
Efficient Monitoring of Untrusted Kernel-Mode Execution

Abhinav Srivastava and Jonathon Giffin
School of Computer Science, Georgia Institute of Technology

{abhinav,giffin}@cc.gatech.edu

Abstract

Recent malware instances execute completely in the
kernel as drivers; they do not contain any user-level ma-
licious processes. This design evades the system call
monitoring used by many software security solutions, in-
cluding malware analyzers and host-based intrusion de-
tectors that track only user-level processes. To trace the
behavior of kernel malware instances, we design and im-
plement a hypervisor-based system called Gateway that
monitors kernel APIs invoked by drivers. Gateway cre-
ates a hardened, non-bypassable monitoring interface
by isolating drivers in an address space separate from
the kernel. To overcome the performance degradation
introduced by switches between these separate address
spaces, our design rewrites binary kernel and driver
code at runtime and generates new code on demand to
optimize the address space transition speed. Our exper-
imental measurements show performance overheads of
10% or better, with many overheads less than 1%. Our
security evaluation shows that Gateway is able to mon-
itor all kernel APIs invoked by malicious drivers across
its non-bypassable interface.

1. Introduction

Recently developed malware instances push entire
functionality out of malicious user-space processes
down into kernel drivers or modules. For example,
srizbi consists of a single kernel-mode driver imple-
menting a full spam client with an HTTP based com-
mand and control infrastructure [21,45], and the lvtes
keylogger contains only a kernel-mode driver that inter-
cepts users’ keystrokes [7]. These malware instances
are called full-kernel malware [23]. Existing host-based
IDSs, honeypots, and other security utilities often mon-
itor process’ behavior at the system-call interface to de-
tect malware and software attacks. To render existing

system call monitors ineffective, full kernel malware in-
stances invoke kernel functionality with function calls
from a driver rather than with system calls from a pro-
cess. In order to observe the behavior of kernel malware,
security software instead must monitor the function-call
interface between drivers and the core kernel.

Previous research efforts focused on the interaction
of drivers with the kernel through control and non-
control data. SBCFI [31], Autoscopy [32], and Hook-
Safe [49] protected control data (function and code
pointers) allocated on heap, while RAD [10] and Stack-
Ghost [15] protected control data (return addresses)
present on the stack. Sentry [40], Gibraltar [3], and Se-
mantic Integrity [30] protected a kernel’s non-control
data [8] from malicious modifications. Though these
systems monitor and prevent illegal use of kernel data,
they do not track use of kernel code by malicious drivers,
which is equally important. A malicious kernel module
can create illegitimate kernel control flows by directly
invoking arbitrary kernel functionality via calls, jumps,
or returns to arbitrary addresses inside the kernel code.
To complement the extensive previous research on the
protection of kernel data, we investigate the use of ker-
nel code by malicious drivers.

We address the invisibility of full kernel malware
with a new system that monitors all control-flow inter-
actions of drivers with the core kernel. We design and
implement a security monitor called Gateway that mon-
itors all kernel APIs invoked by drivers, passes their in-
vocations asynchronously to an arbitrary policy enforce-
ment utility, and ensures complete mediation of direct
accesses from drivers to kernel code. Note that Gate-
way’s non-bypassable interface applies to code entry
points, and attacks targeting kernel data require other
techniques to monitor or detect. Gateway protects itself
from kernel-mode malware by utilizing a higher privi-
lege software layer created by a hypervisor. Gateway’s
monitoring provides the foundation on which security
software can be built in the same manner that system call



monitoring provided the foundation for behavior-based
application-level security software.

Security monitors, including Gateway, require the
monitored interface to be non-circumventable. Com-
modity operating systems publish interfaces to be used
by drivers and loadable modules to request services
from the kernel. Operationally, this interface design
is similar to the system call interface, which is used
by userspace applications to request services from the
core kernel. However, unlike the system-call interface
boundary, which is explicitly trusted (all inputs are ver-
ified) and enforced by the hardware, there is no mecha-
nism to enforce the implicitly trusted boundary between
the core kernel and its drivers.

The lack of a memory barrier inside operating sys-
tems allows kernel-mode malware to directly invoke ar-
bitrary kernel functionality by simply calling or jump-
ing to arbitrary kernel code addresses. We thus harden
the existing interface so that it becomes fully non-
bypassable. Gateway creates distinct virtual memory re-
gions for commodity monolithic kernels and their dri-
vers in the same way that kernels manage distinct re-
gions for higher-level application software. This de-
sign isolates drivers in a different memory region and
requires them to invoke kernel code through published
entry points. To keep driver code and core kernel code
isolated throughout the execution of the system, Gate-
way prevents DMA-capable devices from corrupting the
kernel’s code via malicious DMA writes [5].

The creation of the non-bypassable interface via ad-
dress space separation diminishes overall system perfor-
mance. Control-flows between drivers and the core ker-
nel result in page faults managed by our hypervisor-level
software. The transition from execution in a guest vir-
tual machine (VM) into the hypervisor is a world switch
(slow path) with significant performance overhead. We
address this challenge by reducing the number of world
switches when crossing the barrier between the kernel
and the drivers. Our solution establishes fast address
space switching (fast path) by using on-demand runtime
code generation and kernel and driver code rewriting.
During execution, Gateway creates transition pages—
read-only code pages shared by both the kernel and
driver address spaces—that contain short instruction se-
quences that switch address spaces without invoking the
hypervisor. We overwrite control-flow instructions at
runtime in the kernel’s and drivers’ code pages to redi-
rect control-flows spanning the memory barrier into the
transition pages. As we only generate transition code
for control flows correctly spanning the non-bypassable

interface, our design does not compromise security but
provides significant improvements to performance.

Gateway monitors kernel APIs invoked by drivers on
both the slow and fast paths. On the slow path, API
invocations from drivers cause page faults that are inter-
cepted by Gateway inside the hypervisor and logged for
higher-level security tools. Since the guest system’s ex-
ecution does not reach the hypervisor on the fast path,
the code on our transition pages logs API information in
protected memory inside the guest VM. Gateway then
periodically reads the logged information from the hy-
pervisor.

To demonstrate the feasibility of our ideas, we de-
veloped a prototype security monitor. Gateway provides
protection to a fully virtualized Linux 2.6 kernel run-
ning inside a guest VM created by the Xen hypervi-
sor, which utilizes the virtualization extensions present
in recent x86 hardware [4]. Gateway isolates all com-
modity Linux drivers present in the guest VM, performs
on-demand dynamic binary rewriting and runtime code
generation, and monitors kernel APIs invoked by drivers
as control flows spanning the memory barrier occur. We
tested Gateway’s monitoring ability with two full-kernel
malware instances: the lvtes keylogger and a syn-
thetic kernel-mode bot. Our results show that Gateway
is able to monitor and log all APIs invoked by malicious
drivers. We empirically show the significant difference
between the kernel APIs invoked by legitimate drivers
and malware, information useful to full-kernel malware
detection or analysis. We also verified Gateway’s abil-
ity to enforce the non-bypassable interface by testing it
with a synthetic malware instance that tries to execute
kernel functionality not provided by the published inter-
face. Gateway’s overhead on various workloads varies
between 0% and 10%, with many measurements below
1%.

Gateway’s API monitoring facilitates creation of
other security tools that restrict the use of kernel code
by drivers. For example: an intrusion detection sys-
tem (IDS) can be built that enforces a policy restricting
drivers’ uses of the kernel’s raw memory manipulation
functions. In another example, kernel-level anomaly de-
tectors similar to system-call based detectors can be de-
veloped to identify malicious drivers by differentiating
the patterns of kernel functions invoked by legitimate
drivers from those of the malware. Ptrace [22] allows
user-mode security tools to monitor system calls invoked
by processes for such anomaly detection. Like ptrace,
Gateway itself does not attempt to distinguish between
benign and malicious API invocations, but it rather pro-
vides the mechanism and information enabling higher-



level security software (anomaly and misuse detectors)
to make such decisions.

In summary, our work contributes the following:

• We create a non-bypassable interface inside the
kernel. Our hypervisor-level software imposes the
non-bypassable kernel interface upon dynamically-
loaded device drivers thereby preventing control
flows from drivers into arbitrary kernel code (Sec-
tion 3).

• We efficiently handle control flows spanning the
kernel interface barrier via on-demand dynamic bi-
nary rewriting and runtime code generation. These
actions reduce world switches into and out of the
hypervisor without compromising the security of
the system (Section 4).

• We design a kernel API monitoring tool that
records all kernel APIs invoked by drivers via
both the slow and fast paths. The monitor asyn-
chronously passes the logged APIs to arbitrary se-
curity software monitoring driver execution (Sec-
tion 5).

• We evaluate our system by demonstrating its abil-
ity to monitor the kernel APIs invoked by dri-
vers (Section 6), the efficiency of our interface en-
forcement design, particularly with runtime rewrit-
ing and code generation, and the omission of false
alarms on benign driver execution (Section 7).

2. Related Work

Gateway hardens the kernel API to drivers by iso-
lating driver code in a different memory address space
than the kernel. Previous researchers have studied the
extension isolation problem from both the fault isolation
and security perspectives, and they proposed solutions
different than ours. Nooks [44] confined drivers to a
separate address space using hardware page protection.
The goal of Nooks was fault isolation; a malicious driver
could easily bypass its protection. Since Nooks resided
in the operating system, it was still susceptible to di-
rect attacks by malicious kernel drivers. Further, it re-
quired assistance from both drivers and the kernel, and
its overhead was high. In contrast, we designed Gate-
way to offer its protection from all drivers, including
malware, and it protects itself by using the hypervisor.
Though Gateway also isolates drivers using hardware
protection, it has low overhead due to its fast address
space switching. Vx32 [14] and NaCl [51] isolated ap-
plications in sandboxed environments to execute them

safely. They used segmentation and programming lan-
guage techniques to prevent applications from breaking
out of the sandbox. Gateway is different from Vx32 and
NaCl as it isolates kernel extensions, protecting the core
kernel. Further, it uses paging and binary rewriting to
reduce the performance overhead.

Other solutions isolate drivers in user space. Gana-
pathy et al. [16] proposed the Microdrivers architec-
ture in which drivers were broken into two components,
one residing in kernel-space and the other in user-space.
Though Microdrivers improved the reliability of the sys-
tem, the drivers were not completely isolated from the
kernel. Nexus [50] isolated drivers entirely in user-space
using hardware protection mechanisms. However, it re-
quired additional device-specific safety specifications.
Though these approaches have merits, they require ex-
tensive code changes and rewriting of all drivers.

Researchers have also explored protection domains
implemented entirely in software. Software fault iso-
lation (SFI) [48] used program rewriting techniques to
modify the object code of untrusted modules to prevent
them from writing or jumping to an address outside their
access domain. Based on SFI, Seltzer et al. [35] pre-
sented a new operating system, VINO, that protected the
core kernel from misbehaving kernel extensions. Unlike
VINO, Gateway is designed to protect commodity oper-
ating systems.

The program rewriting technique was further used by
XFI [13] and BGI [6]. XFI guarded all instructions to
prevent control flow and data access violations. The
control flow prevention included entry point protection
similar to Gateway’s protection. XFI’s rewriter assumed
either the availability of debugging information (PDB
files) associated with drivers or specially-compiled dri-
vers. Neither assumption is valid for malware: mal-
ware instances deliberately strip debugging information
to make their analysis hard and use packing software to
further hide the difference between code and data. It
is not feasible to force malware authors to use special
compilers. In contrast, Gateway does not assume any
cooperation from drivers, hence it is suitable for pro-
tection from malware. BGI used byte-granularity mem-
ory protection to isolate kernel extensions. Their sys-
tem did not modify drivers’ source code directly, but
modified the compiler to generate modified driver ob-
ject code. Since BGI is designed for fault isolation, and
it requires specially-compiled drivers, it is again not suit-
able for malicious drivers. Since Gateway does not re-
quire specially-compiled drivers, its protection confines
all drivers, including full-kernel malware.



Gateway monitors control flows from drivers to the
core kernel through the function-call interface provided
to drivers. Previous work such as CFI [1] and Program
Shepherding [25] monitored the control flow integrity
of applications. SBCFI [31] detected persistent kernel
control flow attacks by checking the addresses to which
kernel function pointers point. Subsequently, Wang et
al. [49] protected all kernel function pointers by redirect-
ing them to a common memory region and making that
region read-only. Autoscopy [32] discovered and pro-
tected kernel function pointers by scanning kernel mem-
ory. These systems complement Gateway’s ability to
create a non-bypassable interface for drivers by protect-
ing kernel code pointers. Gateway’s control flow moni-
toring implementation differs from previous tools, such
as Dtrace [43] and Kprobes [28], that were designed for
tracing and debugging rather than for adversarial envi-
ronments.

Gateway uses hardware virtualization extensions and
memory page protection bits in its creation of mem-
ory barriers. The use of virtualization has appeared in
multiple research projects [12, 17, 20, 33, 41, 42]. Like
those systems, Gateway also uses the isolation provided
by virtualization to remain protected from malicious
kernel-level code. Gateway manipulates page permis-
sions bits so that it may interpose on control flow trans-
fers between drivers and the kernel. Payne et al. [29]
used page protection bits to protect trampoline code in-
serted into kernel memory. SecVisor [36] protected the
core kernel code pages from modification by kernel-
level malware. Litty et al. [27] identified covertly exe-
cuting rootkit binaries present on an infected system by
using page protection bits to intercept any code execu-
tion attempt involving protected pages. Sharif et al. [37]
presented an in-VM design of a security monitor by iso-
lating the security monitor driver in a separate memory
region using hardware page protection. Chen et al. [9]
proposed a system based on multi-shadowing that pro-
tected the privacy and integrity of an application, even
if the underlying operating system was compromised.
Similar to these systems, Gateway also uses page pro-
tection bits, here, to create a non-bypassable interface
inside the kernel for drivers.

3. Non-Bypassable Kernel Interface to Dri-
vers

We designed and developed Gateway, shown in Fig-
ure 1, to fulfill the following goals:

• Kernel API Monitoring: As full-kernel malware
instances contain all malicious functionalities in

Figure 1. High-level architecture of Gate-
way.

drivers, we need a security monitor that can moni-
tor kernel interfaces provided to drivers.

• Kernel Interface Enforcement: Gateway requires
a non-circumventable kernel interface to monitor
drivers’ interactions with the kernel. Gateway cre-
ates a non-bypassable interface by isolating drivers
in a separate address space and allowing kernel in-
vocations only via predefined entry points.

• Efficiency: The techniques used to enforce a non-
bypassable interface to the kernel must not intro-
duce serious performance impediments to normal
system usage. Gateway performs on-demand dy-
namic binary rewriting and code generation, a de-
sign that keeps overhead low.

• Tamper Resistance: Gateway constrains kernel-
mode malware, hence any security tools deployed
at the same privilege level in the kernel may be
easily compromised. Gateway avoids this problem
with a hypervisor-based design.

3.1. Threat Model

We designed Gateway for an environment that ex-
pects installed attacks to include kernel-mode compo-
nents. These malicious drivers may include function-
ality traditionally implemented in user-space processes
so that the malware eludes monitoring or detection by
application-level security software, including system-
call monitors. We expect that the drivers will be in-
stalled successfully, whether through technical means or
through user naı̈vety. We also expect users to install be-
nign drivers and to update existing drivers with benign



patches, though neither we nor they can differentiate ma-
licious drivers from benign drivers when installed.

To provide security in an environment with kernel-
level malicious software, we implant Gateway in an iso-
lated hypervisor layer beneath the vulnerable system.
Our trusted computing base includes the hypervisor and
a trusted management console called the security VM.
We assume that the trusted hypervisor is already in-
stalled on the system, hence we do not consider attacks
such as Bluepill [34] and Subvirt [24] due to their inabil-
ity to handle nested virtualization. Since our goals are
to constrain drivers’ invocation of kernel functionality
to the kernel’s standard API and to monitor those invo-
cations, we do not consider data attacks and rely on pre-
vious research to protect against these attacks [8,40,49].
Correct functioning of Gateway does not require that the
guest kernel in the low privilege user VM be trusted or
free from exploit, however, an exploited or overtly ma-
licious kernel will clearly negate the usefulness of the
driver-to-kernel API monitoring provided by our work.

3.2. Driver Isolation

Commodity operating systems such as Windows and
Linux rely on paging to provide address space isolation
between user applications and the kernel. Page tables, a
data structure defined by the hardware, map virtual ad-
dresses to physical addresses. Each process has its own
page tables (virtual address space), each of which con-
tains mappings for all kernel virtual memory addresses
at a fixed location. The kernel page mappings include
all kernel-mode components. In this work, we are con-
cerned with the kernel-level security, so we describe
only the kernel address space in the rest of the paper.
Our approach creates separate page tables for the kernel
and for drivers, much in the same way that an OS ker-
nel creates distinct page tables for each running process.
Separate page tables force all control flows spanning the
kernel-driver interface to induce page faults handled by
code in the hypervisor that verifies the legitimacy of the
control flow.

In virtualized environments, the hypervisor controls
the machine’s memory by creating its own page tables
to be used by the memory management hardware. These
hypervisor-level tables are called shadow page tables in
virtualization literature and active page tables (APTs)
by hardware vendors [19]. We refer to the portion of
the shadow page tables that translates kernel virtual ad-
dresses to kernel physical addresses as the kernel page
table (KPT). The page tables present in the guest VM—
normally used in the absence of virtualization—are re-

Figure 2. Layout of kernel and driver ad-
dress spaces with permissions set on
memory pages.

named as virtual page tables and provide the illusion to
the guest kernel that it controls its own memory.

Gateway creates a separate driver address space in-
side the Xen hypervisor analogous to the existing ker-
nel address space (Figure 2). It maps all driver code
pages from all drivers loaded by the guest system into
the driver page table (DPT) in a manner transparent to
the guest. To maintain consistency between the DPT and
the KPT, we map all memory pages of the kernel address
range into both page tables, though we set permissions
differently. In the KPT, driver code pages are marked
non-executable and non-writable. In the DPT, kernel
code pages are marked non-executable, non-readable,
and non-writable. We also mark all data pages non-
executable in both the KPT and DPT to prevent dri-
vers from using data pages for code execution. This
configuration of execution permissions across the page
tables sets up our subsequent monitoring of a driver’s
invocation of kernel functionality. Both tables contain
executable and non-writable transition code pages, de-
scribed subsequently in Section 4. Both the KPT and
DPT are stored in the hypervisor’s memory space, and
hence remain isolated from attack by malicious software
executing in a guest VM.

To map driver code pages into the DPT, Gateway
must know the virtual addresses of driver code pages in
the guest kernel’s memory space. Since the operating
system loads drivers and modules dynamically, they are
relocatable and do not reside at a fixed location at ev-
ery load. To acquire the addresses at which drivers are
loaded, we interpose on the driver loading process. At



Figure 3. Address space switching be-
tween drivers and the kernel on the invo-
cation of a direct call from the driver (slow
path).

runtime, we automatically rewrite the target of a direct
call instruction along the driver loading path inside the
kernel to point to a memory location that is not mapped
to the guest VM; we store the correct target location
inside the hypervisor. This design creates a page fault
during driver loading, allowing Gateway to gain con-
trol. Since this fault happens after the OS decides where
to load a driver, Gateway extracts this address informa-
tion from the guest memory in a secure way and then
resumes the guest’s execution.

We include the (non-executable) driver code pages in
the kernel’s KPT for simple efficiency purposes. Some
drivers contain read-only data, such as the import table
for the kernel, and executable code on the same mem-
ory page. By including the drivers’ code pages in the
KPT, the kernel can still read the drivers’ read-only data
without introducing extra page faults. In contrast, ker-
nel code pages must be unreadable in the DPT to pre-
vent introduction of a code-pullout attack [2, 21] and to
inhibit return-oriented rootkits. A return-oriented root-
kit [18] requires gadgets, many taken from the core ker-
nel, to perform arbitrary computation. Gateway limits
return-oriented programming by forcing drivers to enter
the kernel at legitimate API entry points; attackers are
unable to construct kernel gadgets different than the ker-
nel functions themselves. Though attackers could con-
struct gadgets from the code of other drivers in the DPT,
we discuss in Section 8 an extension to Gateway that
hardens and monitors the interface between drivers to
remove even that opportunity.

3.3. Address Space Switching

Gateway changes address spaces by switching be-
tween the kernel and driver page tables. The root of the
page tables is called the page directory, and in x86 ar-
chitectures, the hardware CR3 register stores the phys-

Figure 4. Address space switching be-
tween the kernel and drivers on the invo-
cation of an indirect call from the kernel
(slow path).

ical address of the current active page directory. In a
virtualized environment, read and write instructions in-
volving the CR3 register are privileged operations. A
guest operating system is not allowed to write into the
CR3 register, so any write operation by guests to the
CR3 register causes a world switch that passes control
to the hypervisor. This feature thwarts attacks in which
malware running in the kernel attempts to modify the
CR3 register to point to new page tables. The hardware
CR3 register points to the root of the shadow page tables
managed by the hypervisor, and it is used by the memory
management hardware.

Gateway switches between two address spaces by
changing the value stored in the CR3 register. During
driver code execution, the CR3 register stores the DPT’s
root address, DPT CR3. When the driver code calls
or jumps into any kernel code, the execution faults
into the hypervisor due to the page protection bits
set on the kernel code pages in the DPT. Inside the
hypervisor, Gateway intercepts the fault, and if the
fault is for the kernel code pages, it changes the CR3
value stored in the register by using the KPT’s root
address, KPT CR3. After changing the CR3 value
in the hypervisor, Gateway returns to the guest OS
to re-execute the faulted instruction. On the return
path from the core kernel to drivers, execution faults
again due to the page permission bits set on the driver
code pages in the KPT. In this case, Gateway replaces
the CR3 register’s value with the value of DPT CR3.
Figure 3 describes the address space switching process
on a direct call to and ret from the kernel. Gateway
performs similar switching on an indirect call to and
ret from drivers code (Figure 4). Indirect calls from
the driver are rare and direct calls from the kernel are
non-existent, but they would be handled analogously
should they ever be encountered.



Figure 5. Steps involved in the verification of interface invocation from drivers to the core
kernel.

3.4. Non-Bypassable Interface Enforcement

The creation of a separate KPT and DPT with dis-
tinct page access permissions allows Gateway to inter-
cept control flows from any driver to the kernel, and
hence to limit allowed control flows to only those tar-
geting valid API entry points in the kernel. Commodity
operating systems publish interfaces meant to be used
by third party developers creating drivers and loadable
modules. Our expectation is that any interaction with
the core kernel through these interfaces is legitimate and
should be allowed, but attempts by a driver to jump or
call other kernel addresses represents illicit behavior at-
tempting to bypass the kernel interface. Gateway en-
forces the use of these interfaces upon drivers.

Gateway verifies calls and jumps from driver code to
kernel code, returns from the driver to the kernel follow-
ing the kernel’s invocation of driver functionality, and
interrupts (Figure 5). When driver code executing from
the DPT invokes a kernel function, the system’s exe-
cution will fault into the hypervisor because the kernel
code in the DPT does not have execute permission. In
the hypervisor, Gateway extracts the guest VM’s execu-
tion context information, such as the virtual address of
the faulted instruction. It verifies whether the faulted ad-
dress corresponds to a predefined valid entry point into
the kernel code—these include entry points of exported
functions, interrupt handlers, and exception handlers. If
the entry point is legitimate, Gateway alters the CR3 to
specify the KPT as the current page table. If the faulted
address is not a valid entry point into the kernel, then ei-
ther the driver is attempting to invoke a kernel function
which is not meant to be used by drivers, or it is trying
to jump into the middle of a block of code. Gateway
prevents such illicit control flow.

Gateway similarly verifies control flows that return
back to the core kernel code upon execution of the ret
instruction inside a driver. This driver-to-kernel transi-

tion is valid provided that the return address on the ker-
nel’s call stack has not been altered. At the original call
from the kernel to the driver, Gateway records the re-
turn address at the top of the stack prior to switching
the page tables from KPT to DPT. When the subsequent
return instruction faults, Gateway then verifies whether
the fault location matches the previously stored return
address. This design defeats attacks in which attackers
modify the return address to return to an arbitrary loca-
tion in the kernel code.

A malicious driver may attempt to use DMA to write
memory mapped into the KPT and then to execute that
code in the kernel’s context. Gateway prevents mali-
cious DMA writes by verifying the targeted memory re-
gions in the requested DMA operations. Xen emulates
all guest DMA operations using a software IOMMU.
Gateway intercepts all DMA requests and rejects any re-
quest that contains an address not writable in the DPTs
such as the kernel code and transition code pages. Xen
also virtualizes recent hardware IOMMUs, such as In-
tel’s VT-d and AMD’s DEV. Protection from these DMA
requests requires address verification at the virtualized
hardware [11, 36].

Gateway must be aware of legitimate entry points
into the kernel. We extract the virtual address of all ker-
nel functions available to drivers for legitimate use from
the symbol file (System.map or kallsyms in Linux) main-
tained by the guest kernel and keep this information with
Gateway in the hypervisor.

3.5. Controller

The security VM is a management console and runs
an application that controls Gateway’s operation. The
controller can enable or disable Gateway’s protection in-
side the hypervisor. It interacts with the hypervisor us-
ing the hypercall interface provided by the hypervisor.
Whenever the hypervisor component of Gateway iden-



tifies an attempted control flow that bypasses the kernel
interface, it informs the controller so that necessary ac-
tions can be taken, as specified by policy or an adminis-
trator.

3.6. Driver Page Table Implementation

We developed the driver address space as new
shadow page tables created in the Xen hypervisor.
Equally suitable alternative implementations could use
other hypervisors, such as KVM or VMware, and
hardware-supported nested/extended page tables. Al-
though the guest Linux system used for our prototype
development is a 32-bit system with 2-level page tables,
we used Xen in its physical address extension (PAE)
mode. In PAE mode, the x86 memory management unit
expects 3-level page tables and offers the non-execute
(NX) memory page permission absent from 2-level page
tables. In PAE mode, Xen automatically maps 2-level
guest page tables to its 3-level shadow page tables. Gate-
way then creates the DPT by allocating memory for a
3-level page table separate from Xen’s original table.
After allocating memory, it sets up the DPT as a copy
of the shadow page table with kernel code marked non-
executable, non-writable, and non-readable. Finally, it
edits the KPT so that driver code pages are marked non-
executable and non-writable.

Gateway ensures that address spaces remain isolated
throughout the guest system’s execution. It thwarts at-
tacks that attempt virtual memory remapping or cre-
ation of new memory mappings that reintroduce exe-
cutable kernel code into the DPT and vice versa. Gate-
way ignores such requests and injects a page fault into
the guest, indicating that the region is not for mapping.
Gateway utilizes the hypervisor’s ability to interpose on
the guest VM’s virtual page table updates. It prevents
the guest OS from mapping or changing protections on
protected memory pages by hooking inside Xen’s page
table propagation sh propagate and page fault han-
dler sh page fault code. On each page fault, it ver-
ifies that the page protection bits have not been altered.

4. Fast Address Space Switching

The isolation of driver code pages in an address space
separate from kernel code pages comes at a price. Each
address space transition causes page faults, which in turn
cause hypervisor world switches. Since the interaction
between the kernel and drivers happens at a high rate,
we expect the performance cost to be high. To this end,
we propose a novel approach that reduces the transition

Figure 6. Address space switching be-
tween the kernel and drivers on the invo-
cation of a direct call from a driver (fast
path).

Figure 7. Address space switching be-
tween the kernel and drivers on the invoca-
tion of an indirect call from the kernel (fast
path).

overhead by establishing a fast path for address space
switching. In this section, we describe the design and
implementation of the fast path.

Our performance improvement comes by dramati-
cally reducing the number of world switches that oc-
cur during guest system execution. In the design as
presented in the previous section, every call and return
spanning the barrier between the kernel and drivers in-
duces a world switch to the hypervisor at the page fault.
In our fast path design, only the first call at a particu-
lar call site faults to the hypervisor. All subsequent calls
from the same location and all corresponding returns ex-
ecute at full speed. This design is similar to lazy linking
of library functions in dynamically-linked applications:
the first invocation executes functionality that fixes up
the code so that all subsequent calls execute with no de-
lay. Our fixups include runtime code generation and se-
lective rewriting of guest kernel and driver code. A fur-
ther optimization to prevent execution faults on even the
first call instruction would require altered compilation or
pre-execution offline code rewriting at all control-flow
transfers, and we have not pursued such changes.

We leverage a hardware feature present in Intel and
AMD processors called CR3-Target Controls [19]. This
feature allows a guest kernel to change the CR3 value
without causing a world switch to the hypervisor, pro-
vided that the value written into the CR3 register was



previously specified by the hypervisor in the CR3-Target
registers. Gateway adds the KPT CR3 and DPT CR3
values into the registers.

It is then the responsibility of guest kernel code to
switch the CR3 value when transitioning the memory
barrier between the kernel and the drivers. The instruc-
tions to execute the switch are not present in the stock
Linux kernel. Gateway thus generates short sequences
of instructions that correctly change the CR3 value,
writes those sequences into guest OS memory pages that
we term transition pages, and overwrites call instruc-
tions in the kernel code and driver code to redirect the
control flows spanning the memory barrier through the
transition pages. The transition pages are guest memory
pages, and they are mapped into both the KPT and DPT
as read-only and executable pages. We call the short
sequence of instructions on transition pages transition
code.

In the hypervisor, Gateway generates transition code
and rewrites call instructions on-demand at runtime ev-
ery time a call instruction executes for the first time and
faults to the hypervisor. Subsequent to the code alter-
ation, execution of the same call instruction will pass
through the transition code and avoid a world switch.
We only redirect direct call instructions from drivers to
the core kernel, indirect call instructions from the kernel
to drivers, and their corresponding returns; indirect call
instructions from drivers to the kernel and direct call in-
structions from the kernel to drivers still use the slow
path for switching between address spaces (see Sec-
tion 4.2 for explanation). By adding the KPT CR3 and
DPT CR3 values to the CR3-Target registers, perform-
ing runtime code generation on transition pages, and
rewriting control transfer instructions, any CR3 switch
between the KPT and the DPT happens at native speed
without invoking the hypervisor. Figures 6 and 7 show
the effect of the fast path on direct and indirect call in-
structions occurring through the interface.

Our fast path design is secure because Gateway only
overwrites those call instructions that bring legitimate
control flows into the kernel at a valid API entry point.
All transitions that have not been overwritten still fault,
and Gateway verifies those transitions. This verification
is sufficient to guarantee the non-bypassable interface
enforcement. Since transition pages are read-only, at-
tackers cannot modify the generated code on transition
pages to enter into arbitrary locations inside the kernel.
The transition code is the only code that is executable in
both the KPT and DPT, and it is the only way of switch-
ing the address spaces without invoking the hypervisor.
Malicious drivers executing from the DPT cannot exe-

Figure 8. Runtime transition code gener-
ated by Gateway to enter in and exit from
the kernel code on direct call and ret in-
structions, respectively.

Figure 9. Runtime transition code gener-
ated by Gateway to enter in and exit from
the driver code on indirect call and ret in-
structions, respectively.

cute kernel code in the KPT by changing the CR3 to
KPT CR3 themselves without using the transition code.
Though the CR3 switch will not fault as KPT CR3 is
in the CR3-Target registers, the execution will fault on
the driver’s next instruction as that instruction is not ex-
ecutable from the KPT.

4.1. Runtime Transition Code Generation

Gateway generates transition code on transition pages
at runtime to switch the CR3 register value. The transi-
tion code can be divided into two parts: the entry code
and the exit code. The entry code corresponds to a
call instruction while the exit code corresponds to the
paired ret instruction. Gateway generates the entry and
exit code customized for each call and corresponding
ret. We describe entry and exit code for both the direct
and indirect call instructions that Gateway overwrites.

The entry code for a direct call instruction from a
driver to the kernel has three sequential components: (a)
code that overwrites the return address on the stack with
the address of the start of the paired exit code, (b) CR3
switch code, and (c) a jump to the original target address
in the kernel. In a single instruction, the transition code
overwrites the return address to redirect the subsequent
return from the kernel back to the driver through the exit
code on the transition page. Note that Gateway records
the original return address before overwriting its value;
the original value will be used when generating the exit



code. Gateway then generates the code that switches
the address spaces without invoking the hypervisor, us-
ing a sequence of four instructions. When executed, this
will not cause a page fault because the transition code is
present in both the DPT and KPT. Finally, it adds a direct
jmp instruction to the original kernel function. Due to
the address space switch that happens before the jump,
this jump will not cause a page fault.

The paired exit code is similar to the entry code in
that the generated code (a) switches the CR3 value back
to DPT CR3 and then (b) jumps to the original return
address in the driver. Since both the entry code and exit
code are customized for each call and return, the direct
jmp instructions use hardcoded values taken from the
return address on the stack prior to its overwrite. Gate-
way writes these hardcoded values on the transition page
at the time of the code generation. Figure 8 shows the
transition code that Gateway generates for a direct call
instruction from a driver to the kernel and for its return.

In a similar way, Gateway generates entry and exit
code for indirect calls from the kernel to drivers. When
producing entry code, Gateway first saves the original
return address and generates code to replace it with the
start of the exit code. Then, it generates code to switch
the CR3 to DPT CR3. In the next instruction, however,
the jump target cannot be hardcoded because the indi-
rect target may change later in execution. The address
of the targeted driver function is either in a register or in
a memory location specified as the operand of the call
instruction. In order to ensure that the transition code
targets the correct address, Gateway copies the operand
of the indirect call instruction from the kernel code over
to the indirect jump instruction that it is generating on
the transition page. For example, if an indirect call in-
struction is ff d1, Gateway generates the code ff e1
on the transition page to jump to the driver function; that
binary code is the equivalent indirect jump with the same
operand. Gateway also generates the exit code to re-
turn control from the driver back to the kernel. The exit
code for an indirect call is identical to the exit code for
a direct call instruction with a hardcoded jump location.
Figure 9 shows the transition code that Gateway gener-
ates for an indirect call instruction from the kernel to a
driver and for its return.

4.2. Dynamic In-Memory Code Rewriting

Gateway redirects calls through the transition pages
by dynamically rewriting the call instructions on the
code pages of the kernel and drivers when those calls
cause transitions between the DPT and KPT. In combi-
nation with the runtime code generation, this redirection

Figure 10. Effect of compilation of the ker-
nel with the modified GCC that adds nop
instructions after each indirect calls.

allows address space switching to occur at native speed.
The on-demand rewriting allows a call instruction to
fault once. During the processing of the fault, Gateway
first validates the control flow transfer. If it finds the
transition valid, it generates transition code and rewrites
the faulted call instruction to point to the entry code.
Gateway also removes the fault caused due to the ret
instruction. This design does not let the execution fault
on the verified re-written instructions for every future
invocation: this call and its return are now on the fast
path.

We first describe the on-demand dynamic binary
rewriting of direct call instructions that transfer con-
trol from drivers to the kernel. A direct call in-
struction contains one byte of opcode and four bytes
of operand specifying the location of the invoked ker-
nel function. On a fault, Gateway rewrites this call in-
struction by replacing its operand with the address of the
entry code generated on the transition page; the origi-
nal target operand is inserted on the transition page as
the jump target of the entry code. With this rewriting,
the existing direct call instruction to the kernel function
becomes the direct call instruction to a transition code
present on the transition page.

Gateway also rewrites indirect call instructions in the
core kernel targeting drivers. (Note that the kernel never
targets a loadable driver with a direct call as such kernel
code would fail to statically link.) Overwriting indirect
call instructions with direct calls is complicated because
most x86 indirect calls are 2 bytes, 3 bytes, or 6 bytes in
length. Gateway needs 5 bytes to rewrite an indirect call
instruction with a direct call instruction targeting transi-
tion code.

To perform the rewriting of short indirect call instruc-
tions, we insert NOP instructions in the kernel binary af-
ter each indirect call instruction. An indirect call instruc-
tion followed by NOP padding provides sufficient width
to replace the indirect instruction with the direct call.
To insert these padding instructions, we use a compiler-



Figure 11. Low-level architecture of the
Kernel API monitor that records kernel
APIs on both the slow and the fast path.

based approach. We modify gcc so that it generates
new binaries containing NOP instructions after each in-
direct call instruction. Figure 10 shows a snippet of the
kernel’s binary code and its transformation after compil-
ing it with the modified gcc. With the new kernel binary,
Gateway is able to overwrite indirect call instructions in
the kernel code with direct call instructions pointing at
entry code on the transition page.

Importantly, note that our design does not require dri-
vers to be recompiled with the modified compiler. We
specifically chose this design because it does not force
third party vendors (or full-kernel malware authors) to
compile their drivers with our compiler; it is also one
of the reasons why we do not rewrite indirect calls from
drivers to the core kernel. A second reason to not rewrite
indirect calls from drivers to the kernel is security. Re-
call that during the code generation of indirect call in-
structions, we copy the operand of the call instruction to
our transition page. An attacker could easily change the
value stored in the registers that are part of the operand
and could invoke unchecked arbitrary kernel functional-
ity. Our design does not allow such transitions into the
core kernel and strictly enforces the non-bypassable in-
terface to drivers.

5. Kernel API Monitoring

Gateway functions as kernel API monitoring soft-
ware that records all kernel functions invoked by drivers
through the non-bypassable interface. Our optimized
design creates two different paths by which drivers may
invoke kernel functions: a slow path that causes a world

Figure 12. Runtime entry code generated
by Gateway to enter into the kernel code
from drivers. This code includes the API
logging logic also.

switch and a fast path that uses transition pages. To be
able to record all kernel functions invoked by drivers,
Gateway must monitor both the slow and the fast path.

To monitor kernel API invocations on the slow path,
Gateway records the virtual address of the invoked ker-
nel function at each page fault from drivers to the core
kernel. It also finds the virtual address of the callee by
using the return address present on the stack. Since
Gateway protects the return address, it can securely
identify the driver that invoked the kernel function. Once
Gateway identifies the source and destination informa-
tion, it passes this data to the controller for use by
higher-level security software.

Monitoring API invocations via the fast path requires
a different strategy. Since fast path memory barrier tran-
sitions do not reach the hypervisor, Gateway will not
be able to record these APIs invocations. To be able to
monitor the kernel APIs on the fast path, Gateway aug-
ments the code generated on transition pages so that it
additionally logs the kernel API invocation information
in protected guest kernel memory. Gateway allocates
guest memory pages called log memory from the hyper-
visor and uses this memory pool to store the API invo-
cation information occurring through the fast path. In
a standard producer-consumer model, the logs are writ-
ten inside the guest by the transition code, and Gateway
reads the logged data asynchronously from the hyper-
visor. To protect the logged data from malicious dri-
vers, Gateway marks the allocated memory pages as
non-readable, non-writable, and non-executable in the
DPT. These pages have read-write permissions inside
the KPT. With this design, Gateway is able to log all
kernel API invoked by drivers both on the slow and fast



Malicious Kernel API Invoked
Driver
Lvtes sys open, sys read, sys write, sys close

sys getdents, spin unlock
snprintf, wake up, kmalloc
copy from user, copy to user,

spin lock, kfree, memmove
Full kmem cache alloc, sock create,

Kernel inet stream connect
Bot sock recvmsg, sys sendmsg

Table 1. Kernel APIs invoked by the lvtes
keylogger and the kernel-level bot.

paths. Figure 11 shows the architecture of the kernel
API monitor.

To record the API information in the guest mem-
ory, Gateway first generates a logging function called
Klog on a separate guest kernel memory page mapped
as non-readable, non-writable, and non-executable in
the DPT. It is read-only and executable inside the KPT.
Then, during the generation of the entry code on a tran-
sition page, Gateway adds extra instructions that invoke
Klog from the transition page after switching CR3 to
the KPT. When a direct call from drivers to the kernel
goes through the transition page, the transition code in-
vokes the Klog code. The transition code also passes
the virtual addresses of the called and callee functions
using the kernel stack. Figure 12 describes the transi-
tion code augmented with the logging code. To avoid
attacks in which untrusted drivers tamper with the in-
formation present on the stack, we first switch the CR3
from the DPT CR3 to the KPT CR3 and then push the
information on the stack. In this design, driver code
becomes non-executable and Klog extracts the informa-
tion in a secure way. To avoid security issues due to
interrupts during logging, we disable interrupts before
parameters are pushed on the stack and enable them af-
ter Klog completes. Klog writes invocation information
in the log memory to be consumed by the hypervisor,
which subsequently passes the data to the controller and
any high-level security software.

6. Security Evaluation

We evaluated Gateway’s enforcement of the non-
bypassable interface and monitoring of the kernel APIs
invoked by drivers.

6.1. Non-Bypassable Interface Evaluation

We tested Gateway’s ability to enforce the bound-
ary between drivers and the kernel code with a synthetic
malware instance that jumps into the middle of the ker-
nel code to execute an operation. When we ran our ma-
licious driver inside the guest VM, Gateway loaded it
into the DPT and marked its code pages non-executable
and non-writable in the KPT. When the malicious driver
tried running its malicious code from its initialization
function, the jmp instruction caused a fault into the hy-
pervisor as the kernel code was not present in the DPT.
On verification, Gateway correctly found that the target
address was not a valid kernel entry point and raised an
alarm.

6.2. Kernel API Monitoring Evaluation

We evaluated Gateway’s ability to monitor all kernel
APIs invoked by malicious drivers. We ran Gateway
with two malicious drivers: the lvtes keylogger and
a synthetic kernel-mode bot. The keylogger installs a
kernel driver, receives user keystrokes, and logs them to
a file. It performs all operations inside the kernel, and
it does not contain any user-space process. When we
loaded lvtes in the guest VM, Gateway set up the appro-
priate permissions for the code and data pages of lvtes
both in the KPT and DPT. During its execution, lvtes in-
voked several kernel APIs to read data, to write data to
the log file, to hide the file, to allocate memory, and to
perform some other functions. Gateway was able to log
all APIs invoked by lvtes, shown in Table 1.

In our second test, we ran Gateway with a synthetic
kernel-level bot having basic functionalities, such as
socket creation, network connection, data transmission,
and packet receipt. This bot again completely resided
in the kernel as a driver, and it did not have any user-
level component. We ran one server on a separate test
machine so that bot could communicate with it. After
loading the bot and isolating its code pages in the DPT,
when it executed its functionality, Gateway successfully
detected all API functions invoked by the bot, listed in
Table 1.

The above results show that Gateway is effective in
enforcing the non-bypassable interface. Given this in-
terface, Gateway then logs all interaction of drivers with
the core kernel. The information provided by Gateway
can be used by high-level security software that could,
for instance, identify malicious software based on their
unusual use of the kernel interface. To demonstrate the
usefulness of the kernel API monitoring, we empiri-
cally evaluated the difference between the kernel APIs



Benign Kernel API Invoked
Drivers

File kmem cache alloc, clear inode, new inode,
system generic commit write, block prepare write,
driver block write full page, generic file aio write,

rb erase, spin lock, spin unlock,
truncate inode pages, submit bh, rb first

Network spin unlock, alloc skb, eth type trans,
driver spin lock, netpoll trap, raise softirq ireoff,

spin lock irq, spin unlock irq, netif receive skb

Table 2. Kernel APIs invoked by the benign drivers and logged by Gateway.

Task Count
Lines of gcc source code modified 5
Drivers isolated 36
Approx. direct instruction overwritten 500
Approx. indirect instruction overwritten 65
Approx. transition pages used 8

Table 3. Statistics related to Gateway’s im-
plementation and impact on a running sys-
tem.

invoked by malicious and legitimate drivers. Table 2
shows the key kernel APIs invoked by file system and
networking drivers on our test system. A comparison
of the two tables shows a clear distinction between the
set of APIs invoked by malware and legitimate drivers.
These anomalies can be used by high-level security soft-
ware to detect attacks.

7. Performance Evaluation

Compatibility Evaluation: We designed and
developed Gateway to offer its protection to the kernel
from drivers. We conducted a compatibility test to
show that Gateway did not make any assumption on
driver code. We tested Gateway with 36 commodity
Linux drivers, and Gateway was able to isolate all of
them. Further, Gateway was able to perform binary
rewriting and runtime code generation for all these
drivers and the core kernel. Table 3 presents detailed
statistics related to Gateway’s implementation and basic
impact on the guest Linux kernel. Our compatibility
evaluation shows that Gateway’s design is effective, and
it can be used to protect operating systems from drivers,
including kernel-malware. Appendix A shows the list
of all isolated commodity drivers along with their sizes.

Experimental Evaluation: We evaluated Gate-
way’s impact on a system’s performance with extensive
benchmark-driven evaluation. Our testbed contained an
Intel 2.8 GHz Core 2 Quad processor, 4 GB of RAM,
and a 100Mbps ethernet card. We used the Xen hypervi-
sor in PAE mode, and our guest user VM used the 32-bit
Linux 2.6 kernel. For our experiments, we assigned 1GB
of memory to the guest VM, and 3 GB of memory was
shared between the security VM and the hypervisor.

We tested Gateway with a collection of benchmarks
exercising the CPU, disk I/O, and network I/O: Lm-
bench [26], BYTEmark [47], Iperf [39], and Bonnie
[46]. We performed all experiments five times and, due
to occasional large outliers common to virtualized en-
vironments, report median values together with the me-
dian absolute deviation. We present the results of file-
system benchmarks in boxplots due to high variance in
disk I/O measurements. In our results, “Normal” refers
to measurements that do not have Gateway’s protection
and “Gateway” includes our protection.

In our micro-benchmark experiments, we first mea-
sured the effect of Gateway on operations that happen
very frequently. Using lmbench, we measured the cost
of a context-switch, procedure call, and system call. Ta-
ble 4 shows our results. It can be seen from the table that
Gateway’s overhead on the regular operations is low.

In another experiment, we measured Gateway’s over-
head on network operations. Since Gateway isolates
all drivers—including the networking driver—in another
address space, we measured this effect. We connected
two machines with a switch. We used lmbench’s net-
work tests to measure network latency, TCP and UDP
latencies, and throughput of TCP connections, and Iperf
to measure UDP throughput. The results are shown in
Table 5. Although Gateway’s overhead on network oper-
ations is low, it still affects TCP communication. We in-
vestigated the cost of TCP operations, and we found that
some of the functions on the TCP code path were not



Operation Normal VM (ns) Gateway VM (ns) Overhead (%)
Context-switch 2, 400. (10) 2, 560. (20) 6.67
Procedure call 3.6 (0) 3.6 (0) 0.
System call 80.6 (0) 80.7 (0) 0.12

Table 4. Execution time measured by lmbench without and with Gateway for context-switching,
procedure calls, and system calls. Times reported in nanoseconds; smaller measurements
are better. Values reported are medians, and values in parentheses show median absolute
deviation.

Operation Normal VM Gateway VM Overhead (%)
TCP latency (µs) 431.6036 (5.1018) 470.9497 (13.9465) 9.12
UDP latency (µs) 432.0758 (4.1355) 454.3676 (19.9881) 5.16
Connection latency (µs) 908.0500 (15.0689) 966.9074 (32.4059) 6.48
TCP throughput (MB/sec) 8.08 (0.30) 7.98 (0.70) 1.23
UDP throughput (MB/sec) 1.06 (0.) 1.06 (0.) 0.

Table 5. Network latency and throughput measured by lmbench and lperf without and with
Gateway. Smaller measurements are better. Values reported are medians, and values in
parentheses show median absolute deviation.

receiving fast path optimization because the driver was
invoking kernel functionality via indirect calls. Since
Gateway does not rewrite indirect instructions from dri-
vers to the kernel, these control flows remain on the slow
path.

To measure Gateway’s effect on CPU-bound ex-
ecution, we tested it with computationally intensive
work loads. We performed these experiments with
BYTEmark, a benchmark that runs various CPU-
intensive algorithms and measures the performance in
iterations per second. We tested Gateway with all tests,
and Table 6 shows our results. They indicate that Gate-
way’s overhead on CPU-bound applications are very low
when compared with normal execution.

We next measured the effect of Gateway on file
system performance. Since we isolated the file system
drivers in the DPT, we measured the effect of this
partitioning. We carried out this experiment with
bonnie, a benchmark that measures the throughput of
read and write operations performed in both character
and block sizes. In this experiment, we created a file
of size 2 GB, which exceeds the size of the memory
allocated to guest VM to reduce caching effects. Our
results, shown in Figure 13, indicate that Gateway’s
read and write operations’ throughput remains close to
the normal VM’s results.

-
-

--

--

-

-
-

Normal Gateway Normal Gateway Normal Gateway Normal Gateway
0

20

40

60

80

100

120

Throughput HMB�sL

(a) (b) (c) (d)

Figure 13. Gateway’s impact on the filesys-
tem measured with Bonnie. All measure-
ments show throughput in MB/s; higher
measurements are better. Boxes show me-
dians and first and third quartiles. Outliers
appear as dashes. Groupings show per-
formance of (a) character reads, (b) block
reads, (c) character writes, and (d) block
writes.

Effect of Fast Path Optimization: Previous ex-
periments showed that Gateway’s overhead on the fast
path was low. In this set of experiments, we specifically
compared the performance of the fast path with the slow
path implementation of Gateway to show the effect
of fast path design. Our test included a compilation



Operations Normal VM (iteration/sec) Gateway VM (iteration/sec) Overhead (%)
Numeric sort 1095.80 (6.20) 1092.20 (3.50) 0.33
String sort 163.45 (0.32) 162.80 (0.24) 0.40
FP emulation 186.28 (0.20) 185.61 (0.09) 0.36
Fourier 30498. (21.) 30390 (12.) 0.35
Assignment 37.63 (0.04) 37.37 (0.07) 0.69
Idea 5806.70 (4.) 5786.70 (4.) 0.34
Huffman 2358.10 (2.30) 2347.80 (0.90) 0.44
Neural net 45.52 (0.02) 45.45 (0.03) 0.15

Table 6. Gateway’s overhead on CPU-bound applications as measured with BYTEmark; higher
measurements are better. Values reported are medians, and values in parentheses show
median absolute deviation.

Operations Normal VM (sec) Slow Path (sec) Overhead (%) Fast Path (sec) Overhead (%)
make 64.055 (0.119) 80.297 (1.452) 25.37 67.338 (0.628) 5.12
bzip2 41.847 (0.053) 51.777 (0.474) 23.73 43.287 (0.192) 3.44
tar 29.434 (0.423) 40.511 (0.427) 37.63 30.109 (0.199) 2.29

Table 7. Effects of Gateway’s fast path design; smaller measurements are better. Values re-
ported are medians, and values in parentheses show median absolute deviation.

of the stripped-down version of the Linux kernel, file
compression, and tarring of the Linux source directory.
Our results, presented in Table 7, show that Gateway’s
fast path design has improved the system’s performance
substantially when compared to the overhead on the
slow path. These results also confirm that our design
of fast path is efficient, and the overhead of Gateway is
acceptable on the system.

False Positive Evaluation: We tested Gateway’s
proclivity to falsely block legitimate driver behavior by
loading and using benign device drivers in the presence
of our tools. A false positive occurs in Gateway if be-
nign drivers bypass the kernel’s exported interfaces and
execute control transfers to internal kernel code. We an-
alyzed 36 benign drivers loaded into our test guest VM
and found that none made invalid control transfers.

8. Discussion

Gateway monitors drivers’ interactions with the core
kernel, but a malicious driver may attempt to invoke an-
other driver’s functions to perform some of their mali-
cious activities without involving the kernel. Though
monitoring driver-to-driver operations are beyond the
scope of this work, we could extend Gateway to mon-
itor driver-to-driver operations.

Currently, Gateway isolates all drivers into a single
address space separate from the kernel. An extended de-
sign could use provenance information associated with
drivers to achieve more flexible isolation. For example,
it could position drivers signed by trusted parties, such
as Microsoft, together with the kernel code in the KPT.
Only drivers whose provenance is either not known or
not verified would be isolated in the DPT. This isolation
strategy would further reduce the overhead of Gateway
because operations involving trusted drivers in the KPT
execute at full speed without interpositioning costs; only
drivers in the DPT require binary rewriting and code
generation.

The extended design would enable Gateway to mon-
itor an untrusted driver’s interaction with both the core
kernel and the KPT drivers. Given that users install dri-
vers from different third party vendors without knowing
their provenance, an inflexible preventive approach that
outright blocks the loading of new drivers may not work
in practice. Our flexible design, in contrast, could be
adopted by commodity operating systems vendors such
as Microsoft to restrict the operation of untrusted mod-
ules or drivers. The provenance based design further
limits return-oriented programming [18], previously dis-
cussed in Section 3.2, as code from neither the core ker-
nel nor any trusted driver could be used for gadget con-
struction.



An attacker may attempt to bring the entire malicious
functionality inside a single driver and execute without
interacting with the core kernel or other drivers. Since
the malicious driver would not interact with any other
code in the KPT, Gateway monitors none of its behav-
ior. Though this kind of attack is possible, it is difficult
to launch in practice as it requires prediction of all pos-
sible configurations of hardware and file systems on the
victim’s system. Such attacks, if attempted, can be mit-
igated by monitoring the malicious driver’s interaction
with the hardware by incorporating techniques similar
to BitVisor [38].

9. Conclusions

Gateway monitors the interaction of drivers with
the core kernel by creating a non-bypassable interface
inside the kernel. It isolated all drivers from the kernel
code by creating a separate address space for drivers.
The address space isolation incurred performance
overhead because each address space switch caused
world switches to the hypervisor. Gateway solved
this problem by establishing a fast path, which used
on-demand runtime binary rewriting of guest kernel and
code generation. With this design, Gateway allowed
most control flow transfers between drivers and the
core kernel to occur at native speed. The creation of
an efficient, non-bypassable interface allowed Gateway
to monitor kernel APIs invoked by driver through
the interface. Our evaluation showed that Gateway’s
interface enforcement was effective, its monitoring was
capable of logging kernel APIs, and its overhead on the
system was low.

Acknowledgment of Support and Disclaimer

We thank our shepherd, Lujo Bauer, and our anonymous
reviewers for their extremely helpful comments. We
would also like to thank Neha Sood for her comments
on the early drafts of the paper. This material is based
upon work supported by National Science Foundation
contract number CNS-0845309. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not reflect the
views of the NSF or the U.S. Government.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Con-
trol flow integrity principles, implementations, and ap-

plications. In ACM CCS, Alexandria, Virginia, Nov.
2005.

[2] Alexander Tereshkin. Rootkits: Attacking personal fire-
walls. www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Tereshkin.pdf. Last
accessed Aug. 05, 2010.

[3] A. Baliga, V. Ganapathy, and L. Iftode. Automatic in-
ference and enforcement of kernel data structures invari-
ants. In ACSAC, Anaheim, CA, Dec. 2008.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In ACM SOSP, Bolton Landing,
NY, Oct. 2003.

[5] M. Becher, M. Dornseif, and C. Klein. Firewire all your
memory are belong to us. In CanSecWest, 2005.

[6] M. Castro, M. Costa, J. Martin, M. Peinado, P. Akri-
tidis, A. Donnelly, P. Barham, and R. Black. Fast byte-
granularity software fault isolation. In ACM SOSP, Big
Sky, Montana, Oct. 2009.

[7] A. Chakrabarti. An introduction to Linux ker-
nel backdoors. http://www.infosecwriters.
com/hhworld/hh9/lvtes.txt. Last accessed
Aug. 05, 2010.

[8] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-control-data attacks are realistic threats. In USENIX
Security, Baltimore, MD, Aug. 2005.

[9] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems.
In ASPLOS, Seattle, WA, Mar. 2008.

[10] T. Chiueh and F. Hsu. RAD: A compile-time solution
to buffer overflow attacks. In ICDSC, Mesa, AZ, Apr.
2001.

[11] J. Criswell, N. Geoffray, and V. Adve. Memory safety
for low-level software/hardware interactions. In Usenix
Security, Montreal, Canada, Aug 2009.

[12] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In OSDI, Boston,
MA, Dec. 2002.

[13] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system address
spaces. In OSDI, Seattle, WA, Nov. 2006.

[14] B. Ford and R. Cox. Vx32: Lightweight user-level sand-
boxing on the x86. In USENIX ATC, Boston, MA, June
2008.

[15] M. Frantzen and M. Shuey. StackGhost: Hardware facil-
itated stack protection. In USENIX Security, Washing-
ton, D.C., Aug. 2001.

[16] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The design and implementation
of microdrivers. In ASPLOS, Seattle, WA, Mar. 2008.

[17] T. Garfinkel and M. Rosenblum. A virtual machine in-
trospection based architecture for intrusion detection. In
NDSS, San Diego, CA, Feb. 2003.



[18] R. Hund, T. Holz, and F. C. Freiling. Return-oriented
rootkis: Bypassing kernel code integrity protection
mechanisms. In Usenix Security, Montreal, Canada, Aug
2009.

[19] Intel. System Programming Guide: Part 2. Intel 64
and IA-32 Architectures Software Developer’s Manual,
2004.

[20] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Antfarm: Tracking processes in a virtual ma-
chine environment. In USENIX ATC, Boston, MA, June
2006.

[21] K. Kasslin. Evolution of kernel-mode malware.
http://igloo.engineeringforfun.com/
malwares/Kimmo_Kasslin_Evolution_of_
kernel_mode_malware_v2.pdf. Last accessed
Aug. 05, 2010.

[22] J. Keniston, A. Mavinakayanahalli, P. Panchamukhi, and
V. Prasad. Ptrace, utrace, uprobes: Lightweight, dy-
namic tracing of user apps. In Linux Symposium, Ottawa,
Canada, June 2007.

[23] Kimmo Kasslin. Kernel malware: The at-
tack from within. www.f-secure.com/
weblog/archives/kasslin_AVAR2006_
KernelMalware_paper.pdf. Last accessed Aug.
05, 2010.

[24] S. T. King, P. M. Chen, Y. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. SubVirt: Implementing malware
with virtual machines. In IEEE Symposium on Security
and Privacy, Oakland, CA, May 2006.

[25] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Se-
cure execution via program shepherding. In USENIX
Security, San Francisco, CA, Aug 2002.

[26] Larry McVoy and Carl Staelin. lmbench. http:
//www.bitmover.com/lmbench/. Last accessed
Aug. 05, 2010.

[27] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
support for identifying covertly executing binaries. In
USENIX Security, San Jose, CA, Aug. 2008.

[28] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston,
A. Keshavamurthy, and M. Hiramatsu. Probing the guts
of kprobes. In Linux Symposium, Ottawa, Canada, July
2006.

[29] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares:
An architecture for secure active monitoring using virtu-
alization. In IEEE Symposium on Security and Privacy,
Oakland, CA, May 2008.

[30] N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Ar-
baugh. An architecture for specification-based detec-
tion of semantic integrity violations in kernel dynamic
data. In USENIX Security, Vancouver, BC, Canada, Aug.
2006.

[31] N. L. Petroni, Jr. and M. Hicks. Automated detection
of persistent kernel control-flow attacks. In ACM CCS,
Alexandria, VA, Nov. 2007.

[32] A. Ramaswamy. Autoscopy: Detecting pattern-
searching rootkits via control flow tracing. In Techni-
cal Report TR2009-644, Dartmouth Computer Science,
2009.

[33] R. Riley, X. Jiang, and D. Xu. Guest-transparent preven-
tion of kernel rootkits with VMM-based memory shad-
owing. In RAID, Boston, MA, Sept. 2008.

[34] J. Rutkowska. Subverting Vista kernel for fun and profit.
In Black Hat USA, 2006.

[35] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing with disaster: Surviving misbehaved kernel exten-
sions. In OSDI, Seattle, WA, Oct 1996.

[36] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In ACM SOSP, Stevenson, WA,
Oct. 2007.

[37] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vm
monitoring using hardware virtualization. In ACM CCS,
Chicago, IL, Nov. 2009.

[38] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.
BitVisor: A thin hypervisor for enforcing I/O device se-
curity. In ACM VEE, Washington, DC, Mar. 2009.

[39] Sourceforge. Iperf. http://sourceforge.net/
projects/iperf/. Last accessed Aug. 05, 2010.

[40] A. Srivastava, I. Erete, and J. Giffin. Kernel data in-
tegrity protection via memory access control. In Techni-
cal Report GT-CS-09-05, Georgia Institute of Technol-
ogy, Atlanta, GA, 2009.

[41] A. Srivastava and J. Giffin. Tamper-resistant,
application-aware blocking of malicious network con-
nections. In RAID, Boston, MA, Sept. 2008.

[42] A. Srivastava and J. Giffin. Automatic discovery of par-
asitic malware. In RAID, Ottawa, Canada, Sept. 2010.

[43] Sun Microsystem. Dtrace. http://wikis.sun.
com/display/DTrace/DTrace. Last accessed
Aug. 05, 2010.

[44] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. In ACM
SOSP, Bolton Landing, NY, Oct. 2003.

[45] Symantec. Spam from the kernel: Full-
kernel malware installed by mpack. http:
//www.symantec.com/connect/blogs/
spam-kernel-full-kernel-malware-
installed-mpack. Last accessed Aug. 05, 2010.

[46] Tim Bray. Bonnie. http://www.garloff.de/
kurt/linux/bonnie. Last accessed Aug. 05, 2010.

[47] Uwe F. Mayer. BYTEmark. http://www.tux.
org/˜mayer/linux/bmark.html. Last accessed
Aug. 05, 2010.

[48] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In ACM SOSP,
Asheville, NC, Dec. 1994.

[49] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering ker-
nel rootkits with lightweight hook protection. In ACM
CCS, Chicago, IL, Nov. 2009.

[50] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and
F. B. Schneider. Device driver safety through a reference
validation mechanism. In OSDI, San Diego, CA, Dec.
2008.



[51] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Na-
tive client: A sandbox for portable, untrusted x86 native
code. In IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2009.

A. List of isolated commodity drivers

Gateway isolated the following commodity Linux
drivers in the DPT during system evaluation. No driver
execution resulted in Gateway alerts or control flow fail-
ures.

Module Size
ppdev 9220
autofs4 20100
hidp 16640
l2cap 25088
bluetooth 46308
sunrpc 141884
ip conntrack netbios ns 3328
ipt REJECT 5632
xt state 2432
ip conntrack 50860
nfnetlink 6808
xt tcpudp 3456
iptable filter 3328
ip tables 12232
x tables 13060
video 15876
button 7056
battery 9732
ac 5252
ipv6 235744
lp 12872
parport pc 26276
parport 36040
floppy 60100
nvram 9096
i2c piix4 8848
i2c core 21120
8139too 26752
8139cp 21888
mii 5632
dm snapshot 16428
dm zero 2048
dm mirror 20432
dm mod 51992
ext3 121864
jbd 55700


