTRACTION RESULTS.

Microsoft QQ Baidu

Angle

0

π/4

π/2

3π/4

+

Note: in this paper, extracted character components are
shown in different colors so that readers can easily distinguish
them from each other.

B. Partition and Recognition

After extracting components, we try to find the most likely
correct combination of adjacent components to form individual
characters. Typically, the number of components is larger
than the number of characters to be formed. Therefore, there
will be many possible combinations (or partitions). We use
a systematic and efficient algorithm to achieve partition and
recognition simultaneously as follows. (Due to page limit, the
Baidu scheme is used to explain key techniques in this step,
but key details of attacking Microsoft and QQ schemes are
shown in Appendix.)

Step 1. Component sorting. Extracted components are
stored in no more than four separate images of the same
dimension. We apply Color Filling Segmentation (CFS) [25]
to pick up all the components from each image, and we record
the coordinates (x, y) of each component’s top-left pixel. All
the components are then sorted by these coordinates, and the
rules for ranking order are the following: x-coordinate has
a higher priority than y-coordinate; the smaller x-coordinate
(i.e. more left), the higher rank; the smaller y-coordinate (i.e.
more upper), the higher rank. The sorted components are then
numerically ordered, starting with 1 meaning the highest rank.

Figure 2 shows an example, where component 1 has the
leftmost pixel among all components and thus is rank-ordered
as number 1; and component 11 has the leftmost pixel among
components 11 to 13.

Fig. 2. All components rank ordered.

Effectively, this step is like creating a superposition of four
extracted images, and then sorting all the extracted components
in a particular order via the above algorithm.

Step 2. Graph building. Our algorithm constructs an n×n
table, where n is the total number of components. For the
example in Figure 2, n = 14.

A cell (i, k) at the intersection of row i and column k in the
table indicates whether it is feasible to combine components
i, i+1,· · ·, k all together to form a larger single component. If
such a combination is feasible, the cell (i, k) will be marked
with ‘•’. Otherwise, the cell (i, k) will be set to NULL. The
infeasible case occurs only in one of the following scenarios:
(1) when i is larger than k (i.e. when a cell’s row index is
larger than its column index, which should be omitted, since
we combine components only in a monotonically increasing
order); or the combination is either (2) too wide or (3) too
thin to form a legitimate character. (Note: the largest possible
character width and the smallest possible character width can
be empirically established with a simple analysis of a sample
dataset; this is a trivial task.)

The initial table for the example in Figure 2 is shown
in Table III, where all plausible component combinations are
marked by ‘•’.

The n× n table gives all the plausible component combi-
nations for an image. Our ultimate task is to use information
in the table to find the most likely way of forming characters,
i.e., finding the best partition. This table is effectively a graph.
Figure 3 gives a directed graph that is equivalent to Table III.

TABLE III. THE INITIAL n× n TABLE FOR THE EXAMPLE IN FIGURE

2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 • • • •

2 •

3 •

4 • • • •

5 • •

6 •

7 • •

8 •

9 • • •

10 • • • •

11 •

12...14

Fig. 3. The equivalent graph of Table 3.

4

This graph building process is similar to the method in [13].
However, a main difference is that they call the recognition
engine to produce a recognition result for each plausible
combination, but we do not call the engine at all.

Step 3. Graph pruning. A node on a graph can be
redundant for our purpose, if there is no feasible path among
all those passing through this node. We use the following
algorithm to detect and remove any redundant node:

i) For each node i (i 6= 1 and i 6= n + 1), using Dijkstra
algorithm to compute the shortest path from node 1 to node i,
and the shortest path from node i to node n+1;

ii) If the sum of the length of these two shortest paths is
larger than the largest possible Captcha string length, node i
will be removed as a redundant node; its connecting edges will
be removed, too. The rationale is simple: the length of a valid
path from node 1 to n+1 should not be larger than the number
of characters in a Captcha string;

iii) If there is no path from node 1 to node i, or no
path from node i to node n+1, we set the length of the
corresponding shortest path to infinity;

iv) This process repeats recursively until no further nodes
are removed after a traversal.

Redundant nodes and their connecting edges in Figure 3,
as detected by the above algorithm, are marked with dotted
lines, indicating that they are to be removed.

Step 4. Recognising component combinations. Then a
trained KNN is used to determine which character each of the
remaining edges in the graph is likely to be. (Preparing KNN is
straightforward, and explained in Section V). We then update
cell (i, k) in the table with the recognition result returned by
the KNN engine for a corresponding edge.

TABLE IV. THE FINAL n× n TABLE GENERATED BY KNN.

1 2 3 4 5 6 7 8 9 10 11...13 14

1 s/0.81 s/0.52

2,3

4 c/0.75 d/0.87

5 d/0.68

6

7 k/0.44 b/0.43

8 n/0.80

9

10 3/0.58

11 3/0.84

12...14

Fig. 4. The equivalent graph of Table 4.

Table IV shows the updated n×n table, and its equivalent
graph is shown in Figure 4. For example, both the cell (1, 3)
in the table and the edge from node 1 to node 4 in the graph

indicate that KNN recognises the combination of components
1 to 3 as ‘s’ with a confidence level of 0.81.

Step 5. Graph search. Now we search the graph to find
an optimal partition. We adopt a dynamic programming (DP)
approach for our graph search, which will find the optimal
partition in only one traversal.

We define that the target problem of DP is to select the
path ending at node n+1 with the largest confidence value
sum and the corresponding step (i.e. the number of edges on
the path) is equal to the Captcha string length (i.e. the number
of characters). Note: this does not mean that our algorithm is
applicable only to Captchas with a fixed string length. Instead,
we easily handle those with a varied string length, e.g. by
enumerating all possible lengths (typically from 4 to 12), with
little performance penalty.

The overlapping sub-problem for DP is for each node j,
the confidence-level sum along the path ending at j should be
the largest. Note that for a path ending at node j, there may
be several possible edge numbers and the largest confidence-
level sum of each case should be recorded, as illustrated in
Table XV in Appendix. The sub-problem’s solution is worked
out with a bottom-up approach, i.e., the solution of node j is
worked out by that of its precursor.

The following pseudo code illustrates our DP process.
The traversal starts from node 1, and ends at node n+1;
the nodes are traversed in an ascending order. An array
value stores the confidence-level sum of each possible step
for each node, result stores the corresponding result string
for each node, step stores the number of current recognised
characters. R is the final recognition result and v is its cor-
responding confidence level sum, confidence and recochar
represent the recognition confidence level and the result of each
feasible component combination, respectively. For example,
confidence[i, j] is the confidence level calculated by KNN
for the combination formed by combining components from i
to j.

Function GetV alue(j) works out the largest confidence
sum and the corresponding result of each step[j] for node j
(i.e. value[j], result[j]), in which prej is a list that stores
all the precursors of node j. Function Main works out the
value[n+ 1] and result[n+ 1]. This is a bottom-up process
since we calculate from value[1] to value[n+1] in sequence.
The final recognition result R is got by Function Select(num).

Generated by our attack program, Table V shows with the
example in Figure 2 the process of finding the optimal partition
with our DP algorithm. DP simplifies the search process by
recording the largest confidence sum of each node. The italic
item highlighted in the table indicates the optimal partition
that has the highest confidence-level sum. That is, “sdn3” is
the recognition result in this case.

5

Procedure Main()
Begin
R← NIL
v ← 0
forj ← 1 to n+ 1

value[j]← 0
result[j]← null
step[j]← 0
if j > 1
GetV alue(j)

Select(n+ 1)
End

Procedure GetValue(j)
Begin

foreach i in prej
if value[i] + confidence[i, j] > value[j]

value[j]← value[i] + confidence[i, j]
result[j]← strcat(result[i], recochar[i, j])
step[j]← step[i] + 1

End
Procedure Select(num)
Begin

foreach i in step[num]
if i in Captcha length

if value[num] > v
v ← value[num]
R← result[num]

End

TABLE V. THE SEARCH PROCESS.

j step[j] Path value[j] result[j]
4 1 1→4 0.81 s

5 1 1→5 0.52 s

7 2 1→4→7 1.56 sc

8 2 1→4→8 1.68 sd

10 3 1→4→7→10 2.00 sck

11 3 1→4→8→11 2.48 sdn

15 4 1→4→8→11→15 3.32 sdn3

V. EVALUATION

A. Attack Results

We have implemented our attack in C# and tested it on all
the target schemes on a desktop computer with a 3.3GHz Intel
Core i3 CPU and 2 GB RAM. We follow common practices
in the literature to evaluate our attack.

Data Collection. For each scheme in Table II, we collected
from the corresponding website 500 random Captchas as
a sample set, and another 500 as a test set. The choice
of target schemes follows a single and objective criterion:
their popularity by Alexa ranking. We collected all the data
randomly, and our data collection was carried out during 2013-
2015.

In this period, the schemes we study are relatively stable,
except that reCaptcha has adopted a non-text scheme.

KNN Engine. Character samples we extracted from sample
sets are all normalized to 28*28 pixels. KNN is a simple
and effective classifier in text recognition. To do character
recognition, we measure the similarity between corresponding
pixels of two images. The confidence level of a recognition
result is also derived from this similarity value.

We assign a larger weight to similar black pixels, but a
smaller weight to similar white pixels, in order to decrease the
importance of matching background pixels in decision making.
If two corresponding pixels do not match, a negative value will
be added to the similarity calculation.

The recognition rate achieved by KNN depends on both
the sample size and the value of k. We determine k value via
cross-validation.

Success rate. Our attack’s success rate and average speed
on each scheme are summarized in Table VI. Our success rates
range from 5.0% to 77.2%, and for a majority of the schemes,
the minimum success rate is 16.2%.

TABLE VI. ATTACK RESULTS.

Scheme Success rate Speed(s)

reCAPTCHA 77.2% 10.27

Yahoo! 5.0% 28.56

Baidu 44.2% 2.81

Wikipedia 23.8% 3.74

QQ 56.0% 4.95

Microsoft 16.2% 12.59

Amazon 25.8% 13.18

Taobao 23.4% 4.64

Sina 9.4% 4.83

Ebay 58.8% 5.98

A commonly accepted goal for Captcha robustness is to
prevent automated attacks from achieving higher than 0.01%
success [7]. But this goal was considered too ambitious by
some researchers. For example, [5] suggested that a Captcha
scheme is broken, if an automated attack achieves a success
rate of 1%. According to either criterion, our attack has broken
all the Captchas deployed by the top 20 websites.

Our success rates on Yahoo! and Sina are relatively low.
For the Yahoo! scheme, our extraction method breaks a long
text string into a large number of (tiny) components, which
produces a huge possible set of combinations. The warping
and overlapping mechanisms used in this Captcha turns out to
be disruptive to our component sorting algorithm, making our
recognition less successful.

For the Sina scheme, because noise arcs are similar to
character components, and thus extracted out by our direc-
tional filtering – they interfered our recognition engine. Those
intersecting arcs that cut through characters are particular
troublemakers.

For the sake of generality and simplicity, no ad-hoc pro-
cessing is used in our attack. It is unsurprising that appropriate
preprocessing can improve our attack’s performance – for
example, in our experiments, some simple hollow filling and
noise arc removal boosted our success rates on Yahoo and
Sina schemes to 10.0% and 21.0%, respectively. Probably more
important, it is worthy noting that without any preprocessing
or scheme-specific optimisations, our attack works on all the
schemes, and thus demonstrates robustness to hollow fonts and
noise arcs to some extent.

Speed. On average, it takes 3 to 14 seconds for our attack
to break most of the schemes. The slowest speed was on the
Yahoo! scheme, nearly 29 seconds – still acceptable, as it is an
excessive usability requirement to demand every human user
to solve a Captcha in less than 30 seconds; some Captchas

6

deployed in the wild reported an average solving speed of
more than 46 seconds [17].

The following reasons explain that it takes more time to
attack the Yahoo! scheme than others. First, it used a much
longer text string than other schemes. Second, because it is
a hollow scheme, our extraction method breaks the whole
string into a large number of components (see Figure 10(a)
for an illustration). This slows down our recognition speed
significantly. Third, it used digits, upper and lower case letters,
and thus had a relatively large alphabet set. This means it takes
more time for the engine to do comparison and recognition.

The fastest speed was on the Baidu scheme. In this scheme,
only four characters are used in each challenge. Thus the
extraction process produced much less character components
than with other schemes, and this significantly reduces our
attack time.

Clearly, our attack is efficient and poses a realistic threat
to all these schemes.

B. Further Applicability Test

We test our attack on the following Captchas that are
generally considered hard.

An old version of reCAPTCHA (Figure 5). The Stanford
team achieved a zero success on attacking this scheme, as
reported in CCS’11 [5]. The reCAPTCHA version that we
broke in the previous section is the new version, which was
carefully tuned and rolled out by Google in September 2013,
as reported by its designers in [6].

(a) Original image (b) Reconstruction

Fig. 5. Early reCAPTCHA.

(a) Original image (b) Reconstruction

Fig. 6. Yandex Captcha.

Yandex scheme (Figure 6). As the largest Russian search
engine in the world, Yandex uses its Captcha in user password
recovery. This is a hollow Captcha, and has never been broken
in the literature. Gao et al’s attack [13] successfully broke a
number of hollow Captchas, but it was not tested on the Yandex
scheme. We implemented their attack, but it failed to break the
Yandex scheme in our experiments, for the following reasons.
Broken contours are heavily used in this design, and so are
thick intersecting interference arcs (i.e., those that cut through
characters). Both are defence methods recommended by [13]
to defeat their attack; these mechanisms make it hard to extract
character strokes from hollow Captchas.

In contrast, our attack reported in this paper achieves a
success rate of 7.8% on reCAPTCHA and 2.2% on the Yandex

scheme. The average attack speed is 8.06 and 15.5 seconds,
respectively. Our attack achieved a lower success rate on
the older reCAPTCHA than on its current version; but the
latter has much better usability, as shown in [6]. The older
reCAPTCHA is rarely used now, probably due to its usability
concerns.

The most recent work by Google [15] achieved a much
higher success for attacking the old reCAPTCHA version
than we do. However, they used millions of training samples,
whereas we used only 500. Also, their approach requires
sophisticated deep-learning algorithms, advanced distributed
computing infrastructure, and computers with powerful CPUs
and huge memory. Moreover, it is unclear how effectively their
approach will work on other Captchas.

We also test our attack on a hard Yahoo! scheme (see
Figure 7), which was the hardest among all the schemes broken
by [4]. Our attack achieved a success rate of 9.2%, better than
the result (5.33%) reported in [4]. Note: as will be compared
later, our attack is also much simpler than theirs.

C. A Comparison with Prior Art

The series of works by Yan and El Ahmad [2, 24, 25] lead
to methods like pixel counting, histogram analysis, and CFS.
These methods are often used as building blocks in successful
attacks, but when used alone, only occasionally constitute a
successful attack.

Decaptcha, proposed in [5], claimed to be a generic attack,
and it works as follows. Decaptcha uses a five-stage pipeline:
preprocessing, segmentation, post-segmentation, recognition,
and post-preprocessing. In each stage, various techniques were
used for different Captchas. For example, in preprocessing
stage, algorithms such as anti-pattern methods and Markov
Random Field algorithm are used to de-noise a Captcha. In
the most critical segmentation stage, Decaptcha ‘attempts to
segment the Captchas using various segmentation techniques,
the most common being CFS which uses a paint bucket flood
filling algorithm’ [5]. Combining a variety of algorithms and
methods as “lego bricks” is a key feature of Decaptcha –
it follows the very toolbox approach. On the other hand,
Decaptcha failed to break the early reCAPTCHA, whereas our
attack can break it. The attacks implemented by Decaptcha
cannot break hollow Captchas, either; but ours can.

In December 2013, a startup company Vicarious [22]
claimed in a video that they designed a method to break a
number of Captchas. Since they revealed no technical details, it
is impossible to determine their work’s validity, and impossible
to judge whether their method is similar to ours or how it
differs. Also, they claimed success only on reCAPTCHA, Ya-
hoo!, Paypal and several (very simple) Botdetect schemes. Our
target schemes are a much wider range and more representative
collection of high-profile Captchas.

Gao et al’s attack on a family of hollow Captchas [13] is
the first work of solving Captchas in a single step that uses ma-
chine learning to attack the segmentation and the recognition
problems simultaneously. They first extract character compo-
nents from hollow fonts, and then try various combinations
with a recognition engine. However, their method only works
on hollow Captchas, as their success in separating connected

7

characters vitally relies on intrinsic properties of hollow fonts.
Their method cannot separate non-hollow characters that
connect with each other, and thus cannot break non-hollow
Captchas. Moreover, even for hollow schemes, their method re-
quires extensive and sophisticated pre-processing, whereas our
attack does not require any traditional pre-processing except
binarisation, a trivial process that converts an image from color
or gray-scale to black and white. Their recognition method is
similar to ours, but our graph search algorithm is significantly
improved, compared to theirs (a detailed comparison is in
Section VI). Overall, our attack is much simpler than theirs, but
with a much wider applicability, e.g. working on both hollow
and non-hollow Captchas. Note: among all the 10 schemes
our attack has broken in this paper, only two of them (Yahoo!
and QQ, both hollow schemes) can be broken by the attack
proposed in [13].

Bursztein et al [4] is the second attack that addresses
segmentation and recognition simultaneously, and it has broken
multiple Captchas. This attack analyses all possible ways of
segmenting a Captcha, and thus it is a brute-force approach in
essence. It works as follows.

As illustrated in Figure 7, they first scan the top pixels of
the Captcha to generate a curve, and scan the bottom pixels to
generate another curve. Then they identify inflection points by
examining the second derivative of the curves. Each potential
cut or segment is constructed by connecting the inflection
points - one from the top, and one from the bottom. This
method produces an exponential number of segments or cuts.

Fig. 7. The attack introduced in [4].

Then they use various heuristics to reduce the number of
cuts, like removing all the cuts that have an angle larger than
30◦, examining the ratio of white pixels to black ones to
eliminate cut lines that pass through too many black pixels,
comparing pixel intensities of the left and right boundaries
to estimate a transition between two letters, and finding cuts
compatible with starting positions.

Next, they use a classifier to pick the “best shards” among
the remaining segments by manually assigning higher weight
to pixels near the centre of the segment, and to darker pixels.
Finally, ensemble learning is used to identify among each
sequence of segments the best possible one as the result.

As the computational cost of their attack “increases expo-
nentially with the length of the Captcha, to the point of becom-
ing prohibitive on long Captchas”, they also resort to various
optimisation strategies to tweak recognition algorithms, e.g. by
considering a window of two letters at a time, to improve the
trade-off between speed and accuracy. To improve recognition
results, they also apply reinforcement learning, i.e. asking
human to manually identify and annotate segments that have
been misclassified.

Their attack is significantly more complex than ours, and
we do not need any of the heuristics they used, as well as the
human efforts they relied on.

VI. DESIGN CHOICES

In this section, we discuss various design alternatives, and
show that our attack is optimal among these design choices.

A. Graph Search Algorithms

We first compare our graph search algorithm (Section 4)
with two related algorithms.

Gao et al. algorithm [13] is based on Depth-First-Search
(DFS). It starts from node 1 in the graph and explores along
each branch until the path length reaches the Captcha string
length before backtracking. All paths of a length equaling to
the Captcha string length in a graph are traversed using DFS,
and then the path ending at n+1 with the largest confidence
level sum is selected. This DFS algorithm is not optimal,
since it explores paths that can’t reach the right edge of the
graph, and re-explores previously visited nodes after their best
following partition has been discovered.

Integer partition algorithm is another novel graph search
algorithm that we conceive for our attack. The rationale is the
following. Assume that m is the Captcha length, our task is
to find the most likely way of forming m characters using n
components, i.e., finding the best partition. This task is similar
to the classical ‘integer partition’ problem: in number theory
and combinatorics, a partition of a positive integer n, is a way
of representing n as a sum of m positive integers. We first
work out all partitions that divide integer n into m parts, then
select the partition with the largest confidence sum.

Compared with the DFS graph search, this algorithm
reduces the search space by skipping paths that do not end
at node n+1. However, it requires working out all partitions
that divide n into m parts, which is expensive.

Our new algorithm introduced in Section 4 is optimized,
compared with both methods discussed above, for the follow-
ing reasons.

First, it prunes the graph to remove all redundant nodes,
and thus reduces the number of times we call the recognition
engine, and reduces the time consumption of our attack.
As it takes about 0.04 seconds to execute a single call to
the KNN in our experiment, if many possible combinations
require calling the KNN, the recognition time in total will
significantly increase. On the other hand, after our graph
pruning, sometimes there remains only a single path, which
is exactly the optimal partition that we look for. Figure 11
shows such an example.

8

Second, our graph search adopts a dynamic programming
approach. It finds the optimal partition in only one traversal,
preventing re-exploring visited nodes.

Empirical evaluation. We implemented all the three algo-
rithms, and compared the results of our attack facilitated by
different search algorithms. Note: all the three algorithms can
handle Captcha schemes with a varied length.

With different search algorithms, our attack achieved the
same success rate. That is to say, the choice of search al-
gorithms does not have an effect on our attack’s success rate.
However, as shown in Table VII, the integer partition algorithm
improves the attack speed achieved by the old search algorithm
for each Captcha scheme. Our new DP search algorithm further
improves the attack speed significantly; the figures in Table VII
include the time for graph pruning, and therefore this is a fair
comparison.

To sum up, both theoretical and empirical analyses in the
above suggest that our new graph search algorithm outperforms
both alternatives.

TABLE VII. ATTACK SPEED VS. GRAPH SEARCH ALGORITHMS.

Scheme

Average attack speed (Seconds)

DP

search

Integer

partition

algorithm

DFS

search

reCAPTCHA 10.27 10.31 10.87

Yahoo! 28.56 33.33 34.32

Baidu 2.81 3.00 3.14

Wikipedia 3.74 3.78 3.83

QQ 4.95 5.15 5.55

Microsoft 12.59 14.93 15.49

Amazon 13.18 14.60 15.28

Taobao 4.64 4.74 4.80

Sina 4.83 4.93 5.03

Ebay 5.98 6.01 6.06

B. Extraction Orientations

We tested our Gabor filters with different combinations of
extraction directions:

3 orientations: 0, π/3, 2π/3;

4 orientations: 0, π/4, 2π/4, 3π/4;

6 orientations: 0, π/6, 2π/6, 3π/6, 4π/6, 5π/6;

8 orientations: 0, π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, 7π/8.

(a) 3 orientations (b) 4 orientations

(c) 6 orientations (d) 8 orientations

Fig. 8. Superimposition of extracted components.

Figure 8 shows a superimposition of the extraction results
achieved by each configuration. Judged by the superimposition

quality, Gabor filters with 4 directions achieves the best per-
formance. When fewer orientations are used, character pixels
along some directions will be missing. When more orientations
are used, character components become fragmented, and the
increased number of components will decrease our attack’s
speed and success rate. These are confirmed by our empirical
results as shown in Table VIII.

TABLE VIII. ATTACK RESULTS ON AMAZON CAPTCHA WITH

DIFFERENT ORIENTATION CONFIGURATIONS

Orientations Success rate
Average attack

speed (Seconds)

3 20.8% 12.25

4 25.8% 14.32

6 9.2% 21.55

8 7.4% 30.01

C. Extracting Methods

2D Gabor filters [10] and steerable filter banks [12] can
extract texture features from an image at any direction. We
tested both for extracting character components in Captcha
images. We compared them with Log-Gabor filters in Table
IX. Log-Gabor filters are the best for our purpose.

TABLE IX. A COMPARISON OF DIFFERENT FILTERS.

2D Gabor Steerable filter Log-Gabor

0

π/4

π/2

3π/4

D. Classifiers

We tested Support Vector Machine, Back-Propagation Neu-
ral Network, Template Matching and Convolutional Neural
Network (CNN, a multi-layer neural network doing deep learn-
ing and extracting features from training samples automatically
and efficiently) as a candidate for our recognition engine.
Among these classifiers, CNN achieved the fastest attack speed
and the best success rate. This result is consistent with the
comparison in [13].

We also compared the performance of KNN and CNN. As
shown in Table X, KNN achieved higher success rates on most
of the schemes than CNN, but CNN was faster most of the
time.

TABLE X. ATTACK RESULTS BY KNN AND CNN.

Schemes
Success rate Speed(s)

KNN CNN KNN CNN

reCAPTCHA 77.2% 38.4% 10.27 10.19

Yahoo! 5.0% 5.2% 28.56 23.81

Baidu 44.2% 46.6% 2.81 2.21

Wikipedia 23.8% 20.4% 3.74 2.90

QQ 56.0% 22.4% 4.95 4.61

Microsoft 16.2% 8.6% 12.59 6.64

Amazon 25.8% 20.2% 13.18 8.68

Taobao 23.4% 20.4% 4.64 5.25

Sina 9.4% 4.4% 4.83 5.21

Ebay 58.8% 32.6% 5.98 5.50

9

VII. IS THERE A DEFENCE?

In principle, some countermeasures may circumvent our
attack to an extent, by mitigating key steps of the attack.

Mitigating component extraction by overlapping, i.e.
make adjacent characters overlap to prevent segmentation,
or by rotating, i.e. rotate characters to some certain angles,
making some strokes of adjacent characters connect or overlap.

Clear directional information is important for our direc-
tional filtering. If characters are connected or overlapped too
much, the connected strokes will make it harder for our
component extraction to work. Rotation can have a similar
impact on our attack.

Mitigating partition and recognition by a variety of
methods, such as increasing the length of Captcha or adopting
a varied length, and using a large alphabet set. These methods
will make the solution space larger, likely resulting in a
decreased attack speed and success rate. Warping characters
and introducing noise arcs will increase recognition difficulty.

We empirically evaluate some most promising countermea-
sures as follows.

We chose Baidu, Taobao and Amazon as the representative
schemes respectively. For each experiment, 500 randomly
collected Captchas were used as a sample set, and another
500 randomly chosen samples as a test set.

1) Overlapping. Overlapping removes space between char-
acters and makes them overlapped, and it is considered by far
the most secure anti-segmentation technique [5].

We use the Baidu scheme as a case study to evaluate the
effectiveness of overlapping. We modify the original Captchas
by increasing character overlapping by 1, 2 and 3 pixels,
respectively, and then run our attack on them. Our new success
rates are 21.2%, 15.2% and 8.4%, respectively, while the
original is 44.2%. The more overlapped the characters, the
less successful our attack became.

2) Rotating. To evaluate the effectiveness of rotating as
a defence, we chose the Taobao scheme for an experiment.
We rotated one or more characters to make adjacent strokes
of different characters connected or overlapping, but kept the
Captcha length and characters unchanged. The success rate our
attack achieved on the hardened test set is 7.8the original set.
This indicates rotating does have a positive effect in enhancing
security.

3) Warping. Warping has two forms: global warping
that transforms the whole Captcha string globally, and local
warping that acts on some of the characters.

We tested both forms of warping on the Amazon scheme
(see Figure 9). With global and local warping applied, respec-
tively, the success rate of our attack dropped from the original
25.8% to 5.4% and 8.8%, respectively.

(a) Original (b) Global warping (c) Local warping

Fig. 9. Warping defense on Amazon Captcha.

4) Combining countermeasures. We also perform a new
set of experiments to test various combinations of the coun-
termeasures, and evaluate each combination’s resistance to our
attack, in the aim of making a further insight into the strength
of combining these mechanisms. There are four different
combinations of these countermeasures and we test all of them.
To achieve consistent and rigorous results, our experiments test
all the countermeasure combinations on a single scheme. We
choose Amazon for our experiments, and the size of both our
sample set and test set is 500.

Table XI summarises our experiment results, listing each
countermeasure and combination along with its influence on
the Captcha’s resistance to our attack.

The results clearly suggest the following. First, the com-
bination of two countermeasures is indeed more secure than
each single countermeasure alone. The combination of three
countermeasures achieves the best defence. Among all single
countermeasure, warping is the most secure one. However,
warping is a double-edged sword; it indeed enhances security,
but too much warping will significantly decrease usability.
What a level of warping is good to strike the right balance be-
tween security and usability is an important issue for Captcha
designers to consider.

Although all the above countermeasures achieve a reduc-
tion of our success rates, our attack still has broken all the
hardened schemes, since it has achieved a success rate of
higher than 1% for each of them. Therefore, these mechanisms
are at most partial defences. On the other hand, in performing
our empirical studies, we did not consider and evaluate the
impact of these defence mechanisms on usability. However, it
is important to strike the right balance between security and
usability in Captcha design [26]. It remains an open problem
what design will be simultaneously usable and robust to our
attack.

VIII. SUMMARY AND CONCLUSION

We have proposed a simple attack on text Captchas. Tested
on real-world Captchas deployed by top 20 most popular web-
sites, and on several Captchas that were generally considered
hard, our attack has broken them all, mostly with a good
success. Although our success rates on a few schemes are
relatively low, we believe that our attack’s general applicability
trumps very high performance. It is more important to be able
to break any novel scheme to some extent, than to break a
single scheme very well.

If an attacker aims to break a particular scheme, ad hoc
attacks might indeed achieve a better success rate than our
generic attack. But when the attacker aims to break multi-
ple schemes, our generic attack means a much better cost-
effectiveness.

In contrast to the common practice of Captcha robustness
analysis, which is based on a toolbox approach, our attack
uses a single segmentation method, and a single recognition
strategy. Our attack is simple, fast and generic, and because
of these characteristics, it is probably the best attack so far.

Our attack is based on a novel application of 2D Log-Gabor
filters. The key insight and innovation that differentiates our
attack from prior art is the following. No matter Captcha texts

10

TABLE XI. COUNTERMEASURE COMBINATIONS.

Experiments Sample Image Reconstruction Image Overlapping Rotating Warping Attack Success

1 X 11.6%

2 X 13%

3 X 8.8%

4 X X 7.6%

5 X X 7.4%

6 X X 6.8%

7 X X X 1.4%

are connected or not, and no matter they use hollow fonts
or not, Log Gabor provides a uniform and effective method
for breaking the images into a small number of meaningful
pieces, i.e. character strokes, in a structured way. These pieces
then can be assembled to reconstruct correct characters with
an intelligent algorithm.

It is known for long that simple cells in the visual cortex
of mammalian brains can be modeled by Gabor functions
[10, 11]. That is to say, perception in the human visual system
is more or less similar to image analysis with Gabor filters.
These profound insights help to explain the power of our
attack, and the failure of common text Captchas that we have
analysed: our humans’ Captcha-solving process can be compu-
tationally approximated by our Gabor filter based recognition
approach. When computers can reliably approximate via an
automated algorithm humans’ solving process, certainly such
Captcha designs are doomed. However, to reach this simple
observation, it takes many years of hard work.

Since the invention of Captcha technology in early 2000,
an open problem that is important for security has been out-
standing in the research communities and intrigued researchers
for 15 years: is there an effective but general attack that breaks
all (representative) text schemes? The implication of resolving
this open problem is apparent: are we on the wrong direction in
text Captcha design? Characters are distorted harder everyday,
but is this really necessary, or just making a legitimate user’s
life harder? Our attack is a step forward towards resolving this
long-standing problem, and contributes to debates around its
implications.

A full defence against our attack is an interesting but
challenging open problem, which we share with the whole
community. We expect our work to inspire novel attacks and
defences, as well as innovative designs in this interesting
interdisciplinary area.

Given the practical relevance and intellectual interest of the
Captcha technology, it is important to ask: Are text Captchas
dead? Our answer is both yes and no. On the one hand, as

illustrated by our attack, the common practice of text Captcha
designs is certainly dubious and shaking. On the other hand,
we believe innovations will be able to bring out next generation
of text Captchas that are more usable and more secure than
its predecessors. We encourage both the research community
and the industry to ponder and discuss: what is the next step
for text Captchas? Or, is it now the time to take alternative
solutions such as image recognition Captchas more seriously?

ACKNOWLEDGEMENTS

We thank Ross Anderson, John Daugman, Jussi Palomäki
and Will Ng for helpful conversations, and thank Venkat
Venkatakrishnan and anonymous reviewers for constructive
comments. Xidian authors are supported by the National
Natural Science Foundation of China (61472311) and the
Fundamental Research Funds for the Central Universities.

REFERENCES

[1] A S El Ahmad, J Yan, and L Marshall. The robustness
of a new captcha. In Proceedings of the Third European
Workshop on System Security, pages 36–41. ACM, 2010.

[2] A S El Ahmad, J Yan, and M Tayara. The robustness
of Google CAPTCHAs. Computing Science, Newcastle
University, 2011.

[3] Alexa. Alexa top 500 global sites. https://www.alexa.
com/topsites.

[4] E Bursztein, J Aigrain, A Moscicki, and J C Mitchell. The
end is nigh: generic solving of text-based captchas. In
8th USENIX Workshop on Offensive Technologies(WOOT
14), San Diego, CA, August 2014. USENIX Association.

[5] E Bursztein, M Martin, and J Mitchell. Text-based
captcha strengths and weaknesses. In CCS’11, pages
125–138. ACM, 2011.

[6] E Bursztein, A Moscicki, C Fabry, S Bethard, J C
Mitchell, and D Jurafsky. Easy does it: more usable
captchas. In CHI’14, pages 2637–2646. ACM, 2014.

11

[7] K Chellapilla, K Larson, P Y Simard, and M Czerwin-
ski. Building segmentation based human-friendly human
interaction proofs, 2005.

[8] Z Dang, J Lei, and J Lan. A method of constructive
captcha based on gabor sub-space. Journal of Computa-
tional Information Systems, 9(8):3093–3099, 2013.

[9] J Daugman. Uncertainty relation for resolution in space,
spatial frequency, and orientation optimized by two-
dimensional visual cortical filters. JOSA A, 2(7):1160–
1169, 1985.

[10] J Daugman. Probing the uniqueness and randomness of
iriscodes: Results from 200 billion iris pair comparisons.
Proceedings of the IEEE, 94(11):1927–1935, 2006.

[11] D J Field. Relations between the statistics of natural
images and the response properties of cortical cells. JOSA
A, 4(12):2379–2394, 1987.

[12] W T Freeman and E H Adelson. The design and use of
steerable filters. IEEE Transactions on PAMI, 13(9):891–
906, 1991.

[13] H Gao, W Wang, J Qi, X Wang, X Liu, and J Yan. The
robustness of hollow captchas. In CCS’13, pages 1075–
1086. ACM, 2013.

[14] P Golle. Machine learning attacks against the asirra
captcha. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 535–542.
ACM, 2008.

[15] I J Goodfellow, Y Bulatov, J Ibarz, S Arnoud, and V Shet.
Multi-digit number recognition from street view imagery
using deep convolutional neural networks. arXiv preprint
arXiv:1312.6082, 2013.

[16] Y Lecun. The mnist database of handwritten digits
algorithm results. http://yann.lecun.com/exdb/mnist/.

[17] M Mohamed, N Sachdeva, M Georgescu, S Gao, N Sax-
ena, C Zhang, P Kumaraguru, P C van Oorschot, and
W B Chen. A three-way investigation of a game-
captcha: automated attacks, relay attacks and usability. In
Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 195–206.
ACM, 2014.

[18] G Mori and J Malik. Recognizing objects in adversarial
clutter: Breaking a visual captcha. In CVPR’03, vol-
ume 1, pages I–134. IEEE, 2003.

[19] P Y Simard. Using machine learning to break visual
human interaction proofs (hips). In NIPS’04, 2004.

[20] J Tam, J Simsa, S Hyde, and L V Ahn. Breaking audio
captchas. In Advances in Neural Information Processing
Systems, pages 1625–1632, 2008.

[21] K Thomas, D McCoy, C Grier, A Kolcz, and V Paxson.
Trafficking fraudulent accounts: the role of the under-
ground market in twitter spam and abuse. In USENIX
Security Symposium, 2013.

[22] Vicarious. Vicaricous. http://vimeo.com/77431982.
[23] Y Xu, G Reynaga, S Chiasson, J M Frahm, F Monrose,

and P C van Oorschot. Security and usability challenges
of moving-object captchas: Decoding codewords in mo-
tion. In USENIX Security Symposium, pages 49–64, 2012.

[24] J Yan and A S El Ahmad. Breaking visual captchas with
naive pattern recognition algorithms. In ACSAC’07, pages
279–291. IEEE, 2007.

[25] J Yan and A S El Ahmad. A low-cost attack on a
microsoft captcha. In CCS’08, pages 543–554. ACM,
2008.

[26] J Yan and A S El Ahmad. Usability of captchas or
usability issues in captcha design. In SOUPS’08, pages
44–52. ACM, 2008.

[27] B B Zhu, J Yan, Q Li, C Yang, J Liu, N Xu, M Yi,
and K Cai. Attacks and design of image recognition
captchas. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 187–200.
ACM, 2010.

APPENDIX

Here we present the details of key steps like graph building,
pruning and searching for the QQ and Microsoft schemes.
Figure 10 shows QQ and Microsoft challenges with all com-
ponents rank ordered.

(a) QQ Sample

(b) Microsoft Sample

Fig. 10. All components rank ordered.

TABLE XII. THE INITIAL n× n TABLE FOR QQ CAPTCHA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 • • • • • •

2 • • • • • •

3

4 • •

5 • • • • •

6 • • •

7 • •

8...12

15 16 17 18 19 20 21 22 23 24 25 26

13 • •

14 • •

15 • •

16 • •

17

18 • • • • •

19 •

20 •

21 •

22...26

12

Fig. 11. The search graph for QQ sample.

Tables XII show the corresponding initial tables for the
QQ sample, and Figure 11 is its search graph. Only one
path survives pruning for the QQ sample, which simplifies
the search process to an extreme.

TABLE XIII. THE INITIAL n× n TABLE FOR MICROSOFT CAPTCHA.

1 2 3 4 5 6 7 8 9 10 11 12

1 • • • •

2 • • • •

3 • • •

4 • • • •

5 • • •

6 • •

7 • • •

8 • • •

9 • • •

10 • • •

11 •

12 •

13 14 15 16 17 18 19 20 21 22 23 24 25

13 • •

14 • • • • •

15 • • • • •

16 • • • • • • •

17 • • • • •

18 • • • • •

19 • • • •

20 • •

21 •

22 •

23

24 •

25 •

Fig. 12. The search graph for Microsoft sample.

Tables XIII and XIV show the corresponding initial and
final tables for the Microsoft sample. Figure 12 describes the
search graph and Table XV gives the dynamic search process
for the Microsoft sample.

13

TABLE XIV. THE FINAL n× n TABLE FOR MICROSOFT CAPTCHA.

1 2 3 4 5 6 7 8 9 10 11 12
1 Q/0.36 5/0.49 5/0.7 3/0.44
2
3 T/0.42 y/0.4 y/0.34
4 H/0.58 W/0.49 W/0.36 P/0.31
5 V/0.84 V/0.6 L/0.51
6 H/0.44 N/0.11
7 J/0.49 N/0.46 X/0.38
8 H/0.49 L/0.44 N/0.46
9 V/0.25 H/0.22 M/0.92

10 4/0.2 N/0.5 M/0.47
11 T/0.52
12 X/0.2

13 14 15 16 17 18 19 20 21 22 23 24 25

13 4/0.33 y/0.87

14 T/0.21 W/0.48 W/0.46 W/0.44 L/0.44

15 L/0.46 L/0.39 5/0.43 5/0.91 V/0.36

16 y/0.46 y/0.38 5/0.36 5/0.54 Y/0.31 X/0.32

17 y/0.39 y/0.43 L/0.31 D/0.27

18 Y/0.38 y/0.37 L/0.27 D/0.37

19 F/0.4 C/0.34 P/0.38

20 C/0.75 H/0.38

21 y/0.37

22 y/0.43

23

24 L/0.86

25 D/0.56

TABLE XV. THE SEARCH PROCESS FOR MICROSOFT CAPTCHA.

j step[j] value[j] result[j] j step[j] value[j] result[j] j step[j] value[j] result[j]
3 1 0.36 Q

16
5 2.68 5LM4T

21

5 3.37 5LMyV
4 1 0.49 5 6 3.5 5VJM4T 6 4.19 5VJMyV
5 1 0.7 5 7 3.35 5VJVT4T 7 4.73 5VJMyLy

6
1 0.44 3

17

5 3.48 5LMyL 8 4.59 5VJVTyLy
2 1.08 5H 6 4.3 5VJMyL 9 4.25 5VJVT4Tyy

7 2 1.55 5V 7 4.15 5VJVTyL

22

6 3.85 5LMy5F
8 2 1.31 5V 8 3.82 5VJVT4Ty 7 4.67 5VJMy5F

9
2 1.22 5L

18

5 3.41 5LMyL 8 4.52 5VJVTy5F
3 2.04 5VJ 6 4.23 5VJMyL 9 4.14 5VJVT4TyL

10
2 0.55 3N 7 4.08 5VJVTyL

24

6 4.68 5LMy5C
3 2.01 5VN 8 3.74 5VJVT4Ty 7 5.5 5VJMy5C

11
3 1.93 5VX

19

5 3.44 5LMy5 8 5.46 5VJMyLyC
4 2.29 5VJV 6 4.27 5VJMy5 9 5.31 5VJVTyLyC

12
3 1.78 5VN 7 4.12 5VJVTy5 10 4.97 5VJVT4TyyC
4 2.52 5VNN 8 3.72 5VJVT4T5

25

6 4.3 5LMy5H

13
3 2.14 5LM

20

5 3.92 5LMy5 7 5.12 5VJMy5H
4 2.96 5VJM 6 4.74 5VJMy5 8 5.1 5VJMyLyy
5 2.81 5VJVT 7 4.7 5VJMyLy 9 4.96 5VJVTyLyy

14
4 2.47 5LM4 8 4.55 5VJVTyLy 10 4.62 5VJVT4Tyyy
5 3.29 5VJM4 9 4.21 5VJVT4Tyy

26

7 5.54 5LMy5CL
6 3.14 5VJVT4 8 6.37 5VJMy5CL

15
4 3.01 5LMy 9 6.32 5VJMyLyCL
5 3.83 5VJMy 10 6.18 5VJVTyLyCL
6 3.68 5VJVTy

14

