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Abstract—Previous research on kernel monitoring and protec-
tion widely relies on higher privileged system components, such
as hardware virtualization extensions, to isolate security tools
from potential kernel attacks. These approaches increase both the
maintenance effort and the code base size of privileged system
components, which consequently increases the risk of having
security vulnerabilities. SKEE, which stands for Secure Kernel-
level Execution Environment, solves this fundamental problem.
SKEE is a novel system that provides an isolated lightweight
execution environment at the same privilege level of the kernel.
SKEE is designed for commodity ARM platforms. Its main goal
is to allow secure monitoring and protection of the kernel without
active involvement of higher privileged software.

SKEE provides a set of novel techniques to guarantee isola-
tion. It creates a protected address space that is not accessible
to the kernel, which is challenging to achieve when both the
kernel and the isolated environment share the same privilege
level. SKEE solves this challenge by preventing the kernel from
managing its own memory translation tables. Hence, the kernel is
forced to switch to SKEE to modify the system’s memory layout.
In turn, SKEE verifies that the requested modification does not
compromise the isolation of the protected address space. Switch-
ing from the OS kernel to SKEE exclusively passes through a
well-controlled switch gate. This switch gate is carefully designed
so that its execution sequence is atomic and deterministic. These
properties combined guarantee that a potentially compromised
kernel cannot exploit the switching sequence to compromise the
isolation. If the kernel attempts to violate these properties, it
will only cause the system to fail without exposing the protected
address space.

SKEE exclusively controls access permissions of the entire
OS memory. Hence, it prevents attacks that attempt to inject
unverified code into the kernel. Moreover, it can be easily
extended to intercept other system events in order to support
various intrusion detection and integrity verification tools. This
paper presents a SKEE prototype that runs on both 32-bit
ARMv7 and 64-bit ARMv8 architectures. Performance evaluation
results demonstrate that SKEE is a practical solution for real
world systems.

1These authors contributed equally to this work

I. INTRODUCTION

Many of the current commodity operating systems, like
Linux, Windows, and FreeBSD, rely on monolithic kernels,
which store security and access control policies in memory
regions that are accessible to their whole code base. Hence,
the security of the whole system relies on a large Trusted
Computing Base (TCB) that includes the base kernel code in
addition to potentially buggy device drivers.

An exploit of a monolithic kernel would allow complete
access to the entire system memory and resources. In addition,
it can effectively bypass kernel level security protection mech-
anisms. Recent incidents [1], [2], [5], [28], [32], [53] show that
exploiting the OS kernel is a real threat. Hence, there is a need
for security tools that provide monitoring and protection of the
kernel. These tools have to be properly isolated so that they
are protected from potential kernel exploitation.

A. Previous Attempts

Virtualization-based Approaches: A large body of research,
such as [8], [14], [23], [24], [30], [31], [34], [37], [43]–[46],
uses virtualization to provide the required isolation for security
tools that monitor and protect the OS kernel. Nevertheless,
virtualization is primarily designed to allow multiple OSes
to share the same hardware platform. It is not practical,
particularly in real world systems, to exclusively use the
virtualization layer for OS kernel monitoring. Hence, the target
security tools are in practice running alongside a hypervisor.

The TCB of a typical hypervisor has to be big enough to
handle resource allocation and hardware peripheral virtualiza-
tion. Therefore, commodity hypervisors are already struggling
with their security problems. For example, there are 225 and
164 reported vulnerabilities for VMware [16] and Xen [17]
respectively by December 2015. Security monitoring and pro-
tection requires a sizable code base to intercept OS events and
introspect the current OS state. This code base should also be
extendable to support various intrusion detection and integrity
measurement mechanisms. As a result, hosting security tools
inside the hypervisor increases the size of its TCB, which
causes fundamental security concerns.

To achieve isolation without relying on the hypervisor, re-
cent research efforts have been mainly exploring three alterna-
tives: Microhypervisors, sandboxing and hardware protection.

Microhypervisor Approaches: A microhypervisor is a thin
hypervisor that only focuses on providing isolation. Trustvi-
sor [39] uses a microhypervisor to provide isolation to verified
security sensitive workloads. Nova [49] uses microhypervisors
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to provide memory protection of the virtualization layer. The
basic idea of using microhypervisors is to minimize the TCB to
host sensitive code that requires escalated protection. Hence,
microhypervisors do not provide a good fit to host security
tools that require a relatively large code base. A good solution
is needed to provide an extra layer of isolation to host
OS kernel security tools without adding more code to the
microhypervisor environment.

Sandboxing Approaches: Fides [50], Inktag [27] and App-
Shield [13] are examples of systems that use sandboxes to
isolate security sensitive code from the OS kernel. A sandbox
can be used to host kernel monitoring and protection tools.
However, these techniques use virtualization to provide the
isolation. Hence, they require the hypervisor to be actively
involved in managing and scheduling the sandbox, which
would also include monitoring and managing some kernel
operations. Therefore, these approaches suffer from the same
fundamental problem of virtualization, which is increasing the
TCB size of the hypervisor.

Hardware Protection Approaches: Intel introduced Software
Guard Extensions (SGX) [4], [26], [42], which allows the exe-
cution of verified code inside secure enclaves. These enclaves
are isolated from the OS kernel. They also run in isolation
from each other. SGX enclaves can be used to host security
tools without increasing the TCB of higher privileged layers.
Nevertheless, there is no similar protection for ARM. Instead,
ARM provides TrustZone [6], which is a monolithic secure
world that is isolated from the high level OS. Although TZ-
RKP [11] and SPROBES [25] proved that TrustZone can
be used to monitor the kernel, these approaches suffer from
the fundamental problem of increasing the code base and
maintenance effort of the high privileged TrustZone layer.

This brief review of previous work testifies that there
is a problem in hosting OS kernel security monitoring and
protection tools. Using the hypervisor to directly host the
security tool or to manage a sandbox adds risk to the hy-
pervisor security. On the other hand, no adequate hardware-
based solution is available on ARM. Hence, ARM, which is
the most widely used architecture in mobile devices, lacks a
proper technique that provides isolation without adding risk to
its higher privileged hardware components.

B. Introducing SKEE

This paper presents SKEE, which stands for Secure Kernel-
level Execution Environment. SKEE is a lightweight frame-
work that provides a secure isolated execution environment
without relying on active involvement of a higher privileged
layer. Nonetheless, SKEE achieves the same level of security
and isolation required to host security tools that provide
monitoring and protection for commodity OS kernels.

SKEE relies on a time sharing model where a CPU is
either running in the OS kernel or in the isolated environment
at any point of time. For convenience, we refer to this new
isolated execution environment as SKEE and to the OS kernel
being monitored as “the kernel.” We also use the term “context
switch” to exclusively refer to the operation of switching back
and forth between the kernel and SKEE.

SKEE is designed to run on ARM. It bridges a critical gap
in the security solutions available for ARM. SKEE raises the

bar of OS security monitoring and protection without adding
potential security risks and heavy maintenance cost to secure
subsystems like TrustZone or virtualization extensions.

SKEE addresses an intuitive and straightforward security
requirement of real world systems. It solves multiple technical
challenges to achieve these goals. First of all, SKEE has to
be perfectly isolated from the kernel. If an attack succeeds in
compromising the kernel, it must not be able to compromise
the security tool hosted by SKEE. This isolation is non-trivial
to achieve given that both SKEE and the kernel are required
to run at the same privilege level.

Second, SKEE is required to expose an interface that
switches to the isolated environment so that security critical
events are trapped into SKEE for inspection. This requirement
adds extra challenge to the isolation mechanism because the
context switching entry point is exposed to the potentially
compromises kernel. Hence, the switch mechanism must be
secure against all software attacks that aim to breach the
isolation provided by SKEE.

Finally, SKEE is required to allow the security tool to
inspect the kernel state to detect potential attacks. Hence,
SKEE must provide a one-way isolation that allows security
tools to access kernel memory. It also should prevent the kernel
from handling certain events so that they are only handled by
the security tool. This requirement is hard to achieve because
modern OS kernels are designed to run at the highest privilege
level of the system and control the entire system resources.

SKEE solves all these challenges. It provides a unique
solution that is compatible with existing hardware platforms
without using any special hardware extensions. Moreover,
it does not interfere with the operation of other security
mechanisms that run in TrustZone, virtualization extensions
or even inside the OS kernel itself.

C. SKEE Overview

SKEE uses a set of novel techniques to achieve three key
objectives: isolation, secure context switching, and the ability
to monitor and protect the kernel, without involving a higher
privileged layer.

Isolation: To achieve the required isolation, SKEE uses a two-
step solution: create a protected virtual address space for
SKEE and restrict the kernel access to the MMU.

The first step is to create a separate protected virtual
address space for SKEE. The memory layout of the whole
system is modified so that the memory regions used by SKEE
are carved out of the memory ranges accessible to the kernel.
This is done by modifying the memory translation tables used
by the kernel so that none of the translation entries point to the
physical memory regions used by SKEE. To protect this new
address space, all memory translation tables must be part of
this new protected address space so that they are exclusively
accessible to SKEE. Therefore, the kernel cannot modify any
of the memory translation tables to tamper the virtual memory
access permissions.

The second step is depriving the kernel from controlling
certain MMU functions so that it cannot direct the CPU to
use alternative memory translation tables other than the ones
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protected by SKEE. SKEE adopts a technique similar to the
one presented in TZ-RKP [11]. It starts by instrumenting the
kernel code to remove certain MMU control instructions, such
as the ones that change the location of memory translation ta-
bles. SKEE also monitors memory layout changes to guarantee
that no other unverified privileged code is allowed to execute.

By enforcing these two steps, the kernel is neither allowed
to modify the existing memory translation tables nor change
the MMU configurations to use unverified translation tables.
As a result, it cannot violate the isolation provided to SKEE,
which retains the exclusive access to control the MMU and
memory translation tables in its own address space.

Secure Context Switching: SKEE context switching relies on
the primitives of switching memory translation tables, which
are commonly used in switching the execution between user
processes. These operations were designed assuming that the
context switch occurs in a higher privilege level, like the
kernel to user processes, before the execution jumps to the
new context. This is not the case of SKEE because context
switching happens at the same privilege level.

To maintain the isolation, SKEE uses novel techniques that
force the kernel to go through a designated switch gate to jump
to the isolated environment. This gate is designed to enforce a
strict execution flow that is both atomic and deterministic. The
former is required to prevent the kernel from gaining control
while the protected address space is accessible, while the
latter is required to guarantee that switching to SKEE always
passes through a designated entry point that contains all proper
security checks. As a result, these two properties combined
prevent exposing SKEE’s address space to the kernel.

Instructions that control the MMU and switch the virtual
address space are different between the 32-bit ARMv7 and
the 64-bit ARMv8 architectures. Hence, SKEE has different
switching mechanisms for each of these architectures.

Kernel Monitoring and Protection: SKEE provides the re-
quired capabilities to do effective monitoring and protection
of the kernel. SKEE is allowed to access the entire system
memory range. It can modify the kernel code to place hooks on
certain operations. Moreover, SKEE controls virtual memory
access permission so it can selectively protect certain data
areas from the kernel. Therefore, the monitoring and protec-
tion provided by SKEE is comparable to that provided by
virtualization-based isolation.

Prototype Overview: A prototype of SKEE is implemented on
two commercial smartphones. The first is the Samsung Galaxy
Note4, which uses the Snapdragon APQ8084 32-bit ARMv7
processor by Qualcomm. The second is Samsung Galaxy
S6, which uses the Exynos 7420 64-bit ARMv8 processor
by Samsung’s System LSI. SKEE was subject to rigorous
evaluation. The results show it is feasible to implement and
it has an acceptable performance overhead.

The performance evaluation also shows that the number of
CPU cycles required for switching to and from the isolated
environment is in the range of few hundred cycles. This range
is comparable to those required to switch the execution from
one user process to the other. Hence, a security tool using
SKEE can be always extended to support additional monitoring
and protection mechanisms. Switching time to and from SKEE

  

Figure 1. Selecting a TTBR on ARMv7 architecture

is much faster than switching time to and from the ARM
TrustZone environment, which may reach up to thousands of
CPU cycles [11]. Hence, SKEE is not only lightweight, but it
can be also faster than TrustZone based systems, such as the
ones presented in TZ-RKP [11] and SPROBES [25].

It is worth noting that SKEE is not designed to replace
higher privileged layers, such as TrustZone or virtualization
extensions. Although it is technically feasible to use SKEE
to load custom secure applications or host security sensitive
data, both TrustZone and virtualization extensions are more
suited to achieve these objectives using their hardware-based
protection. SKEE aims at keeping these layers more secure
through reducing their code base and maintenance effort.

D. Summary of Contributions

This paper makes the following technical contributions:

• A lightweight practical solution for ARM platforms
to provide kernel monitoring and protection without
relying on higher privileged system components.

• Novel techniques to create a protected address space
that is isolated from the kernel despite running at the
same privilege level.

• Techniques to provide a secure, atomic and determin-
istic method to switch the context between the kernel
and the isolated environment.

• Providing the isolated environment with the required
capabilities to do effective kernel monitoring and
protection.

• Full prototype implementation and rigorous evaluation
of SKEE using popular mobile devices.

This paper is organized as follows: Section II provides
background information. Section III discusses threat model,
security guarantees and assumptions. Section IV presents
SKEE in detail. Section V presents prototype implementation
and evaluation. Section VI presents related work. Section VII
concludes this paper with some future research directions.

II. BACKGROUND

SKEE’s isolation employs basic MMU operations. This
section gives a necessary background on how the MMU
controls virtual memory translation on ARM.

Memory Management in 32-bit ARMv7: On ARMv7, control-
ling the MMU is done through special instructions that move
the value of general purpose registers to system management
registers of coprocessor 15 (CP15).
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Table I. EFFECT OF TTBCR.N ON ADDRESS TRANSLATION ON 32-BIT
ARMV7 USING SHORT DESCRIPTOR FORMAT

TTBCR.N value Starting address of TTBR1 translation
0b000 TTBR1 not used
0b001 0x8000 0000
0b010 0x4000 0000
0b011 0x2000 0000
0b100 0x1000 0000
0b101 0x0800 0000
0b110 0x0400 0000
0b111 0x0200 0000

Memory translation on 32-bit ARMv7 involves three MMU
control registers: Translation Table Base Control Register
(TTBCR), Translation Table Base Register 0 (TTBR0) and
Translation Table Base Register 1 (TTBR1). TTBR0 and
TTBR1 point to different sets of memory translation tables.
TTBCR chooses which of the two sets is used when translating
a particular memory address. TTBCR contains a 3 bit called
TTBCR.N that determines the virtual address range translated
by each of the two registers as shown in Figure 1.

Memory translation on ARMv7 supports both short de-
scriptor and long descriptor translation table formats. For the
sake of clarity, we only focus on the short descriptor translation
table format. In this format, the effect of TTBCR.N is shown in
Table I. If the value of TTBCR.N is 0, then TTBR1 is not used,
otherwise both TTBR0 and TTBR1 are used. TTBR0 memory
translation tables are used to map the virtual address range
that starts from address 0x0 to the starting address of TTBR1’s
translation range, which is always smaller than 0x8000 0000
(2GB) as shown in Table I.

Memory Management in 64-bit ARMv8: On ARMv8, a.k.a.
AArch64, the 64-bit virtual address range is split into two
subranges. The first, which is translated using TTBR0, is at the
bottom of the address space. The second, which is translated
using TTBR1, is at the top of the address space. A typical
use of this arrangement is that the kernel is mapped at the
top subrange of the virtual address space using TTBR1 tables,
while the user processes is mapped at the bottom subrange of
the virtual address space using TTBR0 tables.

On ARMv8, the MMU control registers can be changed by
the MSR instruction, which moves the value of general purpose
registers to system registers. The MSR instruction can use the
Zero Register (XZR) to move the value zero to any of the
special registers.

Address Space Identifier (ASID): Memory translation tables
also control if a certain virtual memory mapping is either
global or non-global using the non-Global (nG) bit in transla-
tion table descriptors

A global virtual memory page is available for all processes
on the system, so a single cache entry can exist for this page
translation in the Translation Lookaside Buffer (TLB).

A non-global virtual memory page is process specific,
meaning it is associated with a specific ASID. Hence, multiple
TLB entries can exist for the same page translation. The soft-
ware is expected so switch the ASID when switching between
different processes. Only TLB entries that are associated with
the current ASID are available to the CPU.

On ARMv7, the current ASID is defined by the Context

ID Register (CONTEXTIDR). On ARMv8, the ASID is defined
by the translation table base registers. The ASID is used to
enhance the performance by eliminating the need of flushing
the TLB on every process switch.

Memory Management in Virtualization Layer: ARM’s virtu-
alization extensions provide an additional mode of privileged
execution to host the hypervisor. This privileged mode is also
equipped with an additional memory translation layer, called
Second Stage (S2) address translation, which is pointed to
by the vttbr register. If S2 memory address translation is
enabled, then physical memory access from the guest OS
is treated as Intermediate Physical Addresses (IPA) and is
translated to actual physical addresses using the S2 memory
translation tables. S2 memory address translation is used by the
hypervisor to customize the physical address range available
to the guest OS.

III. THREAT MODEL, SECURITY GUARANTEES AND
ASSUMPTIONS

Threat model: SKEE considers all software attacks against the
kernel. It assumes attackers can successfully exploit existing
kernel vulnerability. For the sake of presentation, attacks
against the kernel are classified into three classes.

The first class aims at modifying, amending, or relocating
the kernel executable. SKEE prevents this class of attacks as
an essential part of its secure operations. Just using SKEE on
a system eliminates the threat of running unverified malicious
code in the privileged kernel mode.

The second class aims at exploiting a vulnerability to alter
the kernel data or control flow so that existing kernel code
shows unexpected malicious behavior. These attacks can cause
a wide range of damage to the system. One example of these
threats is to escalate the privilege of malicious user processes
by modifying the kernel data that defines process credentials.
Another example of these threats is return oriented attacks [29],
[47] that allow an attacker to run malicious logic using existing
kernel code. SKEE provides a safe environment that hosts
security tools to detect these exploits. The exact anomaly
detection technique or the integrity properties to be measured
is determined by the security tool as an orthogonal system and
is out of scope of this paper.

The third class aims at compromising kernel monitor
and protection tools by compromising the SKEE isolated
environment. SKEE guarantees that these attacks can neither
compromise the isolation nor bypass the monitoring.

Security Guarantees: SKEE provides two main security guar-
antees to the isolated environment. First, it prohibits the kernel
from modifying the memory layout or access permission of the
system. As a result, even if an attack completely compromises
the kernel, it would not be able to revoke the access protection
of the isolated environment. Second, SKEE guarantees that
switching from the potentially compromised kernel to the
isolated environment exclusively passes through a strictly
controlled switch gate. As a result, the isolated environment
can safely inspect input parameters passed from the kernel
for potential security threats. For example, SKEE inspects
requested changes to the memory layout to confirm that they
do not violate the guaranteed isolation.
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Given these two security guarantees, SKEE uses its con-
trol of the system memory layout to prevent attackers from
bypassing the monitor.

Assumptions: SKEE assumes the whole system is loaded
securely. Hence, the isolated environment is setup securely
during boot up time. This process is straightforward using se-
cure boot. Intuitively, secure boot only guarantees the integrity
of the kernel during the boot up process. It cannot guarantee
the integrity of the kernel after the system runs and starts to
interact with potential attackers.

SKEE also assumes that the kernel supports W⊕X memory
mapping (i.e., it does not use memory pages that include both
data and code). SKEE assumes that the hardware platform
implements the Privileged eXecute Never (PXN) memory
access permission as defined by the ARM architecture.

On 32-bit ARMv7 architecture, SKEE requires the kernel
to only use TTBR0 for mapping the OS memory, while
leaving TTBR1 to be exclusively used by SKEE. Moreover,
it assumes the lowest 2GB of the virtual address space is
exclusively used by non-privileged user space code. These two
requirements do not affect the OS functionality because both
TTBR0 and TTBR1 map the same virtual address range, so
only TTBR0 is sufficient to map the whole system memory.
Most commodity OSes use at least 2GB of memory for the
user address space. In fact, Linux satisfies both requirements
in its default configurations because it relies on a 3GB user
space to 1GB kernel space split, which cannot be achieved if
TTBR1 is in use.

On 64-bit ARMv8 architecture, SKEE requires the pres-
ence of a memory page at physical address 0x0. It assumes
this particular page is exclusively used by SKEE. The same
address range is usually used to place the ROM that starts
the system boot process. Nevertheless, this requirement is
easily fulfilled using virtualization to provide an accessible
intermediate physical address 0x0 using S2 memory translation
tables as mentioned in Section II. The S2 translation remaps
this intermediate physical address to another existing physical
address. The OS is forced to translate through the S2 tables,
so it always sees this page as address 0x0. Higher privileged
software still sees the original physical address 0x0 and can
still use it in the booting process. Using virtualization in
this case does not conflict with SKEE’s objective. Other than
setting up the S2 translation tables, the virtualization layer is
completely passive and does not interfere in any SKEE related
operations.

IV. SKEE DESIGN

This section presents the design of SKEE. The main goal
is to provide a lightweight execution environment to enable a
security tool to run in isolation from the kernel without active
involvement of higher privileged system components, such as
TrustZone or virtualization layer.

The basic idea behind SKEE is to create a new self-
protected virtual address space that hosts the isolated execution
environment. This virtual address space is created as a part of
the system boot up sequence. As mentioned is Section III,
SKEE assumes the presence of secure boot, which guarantees
that the system boots in a known secure state. The secure boot

  

Figure 2. An overview of the SKEE approach

sequence is modified so that it creates two separate address
spaces for the kernel and SKEE, as shown in Figure 2. The
boot sequence also loads the verified binaries of both the kernel
and SKEE in their relevant locations.

After the secure boot sequence, the system becomes subject
to potential attacks. These attacks cannot compromise SKEE,
which runs in its own address space. Hence, a security tool
hosted by SKEE would be able to continuously monitor the
kernel to detect, and possibly eliminate, these attacks.

To securely achieve this objective, there are three main
requirements that need to be met; isolation, secure context
switching and the ability to monitor and protect the kernel.

In the following, we first present how SKEE achieves the
required isolation by preventing the kernel from accessing this
protected address space. Then, we present how SKEE achieves
secure context switching on both 32-bit ARMv7 and 64-
bit ARMv8 architectures. Afterwards, we discuss how SKEE
uses these features to achieve the required monitoring and
protection of the kernel. Finally, we summarize the security
guarantees provided by SKEE.

A. SKEE Isolation

The kernel accesses physical memory through virtual mem-
ory mappings defined by memory translation tables, a.k.a.
page tables. These mappings also set the access permission
corresponding to each translation. The presence of a translation
table entry that maps to a physical address is a key precondition
to the kernel’s ability to access this physical address. If this
precondition is not met, this physical address is not accessible
to the kernel. Based on this precondition, SKEE uses a two-
step solution to prevent the kernel from accessing certain
physical memory ranges.

Creating a Protected Address Space: The first step is to have
separate address spaces for SKEE and the kernel. As shown in
Figure 3, the kernel address space, which is controlled by the
kernel’s memory translation tables, is instrumented to enforce
the following rules: 1) removing all entries that map to either
the SKEE environment or the kernel’s memory translation
tables, 2) mapping the kernel code and the SKEE switch gate
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as read-only, 3) restricting all other memory areas, including
kernel data and user level memory, from executing privileged
code using the PXN bit. Enforcing these rules prevents the
kernel from modifying its own code or accessing SKEE’s
address space. It also prevents the kernel from modifying its
own memory translation tables to escape this protection.

On the other hand, SKEE’s address space has valid map-
pings of the entire memory. However, the kernel code is
not allowed to execute so that the kernel is prevented from
regaining control while the SKEE address space is active. The
switch gate is also mapped in the SKEE address space and
has execution permission to allow SKEE to jump back to the
kernel securely.

Restrict Kernel Access to the MMU: To prevent the kernel
from violating the address space separation, it is only allowed
to use instrumented memory translation tables. This objective
is achieved by restricting the kernel from modifying certain
MMU registers. In particular, the kernel is not allowed to
change translation table base registers.

SKEE removes certain control instructions from the kernel
code and replaces them with hooks that jump to the switch
gate. Identifying specific instructions among the kernel binary
is straightforward (i.e., without false positives or false nega-
tives) because ARM uses fixed size aligned instruction set.

This technique requires the following four conditions:
1) these instructions are only allowed to execute in the privi-
leged mode, 2) the instrumented kernel is the only privileged
code in its own address space, 3) the kernel code is mapped
read-only, and 4) the instrumented kernel code is instruments
to remove all executable words that match the op codes of
these instructions. If all these four conditions are satisfied,
then the kernel cannot execute these instructions unless they
are emulated by SKEE. The same technique was used by TZ-
RKP [11] and SPROPES [25].

After the system is booted, the Linux kernel supports
Loadable Kernel Modules (LKM) to be dynamically loaded.
LKM code runs in the same privilege level as the kernel.
SKEE supports LKMs to be loaded as long as they stick to the
W⊕X mapping so that they are not be used to inject unknown
instructions to the kernel. LKMs have to be loaded by SKEE
because it controls the whole system’s memory mappings.
Hence, SKEE is able to verify that the LKM code region
does not contain any of the privileged instructions that were
removed from the kernel.

B. SKEE Secure Context Switching

To allow secure switching between SKEE and the kernel,
the switching mechanism prevents the kernel from regaining
control while SKEE’s address space is accessible.

As shown in Figure 2, context switching is done through
a special switch gate. This gate is designed to be atomic,
deterministic and exclusive. Having these properties is essential
to preserve the isolation between the two environments.

Atomic Execution through the Switch Gate: Before the
kernel enters the switch gate, the SKEE address space is not
accessible. The switch gate first exposes the SKEE address
space and then jumps to SKEE. Since both SKEE and the

  

Figure 3. An example of address Space Separation on ARMv7. The
vertical arrows show the virtual memory range translated via the corresponding
translation table base register. The dashed lines show the memory range that
is not addressable via the corresponding translation table base register.

kernel run at the same privilege level, there is no single
point of entry or hardware control to do the switching in
one instruction. Instead, a sequence of instructions is used
to perform this function. SKEE guarantees that attempts to
manipulate this sequence of instructions will not expose its
address space to the kernel.

A potentially compromised kernel can attempt to attack the
switch gate in two ways: 1) interrupting the gate’s execution
sequence or 2) jumping to the middle of this sequence. SKEE
guarantees that these attacks cannot return execution back to
the kernel while SKEE’s memory is accessible.

Deterministic Execution Sequence: Although the switch gate
is accessible to the kernel, it does not trust the system state
or any input from the kernel. Hence, its execution sequence
is deterministic in the sense that it has the same behavior
regardless of the current system state and input parameters.

Exclusive Access to Switching Functions: The switch gate is
the only entry point to SKEE. It relies on instructions that are
restricted to execute anywhere else in the kernel.

1) Secure Switching on 32-bit ARMv7: ARMv7 active
memory translation tables are defined by the translation table
base registers TTBR0 and TTBR1.

To switch between two different address spaces, the cor-
responding translation table base register has to be updated
accordingly. This update can only be done by an MCR instruc-
tion that moves the value of a general purpose resister (GPR)
to either TTBR0 or TTBR1. If the switch gate exposes a single
instance of such MCR instructions, then a compromised kernel
can compromise the isolation by creating a malicious set of
page tables, loading the base address of these tables to the
general purpose register, and jump to that MCR instruction to
have an unrestricted address space.

To solve this challenge, the switch gate does not include
instructions that update either TTBR0 or TTBR1. Instead,
it relies on changing the active translation table register by
updating the TTBCR.N field. The basic idea is that any non-
zero value that gets loaded into TTBCR.N will lead to the
same system state. Therefore, switching is always deterministic
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Figure 4. SKEE Switch Gate on ARMv7

even if the kernel attempts to maliciously modify the general
purpose registers before jumping to the switch gate.

Figure 3 shows on overview of address space separation on
the 32-bit ARMv7 architecture. SKEE enforces two rules on
the OS kernel: 1) The kernel only uses TTBR0 to map the OS
memory, while TTBR1 is dedicated to SKEE, and 2) the virtual
memory address range smaller than 0x8000 0000 (2GB) is
assigned to user space applications restricted by the Privileged
Execute Never (PXN) memory translation flag.

Given these two rules are enforced; the switch gate only
needs to modify TTBCR.N to switch to and from SKEE.
When switching to SKEE, TTBCR.N is set to a non-zero
value to force translation of all virtual addresses larger than
0x8000 0000 to reference TTBR1 instead of TTBR0. Since
both the kernel and SKEE lie in this range, this means that only
SKEE address space will be mapped and the kernel address
space will be unmapped. Resetting TTBCR.N back to 0 will
force translation of the entire address space to use TTBR0.
Hence, the SKEE address space, which is only mapped through
TTBR1, will be hidden from the kernel.

Figure 4 shows the switch gate on ARM v7. The code of
the gate works as follow:

1) Lines 2-5: Disable interrupts.
2) Lines 7-10: Load TTBCR with a non-zero value

to enable TTBR1 to be used for translating virtual
memory above address 0x8000 0000 (2GB).

3) Lines 12 and 13: Invalidate the TLB so that the new
memory translation takes effect.

4) Line 15: Jumps to SKEE after the isolated environ-
ment is activated.

This switch gate is atomic, deterministic and exclusive;
hence it guarantees all three SKEE security requirements.

First, the gate execution is deterministic. Steps 1, 3, and 4
do not rely on memory or register values. Hence, the kernel
cannot alter the results of their execution. It is worth noting
that the addressing layout has to be carefully selected so that

an immediate branch instruction (i.e. a one that does not rely
on registers) is used on Step 4. Otherwise, the kernel would
be able to jump to any instruction in the SKEE code base.

Due to the unique use of the TTBCR, the MCR instruction
in step 2 yields a deterministic result regardless of the value
loaded to the GPR. The effective field of this register is
TTBCR.N, which can be loaded by 8 different values. Nev-
ertheless, all non-zero values of TTBCR.N will switch to the
SKEE address space and deactivate the kernel address space.
As shown in Figure 3, loading TTBCR.N with the value 1
makes the address range above 0x8000 0000 (2GB) translated
through TTBR1. If the kernel loads this field with another
non-zero value, it will only extend the range of the memory
translated by TTBR1 and hence cause no threat to the isolation
scheme. If TTBCR.N is loaded with 0, then TTBR1 will not
be used and the SKEE address space will not be exposed.

In all cases, the memory range below 0x8000 0000 (2GB),
which is always translated using TTBR0, is mapped with the
PXN restriction. Therefore, this memory range does not have
to be trusted since it cannot run in the privileged mode or
access the SKEE privileged memory area.

TTBCR has three other fields: TTBCR.PD0, TTBCR.PD1,
and TTBCR.EAE. The first two have no effect on the protec-
tion. They can only prohibit translation table walks. The last
field switches between the long and the short descriptor address
formats. If the wrong value is put into this field, the system is
going to crash due to the wrong format of translation tables.
Hence, a wrong value in any of these fields can only affect the
availability of SKEE, but it does not threaten its protection.

Second, the gate execution is atomic. The control flow
cannot change because no branch or return instructions exist
until switching is complete. Nevertheless, an attacker can jump
to any step in the sequence above. The one interesting step to
skip is step 1 as this will not disable interrupts. Skipping step 1
will allow the kernel to set interrupts, such as watchdog bark,
to be triggered at any of the following steps. If an interrupt is
triggered between steps 2 and 3, the execution will return to
the kernel while the SKEE address space is exposed. Although
the kernel translation tables will not be in use, the kernel code
can still execute at this point relying on existing TLB entries.

To resolve this issue, a security check is added to interrupt
handlers of the system to test the value of TTBCR.N. If
TTBCR.N has a non-zero value, then this attack scenario is
detected and the system will be stalled to prevent further
malicious execution. After step 3, interrupts will only cause
the system to stall because the handler, which is part of the
kernel code, will be located in non-executable memory. An
adversary can neither change the code nor the location of
interrupt handlers because SKEE restricts the kernel access to
the Vector Base Address Register (VBAR). VBAR will always
point to verified read-only kernel code.

Switching to SKEE is exclusive to the switch gate because
it has the only executable opcode that can modify TTBCR.

Figure 4 also shows the exit gate from SKEE to the kernel.
It executes the same operations, in almost reverse order, so that
execution only goes back to the kernel after the SKEE address
space is locked down.
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  Figure 5. SKEE Entry Gate on ARMv8

The exit gate is part of the switch gate page, which is
accessible to the kernel. In line 21, the exit gate exposes
another instruction that writes TTBCR to the kernel. This
instruction is protected the same way as the entry gate. If the
kernel directly jumps to this instruction to enable the SKEE
address space, the following TLB invalidation will cause the
kernel space to be evicted from the TLB and loose execution
permission. Hence, the system will fail when it tries to return
back to the kernel in line 30. Intuitively, the switch gate is
required to use an immediate branch instruction in line 30 to
guarantee that the system will be stalled rather than branching
to random instructions in the SKEE code base. Moreover, if an
interrupt is triggered right after the TTBCR write and before
the TLB invalidation, then execution will be stalled by the
check on the interrupt handler as discussed previously.

2) SKEE Secure Switching on 64-bit ARMv8: TTBR0 and
TTBR1 are used to map different virtual address ranges on 64-
bit ARMv8. TTBR1 is designated for kernel addressing and
TTBR0 is designated for user space addressing. Restricting the
OS to use one translation table base register and leave the other
to SKEE requires considerable modifications to the OS, which
will negatively impact SKEE’s portability.

To solve this problem, SKEE shares TTBR1 with the
kernel. Therefore, switching between the two different address
spaces requires the value of TTBR1 to be modified. This is
done by the MSR instruction, which moves the value of a
general purpose register to a special register, such as TTBR1.
As mentioned previously, allowing the kernel to change the
value of the translation table base registers using a general
purpose register does not guarantee deterministic execution.

To solve this challenge, the switch gate uses a special MSR
encoding to guarantee deterministic change of TTBR1. This
special encoding relies on the Zero register (XZR), which is a
special register that is always read as 0.

On ARMv8, TTBR1 has two fields: BADDR and ASID.
Moving XZR to TTBR1 will set both fields to 0. Setting
BADDR to 0 means that the active memory translation tables
are based at physical address 0x0. As mentioned in Section III,
SKEE requires the presence of this physical address to support
ARMv8 platforms. If address 0x0 is not part of the physical
memory layout available to the OS, then it can be virtualized
using S2 translation tables as explained in Section III. The
physical page at address 0x0 is used to host the memory

  Figure 6. SKEE Exit Gate on ARMv8

translation tables of the SKEE address space and will not be
accessible to the kernel’s address space.

Figure 5 shows the entry path of the switch gate on ARM
v8. The code of the gate works as follow:

1) Lines 2-4: Disable Interrupts.
2) Lines 6-10: Save the kernel’s TTBR1 value and load

TTBR1 with 0 using XZR.
3) Lines 12 and 13: Invalidate the TLB so that the new

memory translation takes effect.
4) Lines 15 and 16: Jump to SKEE after the isolated

environment is activated.

This switch gate is atomic, deterministic and exclusive;
hence it guarantees all three SKEE security requirements.

First, the gate is guaranteed to be deterministic because it
absolutely relies on no memory or register values. In particular,
the write to TTBR1 uses XZR, which cannot be modified by
the kernel. Hence, TTBR1 will always point to address 0x0.

Second, the gate execution is guaranteed to be atomic using
a similar technique to the one used for ARMv7’s gate. If an
interrupt is received while TTBR1 points to address 0x0, then it
means that a compromised kernel skipped step 1 of the switch
gate and the system will be stalled.

Finally, switching to SKEE is exclusive to the switch gate
because it has the only executable opcode that can modify
TTBR1. Nevertheless, there is a key challenge to meet this
objective; the switch gate is required to restore the TTBR1
value upon exiting from SKEE to the kernel. This step requires
the presence of the executable opcode of an MSR instruction
that writes a non-zero value to TTBR1. As mentioned previ-
ously, if this instruction is exposed to the kernel, then it can
compromise SKEE’s isolation.

SKEE solves this problem using a novel technique that
hides the exit gate before execution jumps to the kernel. This
is achieved by placing the instruction that restores TTBR1 at
the end of a physical memory page that belongs to the isolated
environment. This page is never exposed to the kernel. The
following memory page, which is accessible to both SKEE
and the kernel, is responsible for restoring interrupts before
returning to the kernel.
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Figure 6 shows the exit path of the switch gate on ARM
v8. The code of the gate works as follow:

1) Lines 2-5: Pad the memory with a sequence of no
operation (NOP) instructions so that the instruction
that restores TTBR1 is pushed to the boundary of the
isolated page.

2) Line 7: Confirms that interrupts are masked.
3) Lines 9-11: Reload the kernel’s TTBR1. When this

instruction is executed, the isolated page will not be
accessible and the program counter will point to the
next page that is accessible to both environments.

4) Lines 15-17: Invalidate the TLB so that any cached
translation of SKEE’s address space is discarded.

5) Lines 20-23: Restore interrupts and return to the
kernel.

Step 1 is to add padding to so that the instruction that writes
TTBR1 is placed at the boundary of the isolated environment.

Step 2 guarantees that interrupts are disabled. Since the exit
gate is exclusively available to the trusted SKEE environment,
there is no risk that the execution flow will skip this step and
directly jumps to following steps.

Step 3 switches the address space from SKEE to the kernel.
When Line 11 is fetched for execution, the program counter
will already be pointing to the next instruction, so no fault
will be caused due to the removal of the isolated page from
the accessible address space. Nevertheless, the address layout
of the exit switch gate has to be carefully crafted. If a single
instruction is placed on the isolated page after the TTBR1
value is restored, then a TLB miss may occur and the system
would lock up. This is particularly possible in multi-core
environments, where other cores can be invalidating the TLB
of all cores at any point of time.

Steps 4 and 5 are carried out at the page mapped directly
after the isolated page. This page has the same virtual address
mapping in the two address spaces. Although this page has
no instructions that change TTBR1, the context switching
effectively takes place at this page. The execution goes to the
kernel after TLB is invalidated and interrupts are enabled.

The entire ARMv8 switching mechanism does not rely
on the value of TTBR0. Nonetheless, SKEE is responsible
for emulating writes to this register within its address space.
SKEE enforces two restrictions on TTBR0 mappings: 1) All
mappings are forced to have the PXN access restriction so
they cannot be used to control the MMU, and 2) none of the
mappings point to SKEE’s physical memory.

3) Using ASID for Faster Context Switching: Both ARMv7
and ARMv8 switch gates mostly rely on basic hardware
operations that are not expected to cause large performance
overhead. The only exception is TLB invalidation, which
forces the CPU to reload all memory translations through
page table walks. To avoid this potentially expensive step,
SKEE proposes an alternative design that relies on the ASID
to protect its address space. This solution requires two changes
to the SKEE algorithm.

First, the entire SKEE address space is to be mapped as
non-global memory. Therefore, cached TLB entries are only
available when a particular ASID is active. The switch gate

would still need to be mapped as global memory because it is
accessible to both address spaces.

Second, a unique ASID is assigned to SKEE. This unique
ASID is never active while the kernel is running. Otherwise,
the kernel can access the SKEE address space using existing
TLB entries. Likewise, other ASIDs are not used while SKEE
is running so that cached entries of the SKEE address space
mappings do not leak to the kernel.

On ARMv8, implementing this solution is straightforward
because the ASID is assigned along with the translation table
register values. In this case, ASID 0 is assigned to SKEE,
while all other ASIDs are assigned to the OS.

ARMv8 allows the OS to select which translation table
base register defines the active ASID. SKEE will enforce that
the active ASID value is associated with TTBR1. This selection
is done by the TCR, which is only accessible to SKEE. The
only change required thereafter is for the entry and exit gates to
skip the TLB invalidation. All SKEE address space translations
will be associated with ASID 0 in the TLB. Upon exiting,
SKEE will verify that the restored TTBR1 value has a non-
zero ASID field. Hence, all SKEE cached translations are not
accessible to the kernel.

It is worth noting that in our SKEE prototype, the exit gate
was mapped as a non-global page. Nevertheless, some ARMv8
implementations might require the exit gate to be mapped as a
global page to be able to change TTBR1 value. In this case, the
exit gate should invalidate the global TLB entry corresponding
to its own virtual address. This is an extremely fast operation
when compared to invalidating the entire TLB.

On ARMv7, the solution is more complex because the
ASID is defined by CONTEXTIDR. Hence, selecting the active
ASID and modifying TTBCR cannot be done in an atomic
operation. Figure 7 shows the redesigned ARMv7 switch gate
that relies on the ASID. ASID 0 is assigned to SKEE and other
ASIDs are used by the kernel.

Upon entry, CONTEXTIDR is set to 0 before switching
TTBCR to guarantee that SKEE address space entries are only
associated to that ASID. Upon exit, the kernel ASID is only
restored after TTBCR switches back to the kernel.

The kernel can use the newly exposed instructions that
write CONTEXTIDR to switch to ASID 0 to expose available
TLB entries that map the SKEE address space. To prevent this
scenario, a security check is added to interrupt handlers to test
the value of CONTEXTIDR. If CONTEXTIDR has a zero value,
then this attack scenario is detected and the system will stall.

The kernel may also skip the step that writes to
CONTEXTIDR and switch the TTBCR directly aiming to let
SKEE’s address space mappings leak to a different ASID.
SKEE uses the security check at lines 19-22 to prevent this
because the execution will be halted before jumping to SKEE.

The same security check is added to the exit gate to
guarantee that neither writes to TTBCR or CONTEXTIDR is
maliciously used. The two checks at lines 33-36 and lines
42-45 verify CONTEXTIDR and TTBCR respectively and stall
the execution if an unexpected value is detected. Intuitively,
firing an interrupt to skip the security checks will not work
due to the presence of similar check at the interrupt handler.
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  Figure 7. A Faster SKEE Switch Gate on ARMv7

These security checks also eliminate the need for an immediate
branch to return to the kernel.

A key security issue of this technique is the presence of the
kernel address space translation entries in the TLB while SKEE
is executing. The main threat is that execution may maliciously
be diverted to the kernel code by exploiting vulnerability in
the security tool hosted by SKEE.

These are two possible solutions to prevent this threat:
1) modify the kernel address space to put the kernel code in a
non-global memory so the TLB entries are not accessible while
SKEE is running, and 2) use existing sandboxing techniques,
such as Native Client [54] and MiniBox [36], or Control
Flow Integrity (CFI) techniques, such as the CFI enforcement
initially proposed by Abadi et. al. [3] and MoCFI [20], to
prevent control flow attacks against the SKEE environment.

The first solution will add performance overhead due to
increased TLB usage to cache kernel code with multiple
ASIDs. The resulting overhead in this case will likely offset
the performance enhancement gained by avoiding the TLB
invalidation. Hence, it is not a feasible solution from the
performance perspective. The second solution is more feasible
because the code base of the security tools is smaller than
that of the kernel. Hence, implementing sandbox isolation or
CFI is feasible. Nevertheless, this solution requires techniques
orthogonal to the work presented in here. Implementing and
evaluating these techniques is out of scope of this paper.

C. Kernel Monitoring and Protection

To allow effective monitoring and protection of the kernel,
SKEE provides the security tool with: 1) the ability to trap
kernel critical events, 2) the ability to access kernel memory,
and 3) the ability to control kernel memory protection.

SKEE’s control of the kernel’s virtual address space allows
it to force the kernel to trap on certain operations by modifying
the access permission of memory regions associated with these
operations. For example, all memory translation tables are
mapped read-only to the kernel. Hence, the kernel is forced to
request from SKEE to update the memory translation tables.
Similarly, hooks can be placed to intercept other events, such
as modification of security critical data structures.

SKEE can also remove any particular privileged instruction
from the kernel code and replace it with a hook that traps to
SKEE. These hooks can be placed at kernel critical execution
paths such as interrupt handlers or system call handlers.

To conclude, the privilege allowed to SKEE is equivalent
to that allowed to virtualization based mechanisms. SKEE has
the advantage that it does not increase the size of the TCB
of commodity hypervisors. SKEE also can work on ARMv7
systems that do not support virtualization extensions.

D. Security Analysis

Throughout section IV, we discussed in detail how SKEE
achieves isolation, secure context switching and kernel moni-
toring. In this section, we first summarize how these features
fulfill the required security guarantees. Afterwards, we discuss
how SKEE prevents other possible attack scenarios.

Security Guarantees: As mentioned in Section III, SKEE
provides two principal security guarantees. First, it guarantees
that the kernel cannot break the isolation. Second, it guarantees
that switching from the kernel to the isolated environment
cannot expose the address space protection.

Section IV-A shows how SKEE uses the MMU to provide
the isolation. The memory layout defined by SKEE prevents
the kernel from accessing the isolated environment. Moreover,
the entire kernel address space lacks the required privileged
instructions to control the MMU to revoke this protection.

Section IV-B shows how all context switching scenarios are
atomic, deterministic and exclusive. These features combined
guarantee that the isolated environment is only accessible after
it takes control of the system. They also guarantee that this
only happens at a specific entry point and in specific execution
conditions. Hence, the kernel cannot tamper with the context
switching process to break the isolation.

Multi-core System Operations: ARM architecture specifica-
tions use a separate TLB for each CPU core. Hence, SKEE and
the kernel can run simultaneously on different cores. The TLB
entries cached on one core that runs SKEE are not available
to other cores that might be running the kernel and vice versa.
Therefore, SKEE is safe to use in multi-core systems.

If a specific implementation supports a shared TLB, then
SKEE will be required to use ASIDs for isolation. As discussed
in Section IV-B3, having a separate ASID for SKEE will
prevent the kernel from accessing existing TLB entries that
map the SKEE address space.
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Side Channel Attacks: Due to the lack of hardware protection,
SKEE does not provide a guarantee against side-channel
attacks. Nevertheless, the effect of these attacks is limited to
leaking information about the SKEE environment without the
ability to alter its operations or break the isolation.

DMA Attacks: Hardware peripherals are sometimes allowed
to bypass the MMU and do Direct Memory Access (DMA)
to physical memory. This feature can be used by attackers to
read or write arbitrary memory regions. These attacks threaten
SKEE because a compromised kernel can reprogram hardware
peripherals to directly write to the SKEE address space.

On hardware platforms that support ARM System Memory
Management Unit (SMMU) [7], preventing DMA attacks
against SKEE is straightforward. SKEE is first required to
prevent the kernel from managing the SMMU registers and
page tables using the techniques discussed in Section IV-A.
Afterwards, SKEE would use the ARM SMMU to restrict
DMA access to the isolated environment.

On hardware platforms that do not support ARM SMMU,
SKEE needs to further instrument the memory layout so that
the kernel cannot access the DMA controller of hardware
peripherals. This can be done by remove the mapping of the
particular control structure of the target device from the kernel
address space. In this case, the exact implementation will differ
according to the specifications of the used hardware platform.

Attacks against the Isolated Environment: If the kernel passes
a maliciously crafted input that exploits vulnerability in the
SKEE framework or in the hosted security tool to hijack
SKEE’s control flow, then it can use the SKEE code base to
break the protection. Nevertheless, the exact same risk faces
all kernel security monitoring and protection tools.

In fact, SKEE profoundly enhances the system security in
this case. If vulnerability exists in the hosted security tool, then
the extent of the attack will be limited to the same privilege
level of the kernel. On the other hand, if the same security
tool is hosted by the hypervisor or by TrustZone, then such
attack would have an even higher impact by compromising
these security sensitive system components.

Dynamically Generated Kernel Code: Some kernel modules,
such as BSD packet filtering [38], dynamically generate kernel
code. These modules pose a threat to SKEE because they
require the kernel to have access to memory pages that are
writable and executable. Hence, they can be used to dynami-
cally generate executable privileged instructions that allow the
kernel to control the MMU.

To solve this problem, SKEE can prevent the kernel from
writing to the code pages that contain the dynamically gener-
ated code. Instead, the kernel would be required to pass the
code to SKEE so that it gets inspected first before being written
to the executable memory ranges. SKEE would then confirm
that the dynamically generated code does not have any instance
of the restricted privileged instructions.

V. IMPLEMENTATION AND EVALUATION

We implemented two prototypes of SKEE. The first pro-
totype was developed for the 32-bit ARMv7 architecture. It
was tested on the Samsung Note4 smartphone, which uses

Sanspdragon APQ8084 processor from Qualcomm. The sec-
ond prototype was developed for the 64-bit ARMv8 architec-
ture. It was tested on both the Samsung Galaxy S6 and the
Samsung Galaxy Note5 smartphones, which use the Exynos
7420 processor from Samsung System LSI.

In both prototypes, the kernel is modified so that the SKEE
environment is initialized during the boot up sequence. This
includes creating a new memory translation tables for SKEE
as well as modifying the kernel’s memory translation tables to
exclude the SKEE address space. This step is trusted because
SKEE assumes the presence of secure boot protection.

The kernel is modified to place hooks upon modifying
memory translation tables or MMU control registers. The
hooks jump to SKEE through the switch gate. The MMU
control registers emulated by SKEE include translation table
base, context ID and vector base address registers. SKEE does
not allow these operations to be carried out by the kernel;
Bypassing these hooks will only cause the system to stop
functioning properly. It is worth noting that the kernel disables
the MMU when the CPU core is coming in and out of the
sleep mode. Hence, the sleep/wake up sequence needs to be
modified to go through SKEE to guarantee that no attack code
can be launched while the MMU is disabled.

SKEE must confirm that translation table updates and con-
trol register modifications requested by the kernel do not com-
promise the address space isolation. The verification technique
to be used is out of the scope of this paper. Existing techniques,
such as TZ-RKP [11], can be used for this purpose. In order
to understand the bare SKEE overhead as well as the overhead
with security checks, we ran two groups of experiments. In the
first group, SKEE emulates requests received from the kernel
without security checking. In the second group, SKEE checks
that the emulated requests do not modify the memory layout
in a way that compromises the isolation.

A. Overhead of Emulating System Events

In the first group of experiments, we measured the overhead
of emulating system events using SKEE, which represents
the minimum overhead required to create SKEE’s isolated
environment on any system. In this group of experiments,
SKEE does not do any verification on the emulated system
events. It is important to measure the security impact of bare
SKEE implementation without security checks or any hosted
security tools for two main reasons.

The first is to measure the cost of running security tools
inside SKEE versus the cost of running the same security
tools without SKEE’s protection. Since SKEE runs in the
normal world alongside the kernel, the performance impact
of executing code inside or outside the isolated environment
is the same. Hence, the real performance impact is the time
added to enter to and exit from the isolated environment.

The second is that there is a plethora of system monitoring
and protection tools. These tools can range from simple
boundary checks that virtually add no overhead to complex
intrusion detection systems that require extensive processing.
Hence, it is important to measure the bare overhead of creating
SKEE’s isolated environment to be able to extrapolate the
performance cost of hosting any security tool inside SKEE.
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Table II. SWITCHING TIME

Processor Average Cycles
ARMv7 868
ARMv7 (No TLB invalidation) 550
ARMv8 813
ARMv8 (No TLB invalidation) 284

The experiments presented in this section were done us-
ing both 32-bit Samsung Galaxy Note4 and 64-bit Samsung
Galaxy S6 smartphones. We created three custom images for
each device: a non-modified Android system, a test system
that supports SKEE using TLB invalidation and a test system
that supports SKEE using ASID protection. The target OS
was Android Lollipop version 5.0, which ran on Linux kernel
version 3.10.61.

Overhead of Switching to SKEE: The first experiment is
measuring the execution time needed for context switching.
In this experiment, we used both the system that uses TLB
invalidation and the system that relies on ASID. We used ARM
cycle count register (CCNT) to measure the full round trip from
the kernel to SKEE.

Table II shows the average number of cycles needed to
do context switching. We run the same test on both ARMv7
and ARMv8 versions. Each test is repeated twice, one with
the full switch gate that includes TLB invalidation and the
other using the ASID protection. The purpose is to estimate the
performance of a system that might use sandboxing techniques
to securely skip the relatively expensive TLB invalidation. It
is worth noting that the effect of the TLB invalidation is not
limited to the added execution time on the switch gate, but
it also has a side-effect on other system operations. Table II
also shows that switching the ASID is more expensive in the
case of ARMv7 compared to ARMv8. This can be attributed
to the multiple steps required to switch the ASID on ARMv7
compared to the single atomic step on ARMv8.

Benchmark Performance Comparison: The second experi-
ment is to use benchmarking tools to evaluate the perfor-
mance overhead of the SKEE prototype described above.
Benchmarking the performance was only done on the system
that uses TLB invalidation. We did not evaluate the ASID
based protection because it is not complete without adopting a
sandboxing mechanism that prevents returning to the kernel
to hijack SKEE’s control flow. The system that uses TLB
invalidation gives a perspective on the worst case performance
of a system adopting SKEE.

Table III. SKEE BENCHMARK SCORES ON ARMV7

Benchmark Original SKEE Degradation (%)

CF-Bench 30933 29035 6.14%
Smartbench 2012 5061 5002 1.17%
Linpack 718 739 -2.93%
Quadrant 12893 12552 2.65%
Antutu v5.7 35576 34761 2.29%
Vellamo

Browser 2465 2500 -1.42%
Metal 1077 1071 0.56%

Geekbench
Single Core 1083 966 10.8%
Multi Core 3281 2747 16.28%

Multiple benchmark tools were used to compare the per-
formance of SKEE with the original system. Results of the
32-bit ARMv7 are shown in table III. When tested using

Table IV. SKEE BENCHMARK SCORES ON ARMV8

Benchmark Original SKEE Degradation(%)

CF-Bench 75641 66741 11.77%
Smartbench 2012 14030 13377 4.65%
Linpack 1904 1874 1.58%
Quadrant 36891 35595 3.51%
Antutu v5.7 66193 67223 -1.56%
Vellamo

Browser 3690 3141 14.88%
Metal 2650 2540 4.15%

Geekbench
Single Core 1453 1235 15.00%
Multi Core 4585 4288 6.48%

seven different benchmarking tools, the prototype shows a
performance degradation that varies according to the used
benchmark. Results of the 64-bit ARMv8 are shown in ta-
ble IV. It was tested using the same benchmarking tools and
the same variation of degradation rates was observed. We
attribute this variation to the unexpected system state when
the TLB is frequently invalidated. The process of restoring the
cached entries using translation table walks can vary according
to the state of the system.

Loading Apps Delay: The third experiment evaluated the effect
of SKEE on the look and the feel of the device from the
perspective of the end user. The experiment measured the time
needed to load some Android Apps. The time was measured
between the time the App icon is pressed to the time it is
fully loaded. We selected a set of gaming apps that require
long time to load due to the size of their binaries and the high
resolution graphics involved. The apps were selected from the
list of the most popular apps on the Android App Store.

Table V. SKEE APP LOAD DELAY ON ARMV7

App Original SKEE Overhead (%)

Temple Run 2 9.31 10.33 10.96%
Hill Climb Racing 3.66 3.71 1.37%
Angry Birds 4.72 4.79 1.48%
Crossy Road 4.81 5.24 8.94%
Subway Surf 5.45 5.95 9.17%

Table VI. SKEE APP LOAD DELAY ON ARMV8

App Original SKEE Overhead(%)

Temple Run 2 6.08 6.58 8.22%
Hill Climb Racing 2.42 2.73 12.81%
Angry Birds 4.12 4.32 4.85%
Crossy Road 3.42 3.80 11.11%
Subway Surf 4.42 4.71 6.34%

Tables V and VI show the result of this experiment on
ARMv7 and ARMv8 respectively. The overhead represents the
extra time needed to load the app when SKEE is present.

Device Boot up Time: The last experiment measured the
overhead added to device boot up time. Booting up is one
of SKEE’s worst case scenarios because it requires enormous
number of memory allocations. In 32-bit ARMv7, the average
original system boot up time is 21.35 seconds, while the
average boot up time for the SKEE system is 23.10 seconds
(8.2% increase). In 64-bit ARMv8, the average original system
boot up time is 21.72 second, while the average boot up time
for the SKEE system is 24.30 seconds (11.9% increase).
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B. Added Overhead of Sample Security Checks

In the second group of experiments, we added security
checks to guarantee that the emulated events do not compro-
mise the isolation. The purpose is to measure the overhead of
SKEE with a sample framework that satisfies the minimal set
of security checks required to protect the isolated environment.

To build the sample security framework, we adopted the
same technique presented in TZ-RKP [11]. In this framework,
SKEE creates an array that stores the status of every physical
frame of the system memory. It uses this array to verify that
writes to either translation tables or translation table base
registers will not expose SKEE’s protected address space.

The experiments in this section were done using a Samsung
Galaxy Note5 smartphone, which uses 64-bit ARMv8 Exynos
7420 processor. The target OS was Android 5.1.1, which ran
on Linux kernel 3.10.61. In these experiments the system is
set with maximum logging and debugging capabilities.

This group of experiments was done using different hard-
ware, Android version and system settings from the exper-
iments presented in Section V-A. Hence, the performance of
the original system varies between both groups of experiments.
To make sure that results are accurate, we compare the
performance of three system images: an original image without
SKEE, an image where SKEE is only used to emulate system
events withouts any security checks, and finally an image
where SKEE hosts the framework that verifies the emulated
events do not compromise the isolation.

Table VII. SKEE ADDED SECURITY CHECKS BENCHMARK SCORES

Degrad. SKEE + Degrad.
Benchmark Original SKEE (%) Sec. Checks (%)

CF-Bench 63273 58903 6.91% 57250 2.81%
Smartbench 15820 15217 3.81% 15104 0.74%
Linpack 1849 1697 8.22% 1560 8.07%
Quadrant 31429 30843 1.86% 29330 4.91%
Antutu v5.7 65242 62866 3.64% 58658 6.69%
Vellamo

Browser 4659 4256 8.65% 4350 -2.21%
Metal 2158 2139 0.88% 2081 2.71%

Geekbench
Single Core 1508 1342 11.00% 1340 0.15%
Multi Core 4566 4388 3.90% 4207 4.12%

The same set of benchmark tools used in Section V-A were
used to evaluate the performance of SKEE with the newly
added security checks. The results are shown in table VII. The
fourth column calculates the percentage degradation between
bare SKEE and the original system, while the sixth column
calculates the percentage degradation between SKEE hosting
the security framework and the bare SKEE system.

It can be observed that overhead added by the bare SKEE
platform slightly varies from the one reported in table IV.
For instance, the Vellamo-browser benchmark reported less
overhead in this experiment. We can conclude that the impact
of TLB invalidation is not uniform; it varies according to
the original system settings. Similar to the results reported in
Section V-A, it can be also observed that the measured over-
head widely vary according to the used benchmark. Finally, it
can be observed that the performance impact of the security
framework is within 10%.

We measured the overhead added to the device boot up
time. The average original system boot up time is 30.15

seconds. The average boot up time for bare SKEE is 33.80
seconds (11.7% increase), while that of SKEE hosting the se-
curity framework is 35.12 seconds (4.9% additional increase).

C. Performance Enhancement

The experiments presented in this paper do not include
performance enhancement technique. The relatively high per-
formance overhead is attributed to the large number of page
table updates that are emulated by SKEE. Hence, adopting
techniques that group page table updates to reduce the number
context switching, such as those introduced in TZ-RKP [11],
will reduce the performance overhead.

VI. RELATED WORK

Section I cites a plethora of related work that use hyper-
visors to monitor and protect the OS. Hypervisors can either
rely on hardware-assisted or software-based virtualization tech-
niques. The latter is often referred to as para-virtualization.

KVM/ARM [18] is an example of systems that build a
hardware-assisted ARM hypervisor, which can be used to
host security tools. The key difference between such sys-
tems and SKEE is the location of the security monitor.
In hardware-assisted virtualization, the hypervisor relies on
hardware extensions to provide the required isolation and
memory virtualization. Using the same virtualization layer for
kernel monitoring increases both the size of the hypervisor’s
TCB and the hypervisor’s interaction with the kernel, which
consequently increases the chances of having vulnerabilities.
This is specifically a concern in real world systems, where
the virtualization layer is used for purposes other than kernel
monitoring. SKEE solves this problem by creating an extra
layer of indirection that is less privileged than the virtualization
layer, yet more privileged than the kernel.

Para-virtualization is theoretically less secure than
hardware-assisted virtualization. However, it is more flexible
because it allows the hypervisor to be built without monopoliz-
ing hardware extensions. ARMVisor [21] is an example of sys-
tems that build an ARM hypervisor using para-virtualization.

SKEE adopts two ideas that are used in para-virtualization
approaches: 1) creating a separate protected address space for
the monitor and 2) preventing the kernel from accessing the
MMU. Nevertheless, there are two key differences between
the two approaches. First, SKEE’s runs at the same privileged
layer as the kernel. Para-virtualization techniques, such as
ARMVisor, put the kernel in a less privileged layer alongside
user space code, which is less secure and harder to implement
on real-world systems. The second is SKEE’s novel context
switching technique, which provides an atomic, deterministic
and exclusive switch gate to the isolated environment.

The turtles project [12] and CloudVisor [55] are examples
of systems that propose having multiple layers of virtualization
on the same system, a.k.a. nested virtualization. This can be
used to achieve the objectives of SKEE. Nevertheless, they are
both built for the x86 architecture. SKEE is the first system
that achieves the same objectives on the ARM architecture.

There are techniques to measure the integrity of the hy-
pervisor, such as HyperSentry [9] and HyperCheck [51], and
to protect it from potential attacks, such as HyperSafe [52].
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Nevertheless, these approaches cannot eliminate all attacks that
target the virtualization layer.

Section I also discussed the main research directions that
achieve isolation without relying on the hypervisor, which are
microhypervisors, sandboxing and hardware protection.

There are multiple systems that achieve hardware-based
isolation on x86, such as Flicker [40], [41], SIM [48], Nested
Kernel [19], and SICE [10]. However, they all rely on x86-
specific hardware features. Flicker uses Intel Trusted eXe-
cution Technology (TXT). SIM relies on the presence of a
CR3_TARGET_LIST, which is a feature provided by Intel to
allow the guest OS to switch the address spaces without active
involvement of the hypervisor. Nested Kernel uses the Write
Protection (WP) bit of the CR0 register to prevent the kernel
from accessing the isolated environment. When the (WP) bit is
set, the kernel is prevented from writing to read-only pages.
When it is clear, the kernel is allowed to write to any page
despite the read-only protection. This bit is used as a gate to
switch the access permission for certain parts of the kernel.
SICE relies on x86’s System Management Mode (SMM).
Unfortunately, ARM does not have equivalent features.

In addition to these directions, previous research work
proposed using formally verified microkernels to have a secure
core [22], [33], [35]. This secure code can be used to host
a security tool. However, formal verification is a challenging
long process. Adding a security tool to the microkernel will
make it a less practical solution.

VirtualGhost [15] suggests a sandbox that relies on com-
pilation time constraints. Nevertheless, the process of using a
custom compiler is also challenging and decreases the chance
of adopting this solution in real-world systems.

Finally, there are systems that protect the OS from poten-
tially malicious code. The most notable work in this direction
is Native Client [54] and Minibox [36]. There is also ARM-
Lock [57] and AppCage [56], which achieve the same objective
using ARM specific techniques. As mentioned in Section IV,
these systems can be used to compliment SKEE in confining
its environment to guarantee that it will not jump back to the
kernel while the SKEE address space is exposed.

VII. CONCLUSION

We introduced SKEE, a system that enables ARM plat-
forms to support an isolated execution environment without
adding code to the TCB of higher privileged layers. The new
environment is designed to provide security monitoring and
protection of the OS kernel.

SKEE provides the isolated environment with three key
properties: 1) isolation from the kernel, 2) a secure gate to
switch the context between the isolated environment and the
kernel, and 3) the ability to place hooks to intercept kernel
events for security inspection.

We presented a detailed security analysis that proves the
SKEE protection is non-bypassable by the kernel. We also
presented prototype implementation and evaluation results. The
results show that SKEE is a practical solution for real-world
systems. The future work will focus on integrating intrusion
detection and system monitoring mechanisms to run inside
SKEE to detect attacks and take the proper corrective actions.
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