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Abstract

Even the most advanced reverse engineering techniques

and products are weak in recovering data structures in

stripped binaries—binaries without symbol tables. Unfor-

tunately, forensics and reverse engineering without data

structures is exceedingly hard. We present a new solution,

known as Howard, to extract data structures from C binaries

without any need for symbol tables. Our results are signifi-

cantly more accurate than those of previous methods — suf-

ficiently so to allow us to generate our own (partial) symbol

tables without access to source code. Thus, debugging such

binaries becomes feasible and reverse engineering becomes

simpler. Also, we show that we can protect existing binaries

from popular memory corruption attacks, without access to

source code. Unlike most existing tools, our system uses dy-

namic analysis (on a QEMU-based emulator) and detects

data structures by tracking how a program uses memory.

1. Introduction

State of the art disassemblers are indispensable for re-

verse engineering and forensics. The most advanced ones,

like IDA Pro [24] and OllyDbg [2], offer a variety of tech-

niques to help elevate low-level assembly instructions to

higher level code. For instance, they recognize known li-

brary functions in the binary and translate all calls to these

functions to the corresponding symbolic names in the pre-

sentation to the user. Some are sufficiently powerful to han-

dle even binaries that are statically linked and ‘stripped’ so

that they do not contain a symbol table.

However, they are typically weak in reverse engineering

data structures. Since real programs tend to revolve around

their data structures, ignorance of these structures makes

the already complex task of reverse engineering even slower

and more painful.

The research community has been aware of the impor-

tance of data structures in reverse engineering for several

years now, but even so, no adequate solution emerged. The

most common approaches are based on static analysis tech-

niques like value set analysis [8], aggregate structure iden-

tification [38] and combinations thereof [39]. Some, like

CodeSurfer/x86, are available as experimental plug-ins for

IDA Pro [24]. Unfortunately, the power of static analysis is

quite limited and none of the techniques mentioned above

can adequately handle even some of the most common data

structures – like arrays.

Some recent projects have therefore resorted to dynamic

analysis. Again, success has been limited. The best known

examples are Laika [22] and Rewards [31]. Laika’s detec-

tion is both imprecise and limited to aggregates structures

(i.e., it lumps together all fields in a structure). This is not

a problem for Laika’s application domain – estimating the

similarity of different samples of malware by looking at the

approximate similarity of their data structures. However,

for forensics and reverse engineering this is wholly ineffi-

cient.

Rewards [31], presented in last year’s NDSS, builds on a

technique originally pioneered by Ramilingam et al. in ag-

gregate structure identification (ASI) [38]. The idea is sim-

ple: whenever the program makes a call to a well-known

function (like a system call), we know the types of all the

arguments – so we label these memory locations accord-

ingly. Next, we propagate this type information backwards

and forwards through the execution of the program. For

instance, whenever labeled data is copied, the label is also

assigned to the destination. Rewards differs from ASI in

that it applies this technique to dynamic rather than static

analysis.

Either way, by definition the technique only recovers

those data structures that appear, directly or indirectly, in the

arguments of system calls (or the well-known library func-

tions). This is only a very small portion of all data structures

in a program. All internal variables and data structures in

the program remain invisible.

In this paper, we describe a new technique known as

Howard1 that greatly improves on these existing techniques.

It is complementary to Rewards, but much more powerful

as it also finds internal variables. Like Rewards and Laika,

1The system was named after Howard Carter, the archaeologist who

excavated the tomb of Tutankhamun.



Howard is based on dynamic analysis

The main goal of Howard is to furnish existing disassem-

blers and debuggers with information about data structures

and types to ease reverse engineering. For this purpose, it

automatically generates debug symbols that can be used by

all common tools. We will demonstrate this with a real anal-

ysis example using gdb. This is our first application.

In addition, however, we show that the data structures

allow us to retrofit security onto existing binaries. Specif-

ically, we show that we can protect legacy binaries against

buffer overflows. This is our second application.

High-level overview. Precise data structure recovery is

difficult because the compiler translates all explicitly struc-

tured data in the source to chunks of anonymous bytes in the

binary. Data structure recovery is the art of mapping them

back into meaningful data structures. To our knowledge, no

existing work can do this. The problem becomes even more

complicated in the face of common compiler optimizations

(like loop unrolling, inlining, and elimination of dead code

and unused variables) which radically transform the binary.

Howard builds on dynamic rather than static analysis,

following the simple intuition that memory access patterns

reveal much about the layout of the data structures. Some-

thing is a structure, if it is accessed like a structure, and an

array, if it is accessed like an array. And so on.

Like all dynamic analysis tools, Howard’s results depend

on the code that is covered at runtime – it will not find data

structures in code that never executes. This paper is not

about code coverage techniques. Rather, as shown in Fig-

ure 1, we use existing code coverage tools (like KLEE) and

test suites to cover as much of the application as possible,

and then execute the application to extract the data struc-

tures.

In summary, Howard is able to recover most data struc-

tures in arbitrary (gcc-generated) binaries with a high de-

gree of precision. While it is too early to claim that the

problem of data structure identification is solved, Howard

advances the state of the art significantly. For instance, we

are the first to extract:

• precise data structures on both heap and stack;

• not just aggregate structures, also individual fields;

• complicated structures like nested arrays.

We implemented all dynamic analysis techniques in

an instrumented processor emulator based on Qemu [10].

Since single process emulation is available only for Linux,

the implementation is also for Linux. However, the ap-

proach is not specific to any particular OS.

Outline The remainder of this paper is organized as fol-

lows:
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Figure 1. The main stages in Howard.
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2 Existing work and what we took from it

Recovery of data structures is most obviously relevant

to the fields of debugging and reverse engineering. Still,

even the most advanced tools (like IDA Pro [24], and

CodeSurfer [8]) are weak at identifying data structures.

The limited support for data structure recovery they pro-

vide comes exclusively in the form of static analysis. These

techniques are inadequate, as we shall see below. As far

as we know, Howard is very different from any existing ap-

proach. Nevertheless, we have been influenced by certain

projects. In this section, we summarize them and their rela-

tion to Howard.

Static analysis. A first stab at recovering data without

executing the program is to try to identify all locations

that look like variables and estimate the sets of values that

they may hold [8]. Known as Value Set Analysis (VSA),

this approach uses abstract interpretation to find (over-

approximations of) the sets of possible values.

Of course, accurately pinpointing the locations that hold

variables in a program is not simple, but studying the way

in which the program accesses memory helps. Incidentally,

this idea originates in efforts to deal with the Y2K problem

in old COBOL programs and is known as Abstract Structure

Identification (ASI) [38]. Translated into C terms, ASI at-

tempts to partition memory chunks statically in structs of

arrays and variables, depending on accesses. For instance, if

a stack frame holds 40 bytes for local variables, and the pro-

gram reads the 4 bytes at offset 8 in the range, ASI classifies

the 40 bytes as a struct with one 4-byte variable wedged

between 2 arrays. As more addresses are referenced, ASI

eventually obtains an approximate mapping of variable-like

locations.

ASI has another clever trick to identify data structures

and types, and that is to use the type information from sys-

tem calls and well-known library functions. As the argu-



ment types of these calls are known, at every such call, ASI

tags the arguments with the corresponding types and prop-

agates these tags through the (static) analysis.

The culmination of these static techniques is a combina-

tion of VSA and ASI by Balakrishnan et al. [39]. This pow-

erful static analysis method is also available as an experi-

mental plug-in for IDA Pro, known as CodeSurfer/x86 [7].

At this point, however, we have to mention that all of

these static techniques have problems handling even the

most basic aggregate data structures, like arrays. Nor can

they handle some common programming cases. For in-

stance, if a C struct is copied using a function like

memcpy, VSA/ASI will misclassify it as having many

fields of 4 bytes, simply because memcpy accesses the

memory with a stride of 4 (on a 32 bit machine). Also,

they cannot deal with functions like ‘alloca’. In contrast,

Howard does not depend on static analysis at all.

In a more constrained setting, Christodorescu et al. show

how static analysis of x86 executables can help recover

string values [18]. Their technique detects C-style strings

modified by the libc string functions.

Dynamic analysis. Eschewing static analysis, Laika re-

covers data structures during execution in a novel way [22].

First, Laika identifies potential pointers in the memory

dump –based on whether the contents of 4 byte words look

like a valid pointer– and then uses them to estimate object

positions and sizes. Initially, it assumes an object to start

at the address pointed to and to end at the next object in

memory. It then converts the objects from raw bytes to se-

quences of block types (e.g., a value that points into the

heap is probably a pointer, a null terminated sequence of

ASCII characters is probably a string, and so on). Finally,

it detects similar objects by clustering objects with similar

sequences of block types. In this way, Laika detects lists

and other abstract data types.

On the other hand, Laika’s detection is both imprecise

and limited to aggregates. For instance, it may observe

chunks of bytes in what looks like a list, but it does not de-

tect the fields in the structures. For debugging, reverse en-

gineering, and protection against overflows, this is wholly

insufficient. The authors are aware of this and use Laika

instead to estimate the similarity of malware.

Originally, Howard borrowed from Laika the idea of dy-

namically classifying blocks of null-terminated printable

characters as “probable string blocks” to improve the speed

of string detection. However, as we improved our default

string detection method, the additional accuracy provided

by the Laika method was very small and we therefore re-

moved it.

Rewards [31] builds on the part of ASI that propagates

type information from known parameter types (of system

calls and library functions). Unlike ASI, however, it does

so dynamically, during program execution. Rewards recog-

nizes well-known functions (known as type sinks) and prop-

agates the types of their arguments. All data structures that

are used in, or derived from, system calls or known tem-

plates are correctly identified. However, Rewards is (fun-

damentally) not capable of detecting data structures that are

internal to the program.

Howard emphatically does not need any known type to

recover data structures, but whenever such information is

available, it takes advantage of it to recover semantics.

For instance, it may help to recognize a structure as a

sock addr structure, a file descriptor, or an IP address.

One of the more complicated features of Howard is its

loop detector, which we use to detect array accesses. Loop-

Prof [33] also detects loops dynamically. However, it is

weaker than Howard and cannot detect nested loops.

Dynamic protocol format reverse engineering. Differ-

ent in nature, but still related is the problem of automatic

protocol reverse engineering. Systems like Polyglot [12],

[44], AutoFormat [30], Tupni [23], ReFormat [43], and

Prospex [20], aim to analyze how applications parse and

handle messages to understand a protocol’s format. They

typically do so dynamically, although some are supple-

mented by static analysis. While different in various re-

gards, these systems track data coming from the network

and by observing the applications’ behavior try to detect

constant protocol fields, length fields, delimiters, and so

on. The most advanced ones also cluster different types of

messages to recover the protocol’s state machine. One of

Howard’s array detection methods was influenced by that of

Polyglot [12]. Still, it is considerably more advanced. In

addition, we add a second, completely new array detection

technique.

Security. The security application in Section 5 is inspired

by WIT [4] and similar approaches [5, 45]. WIT is a com-

piler extension that analyzes C source code to detect which

instructions can write which objects. It then generates in-

strumented object code to prevent instructions from writing

to different objects, thus eliminating memory error exploits.

With Howard, we do something similar, except that we do

not require the source code. Thus, we can apply our tech-

nique to legacy binaries (at the cost of some additional over-

head).

3 Recovery by access patterns: challenges

Howard aims to answer questions like: “What are the

variables, structs, and arrays in the program and what are

their layouts?” As explained in Section 2, for a subset of

these variables (for which we have type sinks), we are also



able to recover semantics, so that we can answer questions

like: “Is the 4-byte field in this struct an IP address, a

pointer, or an integer?”

Howard recovers data structures by observing how mem-

ory is used at runtime. In the CPU, all memory accesses

occur via pointers either using direct addressing or indi-

rectly, via registers. The intuition behind our approach is

that memory access patterns provide clues about the layout

of data in memory. For instance, if A is a pointer, then a

dereference of *(A+4) suggests that the programmer (and

compiler) created a field of size 4 at A. Intuitively, if A is a

function frame pointer, *(A+4) and *(A-8) are likely to

point to a function argument passed via the stack, and a lo-

cal variable, respectively. Likewise, if A is the address of a

structure, *(A+4) presumably accesses a field in this struc-

ture, and finally, in the case of an int[] array, *(A+4) is

its second element. As we shall see, distinguishing between

these three scenarios is one of the challenges we need to

address.

It is not the only issue. In the remainder of this sec-

tion, we discuss the main obstacles that we had to remove to

make Howard possible. Some are relatively straightforward

and for these we discuss immediately how we solved them.

Others are not, and we postpone their solution to Section 4,

where we discuss our approach in full.

Even though we discuss many details, due to space limi-

tations, we are not able to discuss everything in great depth.

We realize that some readers are interested in all the details,

and for this reason we made available a technical report that

contains enough information to allow one to reproduce our

system [42]. From time to time, we will refer readers inter-

ested in details to the report.

Memory allocation context Our work analyzes a pro-

gram’s use of memory, which includes local function vari-

ables allocated on the stack, memory allocated on the heap,

and static variables. Static memory is not reused, so it can

be uniquely identified with just its address. However, both

the runtime stack and heap are reused constantly, and so a

description of their data structures needs to be coupled with

a context.

For the stack, each invocation of a function usually holds

the same set of local variables and therefore start addresses

of functions are sufficient to identify function frames. A

possible exception occurs with memory allocated by calls

to functions like alloca, which may depend on the con-

trol flow. As a result, the frames of different invocations

could differ. While Howard handles these cases correctly,

the details are tedious and beyond the scope of this paper

(see [42]). For now, it suffices to think of function start ad-

dresses as the frame identifiers.

For heap memory, such simple pointers will not do.

Consider a my malloc wrapper function which invokes

typedef struct { <fun>:

int x; [1] push %ebp

int y; [2] mov %esp, %ebp

} elem t; [3] sub $0x10, %esp

[4] mov $0x1, -0xc(%ebp)

void fun() { [5] mov $0x2, -0x8(%ebp)

elem t elem, *pelem; [6] mov -0x4(%ebp), %eax

elem.x = 1; [7] mov $0x3, 0x4(%eax)

elem.y = 2; [8] leave

pelem = &elem; [9] ret

pelem->y = 3;

}

Figure 2. The function initializes its local variable elem.

Pointer pelem is located at offset -4 in the function frame,

and structure elem at -0xc. Instructions 4 and 5 initialize

x and y, respectively. Register EAX is loaded with the ad-

dress of pelem in instruction 6, and used to update field y

in 7.

malloc and checks whether the return value is null. Since

my malloc can be used to allocate memory for various

structures and arrays, we should not associate the mem-

ory layout of a data structure allocated by my malloc with

my malloc itself, but rather with its caller. As we do not

know the number of such malloc wrappers in advance, we

associate heap memory with a call stack. We discuss call

stacks in detail in Section 4.1.

Pointer identification To analyze memory access pat-

terns, we need to identify pointers in the running program.

Moreover, for a given address B=A+4, we need to know A,

the base pointer from which B was derived (e.g., to find

nested structures). However, on architectures like x86,

there is little distinction between registers used as addresses

and scalars. Worse, the instructions to manipulate them are

the same. We only know that a particular register holds a

valid address when it is dereferenced. Therefore, Howard

must track how new pointers are derived from existing ones.

We discuss our solution in Section 4.2.

Missing base pointers As mentioned earlier, Howard de-

tects new structure fields when they are referenced from the

structure base. However, programs sometimes use fields

without reference to a base pointer, resulting in misclassifi-

cations. Figure 2 illustrates the problem. Field elem.y is

initialized via the frame pointer register EBP rather than the

address of elem. Only the update instruction 7 hints at the

existence of the structure. Without it, we would character-

ize this memory region as composed of 3 separate variables:

pelem, x, and y (but since the program here does not ac-

tually use the connection between the fields x and y, this

partially inaccurate result would be innocuous). A missing

base pointer is of course a fundamental limitation, as we

cannot recognize what is not there. In practice, however, it

does not cause many problems (see also Section 8).



Multiple base pointers Conversely, memory locations

can be accessed through multiple base pointers, which

means that we need to decide on the most appropriate one.

Observe that field elem.y from Figure 2 is already referred

to using two different base pointers, the frame pointer EBP

and pelem (EAX). While this particular case is tractable

(as pelem is itself based on EBP), the problem in general

is knotty. For instance, programs often use functions like

memset and memcpy to initialize and copy data structures.

Such functions access all bytes in a structure sequentially,

typically with a stride of one word. Clearly, we should not

classify each access as a separate word-sized field. This is

a serious problem for all approaches to date, even the most

advanced ones [39].

One (bad) way to handle such functions is to black-

list them, so their accesses do not count in the analysis.

The problem with blacklisting is that it can only cope with

known functions, but not with similar ones that are part of

the application itself. Instead, we will see that Howard uses

a heuristic that selects the “less common” layout. For in-

stance, it favors data structures with different fields over an

array of integers.

Code coverage As Howard uses dynamic analysis, its ac-

curacy increases if we execute more of the program’s code.

Code coverage techniques (using symbolic execution and

constraint solving) force a program to execute most of its

code. For Howard, the problem is actually easier, as we do

not need all code paths, as long as we see all data struc-

tures. Thus, it is often sufficient to execute a function once,

without any need to execute it in all possible contexts. In

our work, we use KLEE [13]. Recent work at EPFL (kindly

provided to us) allows it to be used on binaries [15]. Fig-

ure 1 illustrates the big picture. In reality, of course, KLEE

is not perfect, and there are applications where coverage is

poor. For those applications, we can sometimes use existing

test suites.

4 Howard design and implementation

We now discuss the excavation procedure in detail. In

the process, we solve the remaining issues of Section 3.

4.1 Function call stack

As a first step in the analysis, Howard keeps track of the

function call stack. As Howard runs the program in a pro-

cessor emulator, it can dynamically observe call and ret

instructions, and the current position of the runtime stack.

A complicating factor is that sometimes call is used not

to invoke a real function, but only as part of a call/pop

sequence to read the value of the instruction pointer. Simi-

larly, not every ret has a corresponding call instruction.

We define a function as the target of a call instruc-

tion which returns with a ret instruction. Values of the

stack pointer at the time of the call and at the time of the

return match, giving a simple criterion for detecting uncou-

pled call and ret instructions2.

Whenever we see a function call, we push this infor-

mation on a Howard internal stack, which we refer to as

HStack.

4.2 Pointer tracking

Howard identifies base pointers dynamically by tracking

the way in which new pointers are derived from existing

ones, and observing how the program dereferences them. In

addition, we extract root pointers that are not derived from

any other pointers. Howard identifies different root pointers

for statically allocated memory (globals and static variables

in C functions), heap and stack.

For pointer tracking, we extended the processor emula-

tor so that each memory location has a tag, MBase(addr),

which stores its base pointer. In other words, a tag speci-

fies how the address of a memory location was calculated.

Likewise, if a general purpose register holds an address, an

associated tag, RBase(reg), identifies its base pointer.

We first present tag propagation rules, and only after-

ward explain how root pointers are determined.

When Howard encounters a new root pointer A, it sets

MBase(A) to a constant value root to mark that A has been

accessed, but does not derive from any other pointer. When

a pointer A (root or not) is loaded from memory to a register

reg, we set RBase(reg) to A.

The program may manipulate the pointer using pointer

arithmetic (add, sub, or and). To simplify the explanation,

we assume the common case, where the program manipu-

lates pointers completely before it stores them to memory,

i.e., it keeps the intermediate results of pointer arithmetic

operations in registers. This is not a limitation; it is easy to

handle the case where a program stores the pointer to mem-

ory first, and then manipulates and uses it later.

During pointer arithmetic, we do not update the

RBase(reg), but we do propagate the tag to destination reg-

isters. As an example, let us assume that after a number

of arithmetic operations, the new value of reg is B. Only

when the program dereferences reg or stores it to memory,

do we associate B with its base pointer which is still kept

in RBase(reg). In other words, we set MBase(B) to A. Af-

ter all, the program accessed this memory location via base

pointer A. This way we ensure that base pointers always in-

dicate valid application pointers, and not intermediate re-

sults of pointer arithmetic operations.

2In rare cases, functions are reached by a jump. Howard merges these

functions with the caller. We discuss the impact on the analysis in [42].



Extracting root pointers We distinguish between 3 types

of root pointers: (a) those that point to statically allocated

memory, (b) those that point to newly allocated dynamic

memory, and (c) the start of a function frame which serves

as a pseudo root for the local variables.

Dynamically allocated memory. To allocate memory at

runtime, user code in Linux invokes either one of the mem-

ory allocation system calls (e.g., mmap, mmap2) directly, or

it uses one of the libc memory allocation routines (e.g.,

malloc). Since Howard analyzes each memory region as

a single entity, we need to retrieve their base addresses and

sizes. Howard uses the emulator to intercept both. Inter-

cepting the system calls is easy - we need only inspect the

number of each call made. For libc routines, we deter-

mine the offsets of the relevant functions in the library, and

interpose on the corresponding instructions once the library

is loaded.

Statically allocated memory. Statically allocated mem-

ory includes both static variables in C functions and the

program’s global variables. Root pointers to statically allo-

cated memory appear in two parts of an object file: the data

section which contains all variables initialized by the user

- including pointers to statically allocated memory, and the

code section - which contains instructions used to access

the data. To extract root pointers, we initially load pointers

stored in well-defined places in a binary, e.g., ELF headers,

or relocation tables, if present. Next, during execution, if an

address A is dereferenced, MBase(A) is not set, and A does

not belong to the stack, we conclude that we have just en-

countered a new root pointer to statically allocated memory.

Later, if we come across a better base pointer for A than A

itself, MBase(A) gets adjusted.

Stack memory. Function frames contain arguments, lo-

cal variables, and possibly intermediate data used in cal-

culations. Typically, local variables are accessed via the

function frame pointer, EBP, while the remaining regions

are relative to the current stack position (ESP).

As we do not analyze intermediate results on the stack,

we need to keep track of pointers rooted (directly or indi-

rectly) at the beginning of a function frame only (often, but

not always, indicated by EBP). Usually, when a new func-

tion is called, 8 bytes of the stack are used for the return

address and the caller’s EBP, so the callee’s frame starts at

(ESP-8). However, other calling conventions are also pos-

sible [42]. This means that we cannot determine where the

function frame will start. To deal with this uncertainty, we

overestimate the set of possible new base pointers, and mark

all of them as possible roots. Thus, Howard does not rely on

the actual usage of the EBP register. If, due to optimizations,

EBP does not point to the beginning of the frame, nothing

bad happens.

Figure 3. Example of a memory area accessed using mul-

tiple base pointers. The arrows on top illustrate a function

like memset that accesses all fields with a stride of 4 bytes,

while the ’real’ access patterns, below, show accesses to the

individual fields.

32b 32b 32b 32b 32b 32b 32b 32b

1.

2.

3.

variable offsets 

stride 

stride wordsize 

not equal wordsize to 

equal to 

Figure 4. Different memory access patterns. When

Howard observes different access patterns to the same ob-

ject, it prefers pattern 1 over patterns 2 and 3, and 2 over

3.

4.3 Multiple base pointers

As a program often accesses a memory location A

through multiple base pointers, we need to pick the most

appropriate one. Intuitively, selecting the base pointer that

is closest to the location, usually increases the number of

hops to the root pointer, and so provides a more detailed

description of a (nested) data structure.

However, as shown in Figure 3, functions like memset

and memcpy often process composite data structures. These

functions are completely unaware of the actual structure and

access the memory in word-size strides. Thus, for 32 bit

machines, such functions continuously calculate the next

address to dereference by adding 4 to the previous one cov-

ering the entire data structure in 4 byte strides. By applying

the aforementioned heuristic of choosing the closest base

pointer, we could easily build a meaningless recursively

nested data structure.

For structs the solution is often simple. When the pro-

gram accesses the memory twice, once with constant stride

equal to the word size (e.g., in memset) and once in a dif-

ferent manner (when the program accesses the individual

fields), we should pick the latter. In arrays, however, multi-

ple loops may access the array. To deal with this problem,

we use a similar intuition and detect arrays and structures

dynamically with a heuristic preference for non-regular ac-



cesses and/or accesses at strides not equal to the word size.

For instance, if a program accesses a chunk of memory in

two loops with strides 4, and 12, respectively, we will pick

as base pointers those addresses that correspond to the latter

loop. Intuitively, a stride of 12 is more likely to be specific

to a data structure layout than the generic 4.

Our current array detection introduces three categories of

loop accesses (see Figure 4): (1) accesses with non-constant

stride, e.g., an array of strings, (2) accesses with a constant

stride not equal to the word-size, e.g., 1 or 12, and (3) ac-

cesses with stride equal to the word-size. Our heuristic,

then, is as follows. First select the base pointers in the best

possible category (lower is better), and next, if needed, pick

the base pointer closest to the memory location. Next, we

discuss arrays and loops in detail.

4.4 Array detection

Array detection is both difficult and important – espe-

cially for security. Howard recovers arrays when the pro-

gram accesses them in loops. Fortunately, this is true for

the vast majority of arrays. In the simplest case, the pro-

gram would access an array in an inner loop, with one array

element in each loop iteration. However, a general solu-

tion must also handle the following scenarios: (a) multiple

loops accessing the same array in sequence, (b) multiple

nested loops accessing the same array, (c) loop unrolling,

resulting in multiple array elements accessed in one loop

iteration, (d) inner loops and outer loops not iterating over

the same array, and (e) boundary array elements handled

outside the loop. Howard uses several complementary array

detection methods to deal with all these cases. We divide

these methods in two major classes depending on the way

array elements are accessed by the program.

Loops in real code implement one of two generic

schemes for deriving array element addresses: (1) rela-

tive to the previous element, realized in instructions like

elem=*(prev++), and (2) relative to the base of an array,

elem=array[i]. As we shall see, Howard handles both

cases. We discuss limitations of our array detection method

in Section 6.

4.4.1 Accesses relative to previous elements

To handle loop accesses in a buffer where each element ad-

dress is relative to a previous one, Howard is set up to track

chained sequences of memory locations. For instance, if

elem = *(pprev++), then the pointer to elem is derived

from pprev. A few of these scenarios are illustrated in Fig-

ure 4.

No loop unrolling. We explain what happens for the

non-optimized case first and address loop-unrolling later.

Howard identifies each loop with a timestamp-like id (lid)

which it assigns to the loop head at runtime when the back

edge is taken for the first time. See Figure 5. At this point

this loop head is pushed on HStack. So, if a loop executes

just once and never branches back for a second iteration,

it does not get a new lid. Howard assigns the top lid as

a tag to each memory location A the code accesses: MLid

(A):=lid. Thus, memory accesses in the first iteration of a

loop get the parent lid. Tags are kept similarly to MBase,

in the emulator. If there are no loops on the call stack,

pushed functions are assigned a new lid. Otherwise, new

functions inherit the top loop lid.

Writing B ← A to denote that pointer B is derived from

pointer A, conceptually Howard detects arrays as follows.

When pointer B, with B ← A , is dereferenced in iteration

i, while A was dereferenced in a previous iteration, Howard

treats A as a likely array element3. It stores information

about the array in the loop head on HStack. The more itera-

tions executed, the more array elements Howard discovers.

Loop unrolling. The algorithm is simple and intuitive and

sketches the main idea fairly accurately, but it is a (slight)

simplification of Howard’s real array detection algorithm.

In reality, we cannot just look at loop iterations, as common

optimizations like loop unrolling force us to look at these

patterns within a single iteration also. For completeness,

we briefly explain the details.

Assume that the loop id of the current loop is LidT, while

the previous element on the call stack has id LidS. Also

assume that the pointer C is dereferenced for the first time

in the loop T, where C← B and B← A.

Howard now treats B as a likely array element if the fol-

lowing conditions hold:

1. MLid (B) ≥ LidT, which means that B was accessed in

the current loop (regardless of the iteration),

2. MLid (A) ≥ LidS, which means that A was accessed

either in the current loop or just before it.

It stores information about the array in T, the top loop

head on HStack. Whenever a new piece of information is

added, Howard tries to extend arrays already discovered in

the top loop head. We will discuss shortly how this works

when multiple loops access the same array. First, we look

at boundary elements.

Boundary elements Because the first element of an array

is often accessed before a new id is assigned to the loop

head (remember, a new loop id is assigned only once the

back edge is taken), Howard explicitly checks for extending

3There is a subtle reason why we do not classify B as an array element

(yet): if the array consists of structs, B may well point to a field in a

struct, rather than an array element.
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Figure 5. (a) Control flow graph of a loop that derives array element addresses relative to the previous element. Basic block T

is the loop head, and V→ T the back edge. (b) An example ten-element array accessed by the loop in (a). Three diagrams present

the information about the array gathered by Howard at different points of the loop execution. The dashed squares indicate the most

recently accessed array element. Arrows represent base pointers as determined by the loop. S and T above the array elements are

assigned during the loop execution and indicate loop head ids, MLids. In step 1, Howard checks that a, b, and c were accessed

in the current loop (or just before), and decides (step 2) to store information about a new array [b]. It notes that the array should

possibly be extended later to contain a and c. As more iterations of the loop are executed (step 3), the array contains elements

[b-e] with a and f marked as potential extensions.

the array. It looks for earlier memory accesses at the base

pointers used to recursively derive the first element of the

array. Before we continue with the algorithm, see Figure 5

for an example array detection scenario.

Multiple loops To handle arrays accessed in multiple

loops or functions, arrays that are found in inner loops are

passed to the previous element on HStack, whether it be a

function or an outer loop node. Howard must decide if the

findings of the inner exiting loop ought to be merged with

the outer loop results or whether they represent internal ar-

rays of nested structures and should be kept separately. In-

tuitively, Howard waits to determine whether (1) the array

detected in the internal loop will be further extended in the

outer loop – hinting at the existence of an iterator which

prompts Howard to merge the results, or (2) whether the ar-

ray detected in the internal loop is not extended further, and

kept independent from the outer loop – prompting Howard

to classify it as a nested structure.

4.4.2 Accesses relative to the base

The above technique helps us detect sequentially accessed

arrays where each next address is relative to the previous

one. Sometimes, however, accesses are relative to the base

pointer. These accesses may or may not be sequential. For

instance, randomly accessed arrays like hash tables fall in

this category.

For this type of access Howard uses a second method

that bears a superficial resemblance to the array detection

method in Polyglot [12], but is considerably more power-

ful. Essentially, Howard tracks all instructions in a loop

i1 i2 i2i1 i2

i1 i2 i2i1 i2

a.

b. Array B

Array A

Array A

Figure 6. Array accesses from the base pointer. The la-

bels denote whether the accesses are by instruction i1 or i2.

In (a) we see a single array accessed by multiple instructions

in a single loop, while in (b), the access patterns are similar

except that we now have two arrays. Howard distinguishes

the two cases by looking for a shared base pointer.

that access a set of addresses that can be mapped to a lin-

ear space (stride ∗ x+ offset) and that all share the same

base pointer (See Figure 6.a). If the accesses share a base

pointer, they almost certainly belong to the same array, even

if the accesses came from different instructions in the loop.

Moreover, we can easily extend the array to include bound-

ary elements (e.g., a last element that is accessed outside

the loop), because it will share the same base pointer. If the

accesses do not share the base pointer (Figure 6.b), Howard

classifies them as different arrays.

Existing methods like those used in Polyglot [12], and

also Rewards [31], only check whether single instructions

in a loop access an area that can be mapped to a linear space

(stride ∗ x+ offset). Therefore, they can handle only the

simplest of cases. They fail when the program: (1) accesses

arrays in multiple loops/functions, (2) accesses boundary

elements outside the loop, (3) has multiple instructions that



access the same array within one loop (very common with

unrolled loops or loops containing conditional statements

like if or switch), and (4) allocates the arrays on the stack

or statically. These are all common cases.

4.4.3 Are both methods necessary?

The two array detection methods in Howard are comple-

mentary. Both are necessary. The first will not detect ac-

cesses relative to the base pointer (like hash tables), while

the second does not detect accesses where each next address

is relative to the previous. In contrast, the combination of

our two techniques works quite well in practice. Howard

is able to detect nested arrays, hash tables and many other

complex cases.

4.5 Final mapping

Having detected arrays and the most appropriate base

pointers, Howard finally maps the analyzed memory into

meaningful data structures. For a memory chunk, the map-

ping starts at a root pointer and reaches up to the most dis-

tant memory location still based (directly or indirectly) at

this root. For static memory, the mapping is performed

at the end of the program execution. Memory allocated

with malloc is mapped when it is released using free,

while local variables and function arguments on the stack

are mapped when a function returns.

Mapping a memory region without arrays is straightfor-

ward. Essentially, memory locations which share a base

pointer form fields of a data structure rooted at this pointer,

and on the stack, memory locations rooted at the beginning

of a function frame represent local variables and function

arguments.

When a potential array is detected, we check if it matches

the data structure pattern derived from the base pointers. If

not, the array hypothesis is discarded. E.g., if base point-

ers hint at a structure with variable length fields, while the

presumed array has fields of 4 bytes, Howard assumes the

accesses are due to functions like memset. The analysis

may find multiple interleaving arrays. If such arrays are not

included in one another, we merge them. Otherwise, we

examine the base pointers further to see if the arrays are

nested.

4.6 Partial recovery of semantics

As mentioned earlier, type sinks are functions and sys-

tem calls with well-known prototypes. Whenever Howard

observes a call to one of these functions, it knows the type

of the arguments, so it can attach this label to the data struc-

ture. Howard propagates these type labels, e.g., when a la-

beled structure is copied. In addition, it also propagates the

type information to the pointers that point into the memory.

In our experience, the recovery works only for a limited

set of all data structures, but some of these are important for

debugging and forensics. For instance, it may be interesting

to see which data structures contain IP addresses. We have

implemented type sinks for libc functions and for system

calls, as these are used by practically all applications. In

general, Howard does not depend on type sinks, but it is

capable of using them when they are available. All results

presented in Section 8 (Evaluation) were obtained without

turning on type sinking at all.

5 Applications

To demonstrate the usefulness of Howard, we describe

two new applications: binary analysis with reconstructed

symbol tables, and retrofitting security to legacy binaries

not designed with security in mind.

5.1 Binary analysis with reconstructed symbols

To aid forensics and reverse engineering, Howard auto-

matically generates new debug symbol tables for stripped

binaries. In this example, we focus primarily on the new

techniques for detection of data structures. However, we

also want to show how we complement Rewards’ method

of recognizing well-known functions (type sinks) and prop-

agating the types of their arguments [31]. For this reason,

we also add a minimal set of type sinks.

The symbol tables Howard generates are generic and we

can use them with any common UNIX tool. Of course, they

are not entirely complete. For instance, we only have exact

semantics for the subset of data structures that derive from

type sinks. Also, we cannot generate out of thin air the cor-

rect names of fields and variables. Nevertheless, the recov-

ered symbol table allows us to analyze the data structures

of applications that were practically impossible to analyze

otherwise.

Figure 7 shows a screenshot of a real gdb session with

reconstructed symbols. Suppose we have purchased a pro-

gram that crashes occasionally. We want to analyze the

program and perhaps reverse engineer parts of it. With-

out Howard, common disassemblers (like those of gdb or

IDA Pro) help to analyze the instructions, but not the data

structures. In this example, we show that we can now an-

alyze the data also. For demonstration purposes, we use a

stripped version of wget as our demo binary, and show that

we can analyze it with the gdb debugger.

To show both the unadorned data structure recovery and

recovery of semantics, this example uses a truly minimal set

of type sinks. Specifically, our type sinks consist (only) of

inet addr() and gethostbyname().

The scenario is that we have witnessed a crash. Thus,

we start our analysis with an instruction prior to the crash



Figure 7. Analysis and disassembly with recovered symbols



(0x805adb0) 1© and try to find information about the vari-

ables in the scope of the current function (info scope

2© and then print variables 3©). Where the stripped

binary normally does not have any information about the

variables, we see that Howard reconstructed most of them

(structs, pointers, and strings) and even recovered par-

tial semantics. For instance, we find pointers to a struct

hostent and an inetaddr string4.

We could print out the contents of the struct

hostent, but really we are interested in the data structures

pointed to by the various pointers – for instance the pointer

to a struct identified by pointer struct 1 0. Unfortu-

nately, it currently has the value NULL, so there is nothing

interesting to see and we have to wait until it changes. We

do this by setting a watch point on the pointer 4©. In our

opinion, the ability to inspect data structures and set watch

points clearly shows the usefulness of the data structures

recovered by Howard.

Once the pointer changes, and receives its new value

0x80b2678, we can analyze the corresponding memory

area. We see that it points to a structure containing: an

integer with value 3, a pointer to a struct, a one-byte

field, and a four-byte field 5©. If we follow the pointer,

we see that it points to a struct with two fields, one of four

bytes and one of type in addr t 6©. We can even examine

the value of the IP address and see that it corresponds to

74.125.77.147 7©.

Moreover, we see that our struct is in an array

of size 3 by dividing the amount of memory allocated

(malloc usable size) by the size of an element 8©.

Thus, we can make an educated guess that the integer value

of 3 we found earlier denotes the number of IP addresses in

the array.

To complete the admittedly simple example, we also

print out these IP addresses 9©. For reasons of space, we

stop the scenario here. The purpose of the example is

merely to show that we can debug and analyze stripped bi-

naries in the same way as when debugging and analyzing

binaries with debugging symbols.

We emphasize that by means of type sinks alone (e.g.,

using Rewards [31]), we would have obtained hardly any

data structures as almost all of them are internal to wget.

Eventually, the IP addresses are used, so they would appear,

but no struct or array would have been found. In addition,

connecting the IP addresses to other structures from our en-

try point into the code (the break point) would have been

completely impossible. In contrast, with Howard we can

progressively dig deeper and trivially find the connections

between the data structures.

4Names are generated by Howard. Prefixes like field ,

pointer are for convenience and are not important for this paper.

5.2 Protection against memory corruption

Memory corruption errors such as buffer overflows are

responsible for a large share of the remote attacks on the

Internet. An overflow occurs when a C program reads more

bytes than fit in the buffer, so that important data in the

memory above the buffer is overwritten. The overwrit-

ten data can be either control data such as function point-

ers [36], or non-control data such as clearance levels [14].

Protection of legacy binaries is very hard. Existing so-

lutions tend to be too slow (like taint analysis [35]) or in-

complete (ASLR [11], StackGuard [21], NX/DEP/W⊕X

support [25]). For instance, ASLR, StackGuard, and

NX/DEP/W⊕X offer no protection against attacks against

non-control data. In addition, a recent report shows that

both DEP and ASLR in Windows third party applications

are typically either improperly implemented or completely

overlooked [40]. Finally, even if configured correctly, the

protection offered by ASLR is quite limited [41].

To demonstrate the problem and our solution, we use an

example based on a real vulnerability in nullhttpd [1]

as shown in Figure (8.a). Given a CGI command, the Web

server calls ProcessCGIRequest with as arguments the

message it received from the network and its size. The pro-

gram copies the message in the cgiCommand buffer and

calls ExecuteRequest to execute the command. As the

copy does not check for bounds violations, the buffer may

overflow and overwrite the heap.

Protection Many papers have looked at patching pro-

grams (source or binary) after a vulnerability was de-

tected [34], and recent work looked at extending the com-

piler framework to protect against new memory corruption

attacks given the source [4]. So far, no one has shown how

one can really protect (i) existing binaries, (ii) in production

environments, (iii) against such attacks (on both control and

non-control data), and (iv) pro-actively, without access to

vulnerabilities, source code, or even symbol tables. This

means that all legacy binaries with unknown vulnerabilities

are left at the mercy of attackers. We now describe a promis-

ing new way to protect this important class of applications

against memory corruption.

Howard has no problem recovering buffers such as

cgiCommand. However, since we use code coverage to

excavate the array, one might think that Howard would dis-

cover an array that is larger than 1024 bytes. After all, since

code coverage can feed the function with arbitrarily long

messages, wouldn’t Howard ‘discover’ an arbitrarily long

buffer? Fortunately, the answer is no and the reason is that

the bytes just beyond the buffer (in this case memory man-

agement meta data) are accessed and classified differently.

As a result, Howard sees two conflicting classifications and

picks the safest one, ending the buffer at the right boundary.



binary, so all instructions run at native speed.

# ...

(a) (b)

void 

{

  int i = 0;

  char* cgiCommand = malloc(1024);

  while (i < sz) {

    cgiCommand[i] = msg[i]; 

    i++; 

  }

  ExecuteRequest (cgiCommand);

  free (cgiCommand); 

}

ProcessCGIRequest(char *msg,int sz)
_dereference_check_0x80485d4:

# color than originally assigned

# %eax may point to data of different 

# save registers

#reload registers

pop %eax

pop %edx

pop %ecx

# the actual dereference we instrument

mov %dl, (%eax)

# code after dereference

# ...

_dereference_check_ok_0x80485d4:

push %ecx

push %edx

push %eax #key: push addr %eax points to 

call get_data_color # color of protected

# the color of %eax (found at index 1 in 

lea reg_colors, %ebx

# reg_colors) has to match color of data

cmpb %al, 1(%ebx) 

je _dereference_check_ok_0x80485d4

# ...
# print alert and exit

# is placed in %al

All accesses to the buffer cgiCommand are 

protected by the code on the right.The pointer

is initially  colored at the malloc.The code on 

the right shows what happens when the buffer

is accessed.

In summary: the framework looks up the color

of the buffer and compares it with the pointer’s

color. If the colors match, it will perfrom the 

dereference. If not, it raises an alert (and in this

case exits).

All instrumentation is weaved into the original

# code before dereference

Figure 8. (a) Buffer overflow vulnerability in a simplified Web server, (b) Instrumentation

In our approach, we protect all buffers which were clas-

sified as arrays, and all buffers which were followed by un-

used memory regions. The latter ones might be either ar-

rays or structures. Since Howard not always has enough

information to choose the correct data structure (also refer

to “missed short arrays” in Section 8), to err on the safe side

we have decided to protect these memory regions as well.

After identifying all potentially vulnerable data struc-

tures (mostly arrays), we harden the binary as follows. First

we give each vulnerable data structure a unique color. For

the rest of memory the color is set to 0. The colors are kept

in a memory map. Next, when we initialize a pointer to, say,

buffer B, we give the pointer B’s color. The initialization

varies, depending on the type of memory. For global data,

this happens when the program starts, for stack variables

when the function is called, and for heap data at the time of

the allocation.

Third, we instrument those (and only those) instructions

that dereference the pointer to check whether it is still point-

ing to memory of the right color B5. Fourth, because we do

not wish to maintain also a large memory map of colors for

all pointers, we ensure that only pointers in registers have

a color. Whenever a pointer is stored to memory, we check

5So it is fine if the pointer points beyond the buffer, as long as it is not

dereferenced.

whether it is still pointing to the right area. If so, everything

is fine and when the pointer is reloaded to a register, we give

it the color of the byte to which it is pointing. If, however,

the pointer does not point to an area of the right color, we

explicitly tag the pointer with a single bit to indicate that it

needs to obtain its color from a table. As this situation is

rare, the overhead is minimal.

To add the instrumentation, we rewrite the binary using

rewriting techniques similar to Dynamos [32]. We empha-

size again that the instrumentation is applied only to exactly

those instructions that need to be checked. The rest of the

code is not touched. Figure (8.b) shows how we hardened

the memory dereference in the web server.

To test the practicality of our approach, we applied the

Howard protection to the main array of lighttpd, the pop-

ular high-performance web server that, at the time of writ-

ing, is used by such popular sites as YouTube, SourceForge,

Wikimedia, Meebo, and ThePirateBay. The protected ar-

ray is used to store strings, and in our experiment setting

accounts for 80% of the whole heap memory usage. The

runtime overhead of the current implementation is almost a

factor of 2. Although the overhead of instrumentation is not

negligible, we believe that the approach is practical. First,

there are many ways in which we can optimize the instru-

mentation. Second, there are many legacy applications that

are not extremely time critical, but that should not be com-



promised.

Discussion. Currently, while the instrumentation frame-

work works, it is still an early prototype. For instance, when

instrumenting a binary, some steps are still manual. This

will be remedied shortly. In addition, we have not looked

at all performance optimization yet. Finally, while we have

taken care to avoid possible false positives, more extensive

evaluation is needed across a wide range of applications.

Nevertheless, the important message, in our opinion, is that

with Howard we have a chance to protect arbitrary legacy C

applications against one the most common form of exploits

without any access to source code or even symbol table, and

without knowing in advance about the presence of vulnera-

bilities in the code. For instance, the Web server of Figure 8

now raises an alert whenever it reads too many bytes in the

cgiCommand buffer.

6 Comments and limitations

Obviously, Howard is not flawless. In this section, we

discuss some generic limitations we have identified.

Limitations in array detection We discuss both the lim-

itations of our array detection techniques and their impact

on our applications – especially on our second application

which uses the data structures to protect legacy binaries. It

is crucial that possible misclassifications do not cause false

positives.

• At least four accesses. To make array detection more

accurate, Howard will not recognize an array if fewer

than four of its elements are accessed in a loop. In

that case, it will be classified as a structure. This mis-

classification can only cause false negatives, but never

false positives. Indeed, if an array remains undetected,

Howard does not try to protect instructions accessing

it.

• Merging with unused bytes. We merge detected arrays

with any unused bytes that follow the array. Doing so

prevents identification of buffers that are too small (and

thus false positives in the case of protection against

memory corruption). In general, the Howard protec-

tion scheme, was designed to err on the safe side. Ob-

serve that even if we would add unused bytes that do

not belong to the same buffer, we still protect the next

used field or variable from buffer overflows.

• Incorrect merges. If a structure consists of one field

followed by an array, and the field and array are ac-

cessed in sequence, it is impossible to classify it cor-

rectly solely based on memory access patterns. As

Howard always extends arrays to include the first el-

ement unless it finds evidence that it does not match

(e.g., if because size or type are different), it could lead

to overestimation of the array length. Again, this can

never cause false positives.

• Separate last element accesses. It may happen that all

but the last elements of an array form a chain, while the

last element is always accessed separately, e.g., when

a string is first copied to a destination buffer, and then

extended with EOL or NULL. Howard misclassifies the

memory as a structure containing an array and a sepa-

rate field. Even though the last element is not attached

to the array, this does not cause false positives for our

application. Indeed, if the program never exploits the

connection between the last element and the remain-

ing part of the array, it is not important for us to join

them either. Also, if the size of the array varies across

multiple runs of the program, Howard prefers to err on

the safe side, merges the elements, and reports accu-

rate results. In general, even if Howard cannot classify

an array or structure correctly in one particular loop

or function, it may still get it right eventually. Often

data structures are accessed in more than one function,

yielding multiple loops to analyze the layout.

Other limitations

• Howard cannot recognize nested structs if the in-

ner struct is never accessed separately. In that case,

Howard returns a single large structure. As the result

is equivalent, we do not consider this a problem.

• Unions might exhibit more than one memory access

pattern. As a result Howard would report a data struc-

ture being a merge (or intersection) of the multiple

structures included in the union. Howard might report

an incorrect (more detailed) interpretation of fields, but

it does not lead to false positives.

• Howard gets confused by certain custom memory al-

locators. Specifically, it can handle slab-like alloca-

tors, but a generic, application-specific memory allo-

cator (such as that of Apache) leads to misclassifica-

tions. It stems from the fact that a memory region serv-

ing the allocator exhibits mixed access patterns inher-

ited from various different structures/arrays for which

it was used. As a result, Howard would classify such

buffer as either an array of (perhaps) 4-byte fields or a

highly nested structure.

• Howard does not analyze local variables of functions

reached using a jump rather than a call.



7 Code transformation: compiler optimiza-

tion and obfuscation techniques

In production code, compilers apply optimizations to

improve runtime performance. Such optimizations may

change the code substantially. Likewise, obfuscation tools

change the source code or binary to reduce the ability to un-

derstand or reverse engineer the program. In this section,

we introduce popular optimizations and obfuscation tech-

niques and discuss how they influence Howard’s data struc-

ture detection results. We treat compiler optimizations in

Section 7.1 and obfuscation techniques in Section 7.2. In

both cases, we limit ourselves to the techniques that are rel-

evant and that may affect data structure detection.

7.1 Compiler optimizations

Howard detects data structures in gcc-generated x86 C

binaries. Even though our techniques were not designed

with any specific compiler in mind and should work with

other binaries also, we conducted all our experiments on

gcc-4.4 binaries. So we focus our discussion on gcc.

7.1.1 Data layout optimizations

Data layout optimizations [29, 28] adapt the layout of a

data-structure to its access patterns in order to better uti-

lize the cache by increasing spatial locality. They include

structure splitting and field reordering transformations.

In general, Howard detects data structures at runtime, so

the analysis results correspond to the optimized code and

data–which may be different from what is specified in the

source. This is known as WYSINWYX (What You See Is

Not What You eXecute) [9] and while it complicates re-

verse engineering (for instance, some data structures may

be reordered or transformed), analyzing the code that really

executes is of course ’the right thing’. Without it, we would

not be able to protect buffers from overflows, or perform

proper forensics.

7.1.2 Loop optimizations

Loop transformations [3, 6] reduce loop overhead, increase

instruction parallelism, and improve register, data cache or

TLB locality. Popular transformations include: (1) loop un-

rolling, where the body of a loop is replicated multiple times

in order to decrease both the number of loop condition tests

and the number of jumps, (2) loop peeling, where a loop

is peeled, a small number of iterations are removed from

the beginning or end of the loop and executed separately to

remove dependencies created by the first of last few loop

iterations, (3) loop blocking, where a loop is reorganized to

iterate over blocks of data sized to fit in the cache.

Loop code:

for(i = 0; i < 64; i++) arr1[i] = i;

And two possible executions:

addr = arr1; addr = arr1;

for(i = 0; i < 64; i++){ for(i = 0; i < 16; i++){

*addr = i; *addr = i<<2;

addr += 1; *(addr + 1) = i<<2+1;

} *(addr + 2) = i<<2+2;

*(addr + 3) = i<<2+3;

addr += 4;

}

Figure 9. An example loop and two possible ways in

which the loop can be executed: the non-transformed one

on the left hand side, and the unrolled one on the right hand

side.

2.

1.

Figure 10. Memory access patterns realized in two ex-

ecutions of the loop in Figure 9. The top one represents

the non-transformed one, and the bottom one - the unrolled

one. As in the other figures, arrows represent base pointers

as determined by the loop.

As described in Section 4.4, Howard recovers arrays

when the program accesses them in loops. To increase the

accuracy of the analysis, Howard’s algorithm allows for ar-

rays accessed in multiple loops, and checks for array el-

ements accessed before or after the loop body. Basically,

when a transformed loop accesses an array, all its elements

are classified together.

However, loop transformations may change not only the

layout and number of loops, but also the memory access

patterns. As an example, Figure 9 presents a simple loop ac-

cessing an array, and two possible ways in which this loop

can be executed. Refer to Figure 10 to observe array arr1

access patterns executions. We can see that depending on

the execution, the array is either classified as an array of

single fields (as desired) or as an array of 4-field structures.

Even though arr1 is possibly misclassified here, it might

be used in other ways somewhere else in the program, and

we might eventually get it right. In all similar cases, Howard

cannot do anything about not entirely accurate classifica-

tions, as its analysis is based solely on memory access pat-

terns.



7.1.3 Optimizations affecting function frame

There are numerous compiler optimization which affect the

way we perceive a function’s frame. First, functions can

be inlined, which means that they are integrated into their

callers. In this case the small inlined function is not called

separately, but its function frame extends the caller’s one.

Second, (some of) the input function arguments might be

passed through the registers and not through the stack. Also,

gcc might analyse the program to determine when values

passed to functions are constants. These are optimized ac-

cordingly.

Howard is expected to reflect functions in the way they

appear in the binary. In the case of inlined functions we get

just one extended function frame. Likewise, since Howard

analyzes memory access patterns only, it cannot spot func-

tion parameters passed through the registers or precomputed

by the compiler. As this inaccuracy does not affect our ap-

plications, we did not worry about it.

7.2 Obfuscation techniques

Code obfuscation techniques aim to reduce the ability to

understand or reverse engineer the program. Data transfor-

mations [19] that obscure data structures used in the source

application are the most relevant to Howard, and we fo-

cus our discussion on them. We also briefly mention anti-

dynamic analysis techniques (Section 7.2.3).

7.2.1 Obfuscating arrays

Numerous transformations can be devised for obscuring op-

erations performed on arrays [16, 46, 26]. Popular tech-

niques include: (1) array splitting, where an array is split

into several subarrays, (2) array merging, where two or

more arrays are merged into one array, (3) array folding and

flattening, where the number of dimensions is increased or

decreased, respectively.

As before, Howard is expected to reflect arrays in the

way they appear and are accessed in the binary. In the case

of split, folded or flattened arrays, Howard is supposed to re-

port the new transformed data structures. When two or more

arrays are merged to form a new array, the results of the

analysis greatly depend on the merging method. For exam-

ple, one could combine arrays arr1[N1] and arr2[N2]

in such a way that the new array arr3 contains N1 elements

of arr1 followed by N2 elements of arr2. In this case,

it is very probable that Howard reports arr3 as a structure

containing two arrays: an N1- and an N2-element long. An-

other merging technique could interleave arr1’s elements

with arr2’s elements. Here, we perhaps expect Howard to

report one array of [N1+N2] elements.

Since Howard analyzes memory access patterns only,

it cannot recognize that certain arrays are used in similar

ways by similar functions, and containing similar elements.

Thus, it cannot say that some arrays might share a higher

level data type. Howard concerns itself with low level data

structures only, and limits itself to recognizing sizes and ba-

sic types of data structures. Understanding contents and us-

age scenarios is part of our future work.

7.2.2 Obfuscating variables

There is a lot of work on hiding values of sensitive variables

from static and dynamic analysis [17, 47]. For example, in-

stead of using a variable, one can use a piece of code that

generates the value dynamically. Also, like arrays, variables

may be split or merged. None of our test applications con-

tain such obfuscation, so we left this for future work.

7.2.3 Anti-dynamic analysis techniques

Howard observes the behavior of a program in runtime, and

so it is crucial that the program does not refuse to run in

the instrumented processor emulator. However, there exist

techniques that could be used by programs running in vir-

tualized environments to determine that they are running in

a virtual machine rather than on native hardware [37, 27].

When this happens, Howard cannot perform its analysis.

8 Evaluation

Howard can analyze any application on the Linux

guest on our (QEMU-based) emulator. For instance, we

successfully applied Howard to games like glines and

gnometris, but also to complex binaries like the Linux

loader ld-2.9.so, and huge ones like Apache6. How-

ever, for good results we need code coverage and for code

coverage we currently depend on what is supported by

KLEE [13] and existing test suites.

Our experimental setup is shown in Figure 1. We con-

duct the code coverage runs offline, using KLEE on LLVM

version 2.6 with home-grown modifications to handle net-

working. All applications run on a Linux-2.6.31-19 kernel.

We then use klee-replay to replay the application on

top of our Howard analyzer with the inputs generated by

KLEE. If our coverage is low, we use normal test suites for

the applications.

Starting out with small applications (fortune), we

worked towards progressively larger applications. In the

plots below, we include results for programs of several tens

of thousands LoC, including the wget download program

and the lighttpd high-performance web server. Table 1

shows the applications and the coverage we obtained with

6244.000 lines of code (LoC), as reported by David Wheeler’s

sloccount (www.dwheeler.com/sloccount/).



KLEE and the test suites. We also applied Howard to utili-

ties in CoreUtils, but these tend to be so small (a few hun-

dred lines, typically) that they are not representative of real

applications, and we do not discuss them here.

Results To verify Howard’s accuracy, we compare the re-

sults to the actual data structures in the programs. This

is not entirely trivial. We cannot compare to the original

source code since aggressive compiler optimizations may

change the binary significantly (“what you see is not what

you execute” [9]). Thus, all the results presented in this

section were obtained for binaries for which we could also

generate symbol tables to compare our results with. This

way we were able to get ground truth for real world appli-

cations.

We will start with a few quick observations. First,

Howard cannot discover variables that always remain un-

used, but this probably should not count as a ‘missed’ data

structure. Second, all these results were obtained solely

with Howard’s ‘core’ data structure excavation techniques.

In other words, we turned off all type sinking for these tests.

Figure 11 presents our results in terms of accuracy for

both the stack and the heap. The accuracy is calculated both

for the number of variables, and for the total number of al-

located bytes. In the case of stack memory we evaluated the

accuracy of Howard’s analysis for all functions used during

our experiments. Thus we did not count the stack variables

used by functions that were never invoked. In the case of

heap, we simply considered all allocated memory regions.

The plots show Howard’s results in five categories:

• OK: Howard identified the entire data structure cor-

rectly (i.e., a correctly identified structure field is not

counted separately).

• Flattened: fields of a nested structure are counted as a

normal field of the outer structure. On the stack these

are usually structures accessed via EBP, as explained

in Section 3.

• Missed: Howard misclassified the data structure.

• Unused: single fields, variables, or entire structures

that were never accessed during our tests.

• Unused array: this is a separate category that counts

all arrays not recognized because there were insuffi-

cient accesses to the array.

The general conclusion is that practically all memory is

either detected correctly or unused. Moreover, for prac-

tically all arrays and structs the lengths were identified

correctly.

The stack has more unused memory than the heap. This

is expected. Whenever a function is called, the whole frame

is allocated on the stack, regardless of the execution path

taken in the function’s code. Heap memory is usually allo-

cated on demand. Much of the unused bytes are due to the

limited coverage. As we never ran KLEE for a longer than

a few hours, it may be that by running it longer7 we obtain

better coverage.

The stack also counts more structures that are flattened.

Again, this is not surprising. As explained in Section 3,

structure field addresses may be calculated relative to the

beginning of the function frame. In that case, Howard has

no means of classifying the region as a structure. On the

heap this is less common. Indeed, if an application allocates

memory for a structure, it refers to the structure’s fields

from the base of the structure, i.e., the beginning of the al-

located region. However, Howard may still misclassify in

the case of a nested structure. This happens for instance in

fortune, where a 88-byte FILEDESC structure contains

a nested 24-byte STRFILE structure.

The main source of missed are data structures occasion-

ally classified as arrays of 4-byte fields. Assume that an

application uses a simple structure with 4-byte fields based

at the beginning of the structure (i.e., no inner structures).

If none of the fields is 1-byte long, nor is a pointer, while a

memset function is used for the structure initialization, we

have no means for discarding the array hypothesis.

As the vast majority of structs and arrays reside on

the heap, we zoom in on these results for more details.

Figure 12 breaks down the overall results to show how

well Howard discovers individual fields and different types

of arrays. The two plots correspond to structures that are

separately allocated on the heap and on arrays (possibly

containing structures). We label the results as follows:

• Structures

– OK: fields correctly identified.

– Missed: fields incorrectly identified.

– Unused: fields missed because the program did

not use them.

– Flattened: fields in nested structures that

Howard placed at the wrong nesting level.

• Arrays

– OK: arrays correctly identified.

– Missed: arrays incorrectly identified.

– Missed short: arrays missed because they were

accessed fewer than 4 times.

– Unused: arrays missed by Howard because they

were not used at all.

7Or running it better. Driving KLEE down the right execution path is

not always trivial.



Prog LoC Size Funcs% Vars% How tested? KLEE%

wget 46K 200 KB 298/576 (51%) 1620/2905 (56%) KLEE + test suite 24%

fortune 2K 15 KB 20/28 (71%) 87/113 (77%) test suite N/A

grep 24K 100 KB 89/179 (50%) 609/1082 (56%) KLEE 46%

gzip 21K 40 KB 74/105 (70%) 352/436 (81%) KLEE 54%

lighttpd 21K 130 KB 199/360 (55%) 883/1418 (62%) test suite N/A

Table 1. Applications analyzed with Howard. LoC indicates the lines of code according to sloccount. Size is the approximate

size of the text segment. Func% is the fraction of functions that the tests exercised (KLEE or test suite). Vars% is the fraction of

variables used in the tests (KLEE or test suites), and KLEE% is the coverage offered by KLEE (if any).
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– Flattened: fields of structs in arrays classified

as separate elements.

If an array contains structs and any field of any

struct is missed, we count it as a missed array. A flattened

array means at least one of the structs was flattened. In

other words, we analyze structs that were allocated in-

dividually separately from structs in arrays. The reason

for doing so is that otherwise the arrays would completely

dominate the analysis of structs. For instance, if all fields

in an array of 1000 structures were classified correctly, this

would artificially inflate the number of correctly identified

fields.

In the plots in Figure 12 we see that Howard mostly de-

tects fields and structures quite accurately, provided they are

used at all. Most of the misclassifications are also minor.

For instance, the flattened structure in fortune consists of

an 88-byte FILEDESC structure that contains a nested 24-

byte STRFILE structure, where the inner structure is never

used separately. Examples of the arrays missed in wget are

a char* array that is reallocated and then not used anymore.

Howard classifies it as an int* array. There are also mis-

classifications when the last element is accessed outside the

loop and relative to the base pointer, rather than the previous

element. For grep, some arrays of structs were classified

as arrays of individual fields. As explained above, we de-

cided to count them in the flattened arrays, rather than in the

structures. Also, for grep (and gzip) no structures appear

on the heap except in arrays (hence the lack of data in the

plot on the left).

Performance. Most of the overhead in Howard is due to

code coverage. It takes several hours to obtain reasonable

coverage of real-life applications. Howard is considerably

cheaper. Still, since we either re-run the KLEE experi-

ments or the test suites on a heavily instrumented binary,

the analysis takes more time than running the applications

natively. For instance, programs like gzip and grep took 5

and 15 minutes to analyze, respectively. Of all the applica-

tions we tried, grep took the longest. As Howard performs

a once-only, offline analysis, these results show that even

with the current unoptimized version, we can realistically

extract data structures from real applications.

9 Conclusions

We have described a new technique, known as Howard,

for extracting data structures from binaries dynamically

without access to source code or symbol tables by observing

how program access memory during execution. We have

shown that the extracted data structures can be used for an-

alyzing and reverse engineering of binaries that previously

could not be analyzed, and for protecting legacy binaries

against memory corruption attacks. As until now data struc-

ture extraction for C binaries was not possible, we expect

Howard to be valuable for the fields of debugging, reverse

engineering, and security.

Future work Our focus throughout this project was on

detecting low level data structures in stripped binaries. We

have demonstrated that with Howard we have a chance to

protect arbitrary legacy C binary against one of the most

common form of exploits. We plan to make our current

instrumentation framework fully automated, and to further

evaluate our approach.

Future research also addresses the issue of lifting the

current low level analysis to higher level data structures.

We intend to observe connections between structures, and

based on that information reason about pointer structures

like linked lists, trees and hash tables.
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