ke

Dynamic Data Structure Excavation
or “Gimme back my symbol table!”

Asia Slowinska, Traian Stancescu,
Herbert Bos

VU University Amsterdam

Anonymous bytes only...

ke

\

“‘ an =}

mnxnt '.‘l
Lty Y
for (53)

Goals

* Long term: reverse engineer complex
software

struct employee {
%ebp char name [128];

wesp, sebp . .
F0xad , kesp Int year,

0x&(%ebp) ,%eax int month;
-0x98 (%ehp) ,%ecx .

meax, neds Int day;
F0xBC, Keax }’-
neax,0xB(Xesp) :

%k, Ox4(%esp) Y struct employee*
e, eep b A "“ foo (struct employee* src
Ox&(%ebp),%eax E " il 4 C {

: struct employee dst;

// init dst

Goals

* Short term: reverse engineer data s
struct s1{
char f1 [128];
int f2;
int f3;
int f4;

nebp

wesp, sebp
F0xad , kesp
Ox&(%ebp) ,¥eax
-0x98 (%ehp) ,%ecx
meax, neds

F0x8C, eax
neax,0xB(Xesp)

5

struct s1*

Hedx,Oxd(Xesp)
wecx, (Xespl
D29

Ox&(¥%ebhp) ,%eax

funl (struct s1* al)

{
struct s1 I1;

WHY?

Application |: legacy binary
protection

ke

* Legacy binaries everywhere
 We suspect they are vulnerable

How to protect legacy code from memory
corruption?

Answer: find the buffers and make sure
¢, thatall accesses to them do not stray
48— beyond array bounds.

Application II: binary analysis %—

 We found a suspicious binary —is it malware?
A program crashed... - let’s investigate!

Without symbols, what can we do?
Answer: generate the symbols ourselves!

(demo later)

ke

Why is it difficult?

struct employee {
char name[128];
int year;
int month;

int day;

};

struct employee e;

e.year = 2010,

t Instr 1
[Instr 2
|

Data structures: key insight %f

struct employee {
char name[128];
int year;
int month;

int day

};

struct employee e;
e.year = 2010,

10

Data structures: key insight %f

struct employee {
char name[128];
int year;
int month;
int day

}i

struct employee e;
e.year = 2010,

11

Data structures: key insight %f

nt month;
int day

struct employee e;
e.year = 2010,

[
test
\ app
] e \

— ~ 4
— a,l .
— Y
KLEE/ / inpbuts Emulator .3. .-
S2E P .&;;_J
S} data structures 12

2. and Ais an address of a structure,

I ntU ItIO n then *(A + 8) is perhaps a field in

this structure

field3
field2
field1
fieldO

e Observe how memory
is used at runtime to
detect data structures

e E.g.,if Aisapointer...

1. and Ais a function frame pointer, 3. and Ais an address of an array,
then *(A + 8) is perhaps a function then *(A + 8) is perhaps an
argument element of this array

fun arg2

fun arg1

return addr
A | parent EBP

13

Arrays are tricky

Access pattern & detection:

* elem = next++;

— Look for chains of accesses in a
loop

14

Arrays are tricky

Access pattern & detection:

* elem = next++;

— Look for chains of accesses in a
loop

* elem = arrayl[i];

— Look for sets of accesses with the
same base in a linear space

Arrays are tricky

Access pattern & detection:

* elem = next++;

— Look for chains of accesses in a
loop

* elem = arrayl[i];

— Look for sets of accesses with the
same base in a linear space

Challenges:

* Boundary elements accessed outside
the loop

* Nested loops
 Multiple loops in sequence

More challenges

e

structure array 1 array 2

Examples:

e Decide which memory
accesses are relevant

— Problems caused by e.g.,
memset—like functions

Suggested by memset .

ke

More challenges

structure array 1 array 2

Examples:

e Decide which memory
accesses are relevant

— Problems caused by e.g.,
memset—like functions

* Even more in the paper ©

Suggested by memset .

Results in terms of accuracy —
heap memory

a(\ab\ Heap Memory
\ 100
Prog |LoC
wget [46K 80
fortune 2K
grep 24K T 60
gzip |21K 2
. o
lighttpd|21K 39- 40
unused arrays
flattened
} unused 20
%3 missed
0

demo now

20

Conclusions

ke

 We can recover data structures by tracking
memory accesses

 We believe we can protect legacy binaries
 We are working on data coverage

21

