
Dynamic Data Structure Excavation
or “Gimme back my symbol table!”

Asia Slowinska, Traian Stancescu,
Herbert Bos

VU University Amsterdam

Anonymous bytes only…

2

struct employee {

char name [128];

int year;

int month;

int day;

};

struct employee*

foo (struct employee* src)

{

struct employee dst;

// init dst

}

Goals

• Long term: reverse engineer complex

software

3

struct s1{

char f1 [128];

int f2;

int f3;

int f4;

};

struct s1*

fun1 (struct s1* a1)

{

struct s1 l1;

}

Goals

• Long term: reverse engineer complex

software

• Short term: reverse engineer data structures

4

WHY?

5

Application I: legacy binary

protection

• Legacy binaries everywhere

• We suspect they are vulnerable

But…
How to protect legacy code from memory

corruption?

Answer: find the buffers and make sure

that all accesses to them do not stray

beyond array bounds.

6

Application II: binary analysis

• We found a suspicious binary – is it malware?

• A program crashed… - let’s investigate!

But…

Without symbols, what can we do?

Answer: generate the symbols ourselves!

7

(demo later)

8

Why is it difficult?

1. struct employee {

2. char name[128];

3. int year;

4. int month;

5. int day;

6. };

7.

8. struct employee e;

9. e.year = 2010;

Instr 1

Instr 2

MISSING

• Data structures

• Semantics

9

Data structures: key insight

1. struct employee {

2. char name[128];

3. int year;

4. int month;

5. int day

6. };

7.

8. struct employee e;

9. e.year = 2010;

Yes, data is unstructured…

But – usage is NOT!

10

Data structures: key insight

1. struct employee {

2. char name[128];

3. int year;

4. int month;

5. int day

6. };

7.

8. struct employee e;

9. e.year = 2010;

Yes, data is unstructured…

But – usage is NOT!

11

1. struct employee {

2. char name[128];

3. int year;

4. int month;

5. int day

6. };

7.

8. struct employee e;

9. e.year = 2010;

Data structures: key insight

Analyse dynamically

test

KLEE/

S2E
inputs

app

Emulator

data structures 12

3. and A is an address of an array,

then *(A + 8) is perhaps an

element of this array

elem2

elem3

elem4

elem5

elem0

elem1

A

Intuition

• Observe how memory

is used at runtime to

detect data structures

• E.g., if A is a pointer…

1. and A is a function frame pointer,

then *(A + 8) is perhaps a function

argument

parent EBP

return addr

fun arg1

fun arg2

A

2. and A is an address of a structure,

then *(A + 8) is perhaps a field in

this structure

field0

field1

field2

field3

A

3. and A is an address of an array,

then *(A + 8) is perhaps an

element of this array

13

Arrays are tricky

Access pattern & detection:
• elem = next++;

– Look for chains of accesses in a

loop

14

Arrays are tricky

Access pattern & detection:
• elem = next++;

– Look for chains of accesses in a

loop

• elem = array[i];

– Look for sets of accesses with the

same base in a linear space

15

Arrays are tricky

Access pattern & detection:
• elem = next++;

– Look for chains of accesses in a

loop

• elem = array[i];

– Look for sets of accesses with the

same base in a linear space

Challenges:

• Boundary elements accessed outside

the loop

• Nested loops

• Multiple loops in sequence

16

More challenges

Examples:

• Decide which memory

accesses are relevant

– Problems caused by e.g.,

memset-like functions

Suggested by memset

array 1 array 2structure

17

More challenges

Examples:

• Decide which memory

accesses are relevant

– Problems caused by e.g.,

memset-like functions

• Even more in the paper ☺

Suggested by memset

array 1 array 2structure

18

Results in terms of accuracy –

heap memory

variables
bytes

19

demo now

20

Conclusions

• We can recover data structures by tracking

memory accesses

• We believe we can protect legacy binaries

• We are working on data coverage

21

